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The research of phenotypic convergence is of increasing importance in adaptive
evolution. Locomotory modes play important roles in the adaptive evolution of species
in the Euarchontoglires, however, the investigation of convergent evolution of the
locomotory modes across diverse Euarchontoglire orders is incomplete. We collected
measurements of three phalangeal indices of manual digit III, including metacarpal of
digit III (MC3), manus proximal phalanx of digit III (MPP3), and manus intermediate
phalanx of digit III (MIP3), from 203 individuals of 122 Euarchontoglires species
representing arboreal (orders Scandentia, Rodentia, and Primates), terrestrial (orders
Scandentia and Rodentia), and gliding (orders Dermoptera and Rodentia) locomotory
modes. This data can be separated into seven groups defined by order and locomotory
mode. Based on combination of the three phalangeal indices, the Principle component
analyses (PCA), phylomorphospace plot, and C-metrics analyses clustered the arboreal
species of Scandentia, Rodentia, and Primates together and the terrestrial species of
Scandentia and Rodentia together, showing the convergent signal in evolution of the
arboreal (C1 = 0.424, P < 0.05) and terrestrial (C1 = 0.560, P < 0.05) locomotory
modes in Euarchontoglires. Although the gliding species from Dermoptera and Rodentia
did not cluster together, they also showed the convergent signal (C1 = 0.563, P < 0.05).
Our work provides insight into the convergent evolution of locomotory modes in
Euarchontoglires, and reveals that these three indices contribute valuable information
to identify convergent evolution in Euarchontoglires.

Keywords: convergent evolution, Euarchontoglires, metacarpal, manus proximal phalanx, manus intermediate
phalanx, locomotory modes

INTRODUCTION

The relationship between morphology, locomotory modes and habitat has been receiving greater
attention in evolutionary studies of phenotypic variation (Losos and Sinervo, 1989; Losos, 1990;
Bonine and Garland, 1999; Vanhooydonck and Van Damme, 1999; Thorington and Santana, 2007;
Goodman et al., 2008; Irschick et al., 2008; Pfaff et al., 2015; Kawashima et al., 2018). It has
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been observed that differences in habitat trigger divergence in
the evolution of the morphology of locomotory systems across
many different taxonomic taxa (Losos, 1990; Runestad and Ruff,
1995; Irschick et al., 2005; Calsbeek and Irschick, 2007; Sargis
et al., 2007; Samuels and Van Valkenburgh, 2008; Schmidt, 2008),
and that convergent evolution of locomotory modes for the
same habitat niche adaptation in phylogenetically unrelated taxa
can lead to similar morphological traits (Lemelin and Grafton,
1998; Kingsolver and Huey, 2003; Samuels and Van Valkenburgh,
2008; Gleiss et al., 2011; Losos, 2011; Edwards et al., 2012; Chen
and Wilson, 2015; Morris et al., 2018; Grossnickle et al., 2019,
2020). The morphological convergence provides clues to better
understanding functional adaptation and how distantly related
species evolved in a similar way.

The mammalian superorder Euarchontoglires is comprised
of five orders and includes Lagomorpha (rabbit, pika, and
hare), Rodentia (mouse, rat, squirrel, and beaver), Dermoptera
(flying lemur), Scandentia (tree shrew), and Primates (human,
monkey, and ape) (Murphy et al., 2001; Kriegs et al., 2006;
Vander Linden et al., 2019). A great diversity in locomotory
modes is observed among and within the Euarchontoglire orders,
including fossorial, ricochetal, arboreal, terrestrial, and gliding
(Macphee, 1993). Interestingly, the same locomotory modes
are found in different orders of Euarchontoglire, including
the arboreal mode in Scandentia, Rodentia, and Primates, the
terrestrial mode in Scandentia and Rodentia, and the gliding
mode in Dermoptera and Rodentia (Kirk et al., 2008; Meng
et al., 2017; Vander Linden et al., 2019; Grossnickle et al., 2020;
Figure 1). The sharing of locomotory modes among orders makes
Euarchontoglires an intriguing group for the investigation of
morphological convergence with locomotory modes. Previous
studies with Euarchontoglires have focused on the convergence
of forelimb evolution with several locomotory modes, but these
studies only examined species within Rodentia (Samuels and Van
Valkenburgh, 2008) or on skeletal convergence with the gliding
mode in Dermoptera and Rodentia (Grossnickle et al., 2020).
Therefore, knowledge on the convergent evolution of locomotory
modes across Euarchontoglire orders is very limited and it
remains unclear whether the underlying skeletal morphology of
terrestrial and arboreal species from the different Euarchontoglire
orders have converged.

In the present study, we collected three phalangeal indices of
manual digit III from 203 individuals of 122 Euarchontoglires
species that represent the arboreal (orders Scandentia, Rodentia,
and Primates), terrestrial (orders Scandentia and Rodentia), and
gliding (orders Dermoptera and Rodentia) locomotory modes
to investigate the convergent evolution of locomotory modes
across these Euarchontoglire orders. The three phalangeal indices
include metacarpal of digit III (MC3), manus proximal phalanx
of digit III (MPP3), and manus intermediate phalanx of digit
III (MIP3), which represent the inherent properties of the
manus (Corruccini, 1995; Hamrick, 2001; Bloch et al., 2007; Kirk
et al., 2008) and have been used to illustrate the locomotory
modes of mammals (Lemelin, 1999; Hamrick, 2001; Meng et al.,
2006, 2017; Bloch et al., 2007; Kirk et al., 2008; Samuels and
Van Valkenburgh, 2008; Venkataraman et al., 2013; Zheng
et al., 2013; Chen and Wilson, 2015; Grossnickle et al., 2020;

Young and Chadwell, 2020). Our morphometric analyses based
on quantitative methods provide insights into the convergent
evolution of locomotory modes in Euarchontoglires, and
moreover, evaluate the potential of these indices for studies on the
convergent evolution of locomotory modes in Euarchontoglires.

MATERIALS AND METHODS

Data Collection
Publicly available data for the three phalangeal indices of
manual digit III, including MC3, MPP3, and MIP3, from
a total of 152 individuals from 122 Euarchontoglire species
belonging to the orders Scandentia, Rodentia, Dermoptera,
and Primates were collected from published sources (Kirk
et al., 2008; Samuels and Van Valkenburgh, 2008; Chen and
Wilson, 2015; Meng et al., 2017). These species represent
arboreal (99 individuals from 83 species of Scandentia, Rodentia,
and Primates), terrestrial (33 individuals from 28 species of
Scandentia and Rodentia), and gliding (20 individuals from
11 species of Dermoptera and Rodentia) locomotory modes.
In addition, three phalangeal indices of manual digit III were
measured from 51 individuals of the gliding complex-toothed
flying squirrel (Rodentia, Trogopterus xanthipes) that were bred
in the Runxing Planting and Breeding Cooperative, Liquan
County, Xi’an, Shaanxi Province in the present study and were
added to the relatively limited data available to represent the
gliding locomotory mode. The three phalangeal indices measured
using the electronic digital indicator for Trogopterus xanthipes
were shown in Supplementary Figure S1. Chordal nodes for each
bone element were measured from the nearest to the farthest
end, and from the parallel to the midline of the axis on the
sagittal plane based on the methods of Kirk et al. (2008). In
total, three phalangeal indices from 203 individuals of 122 species
were collected for the present study (Supplementary Table S1).
Individuals were divided into seven groups for analyses according
to their taxonomic order and their locomotory mode. The
groups are: Rodentia Gliding (RG; 64 individuals of 9 species),
Dermoptera Gliding (DG; 7 individuals of 2 species), Scandentia
Terrestrial (ST; 8 individuals of 3 species), Rodentia Terrestrial
(RT; 25 individuals of 25 species), Scandentia Arboreal (SA; 6
individuals of 4 species), Rodentia Arboreal (RA; 34 individuals
of 27 species), and Primate Arboreal (PA; 59 individuals of 52
species). For the present analysis, the MC3, MPP3, and MIP3
indices used were the percentage of the length of each indices of
the total combined length for these three elements, i.e., MC3(p),
MPP3(p), and MIP3(p), as previously used (Corruccini, 1995;
Elissamburu and Vizcaino, 2004). Statistical differences within
the 3 indices among the different groups were detected using
the Wilcoxon test.

Morphometric Analyses
To avoid the possible bias of morphological variations resulted
from the unbalanced individual numbers for each species,
we calculated the average values per species to perform the
morphometric analyses based on species level.
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FIGURE 1 | Phylogeny of the 203 individuals from 122 Euarchontoglire species included in this study. Rectangle with a gradient of light brown color represents the
order Rodentia; the rectangle with a gradient of green color represents the order Dermoptera; the rectangle with a gradient of light-yellow color represents the order
Primate; the rectangle with a gradient of purple color represents the order Scandentia. The yellow lines represent the Scandentia Arboreal (SA) species; the gray lines
represent the Scandentia Terrestrial (ST) species; the red lines represent the Dermoptera Gliding (DG) species; the green lines represent the Primate Arboreal (PA)
species; the purple lines represent the Rodentia Terrestrial (RT) species; the blue lines represent the Rodentia Arboreal (RA) species; the indigo lines represent the
Rodentia Gliding (RG) species.

First, a principle component analyses (PCA) was conducted
using the FactoMineR and factoextra packages in R (Version
3.6.2) to visualize the overall distribution of the groups in
the morphospace.

Then, taking into the phylogenetic effect, the principal
components of the Procrustes coordinates were projected in
the phylomorphospace plot by using the phytools package in R
(Version 3.6.2). A well-accepted mammalian species tree of 122

species in our study from TimeTree database1 was used as the
input tree (Figure 1). This plot could detect the convergence
based on the length and direction of branches in relation to their
ancestral states (Feijó et al., 2020).

To statistically quantify the magnitude of convergence for the
three locomotory modes from different orders, i.e., the gliding

1http://www.timetree.org/
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(RG and DG), arboreal (RA, PA, and SA) and terrestrial (ST and
RT) modes, the distance-based metric (C1–C4) were calculated
(Stayton, 2015) by using the “convrat” function from convevol
package in R (Version 3.6.2). C1 is the distance between the
convergent tips of the taxa of interest (Dtip) divided by the
maximum distance between any ancestral nodes (Dmax), which
represents the proportion of the maximum distance between two
lineages. This change of this value from 0 to 1 means the degree
of convergence signal from non-convergence to convergence. C2
is obtained by Dtip minus Dmax and represent the magnitude of
convergent change. C3 and C4 are the standardized value of C2
which were calculated by dividing C2 by the total morphological
branch length of convergent taxa of interest (C3) and the total
amount of branch length in the entire clade (C4) (Stayton, 2015),
respectively. The significance of the metrics was assessed by the
“convratsig” function of the same package with 1000 iterations.

RESULTS AND DISCUSSION

The three indices, i.e., MC3(p), MPP3(p), and MIP3(p), used for
the seven groups, including Rodentia Gliding (RG), Dermoptera
Gliding (DG), Scandentia Terrestrial (ST), Rodentia Terrestrial
(RT), Scandentia Arboreal (SA), Rodentia Arboreal (RA), and
Primate Arboreal (PA) are listed in Supplementary Table S1.
Statistical tests for the three indices among the different groups
revealed significant differences (p < 0.05) between most groups,
with the exception of MIP3(p) for the same locomotory modes,
including MIP3(p) between ST and RT (p = 0.4774), SA and
RA (p = 0.3449), SA and PA (p = 0.7868), and RA and PA
(p = 0.089), and MPP3(p) between RA and RG (p = 0.5345)
(Supplementary Table S2).

A PCA of the three indices [MC3(p) + MPP3(p) + MIP3(p)]
showed that PC1 explained 73.6% of variation and separated
the terrestrial species of Scandentia and Rodentia (ST and RT

groups) from the arboreal and gliding species (RA, PA, SA, RG,
and DG groups) (p< 0.05). PC2 explained 26.4% of variation and
separated the gliding species of Dermoptera (DG group) from the
other species examined (p < 0.05) (Figure 2).

As seen from the phylomorphospace plot, the terrestrial
species from Scandentia (ST group) and Rodentia (RT group)
clustered together, suggesting that their similar phalangeal
morphology may contribute to adapt to the same ground habitat.
Likewise, the arboreal species from Scandentia (SA group),
Rodentia (RA group), and Primate (PA group) clustered together,
suggesting that their similar phalangeal morphology help them
adapt to their grasping behavior. These results indicate the
similarity of these morphological traits in the terrestrial and
arboreal locomotory modes in Euarchontoglires. Interestingly,
we found that the gliding species from Rodentia (RG group)
were located between the arboreal species (RA, PA, and SA
groups) and the gliding species from Dermoptera (DG group),
consistent with the observation that the RG group species
have evolved their morphological characteristics by not only
adapting to tree-dwelling and branch-grasping life, but also to
the gliding movement (Samuels and Van Valkenburgh, 2008;
Grossnickle et al., 2020). The gliding species from Dermoptera
are most distantly separated from the other species. Although the
gliding species of Dermoptera (DG group) did not cluster with
those from Rodentia (RG group) in the phylomorphospace plot
(Figure 2), these two groups possess the same gliding locomotory
mode and show a trend of closer proximity.

The C-metrics analyses of all three locomotory modes showed
statistically significant convergence [gliding (DG and RG),
C1 = 0.563, P < 0.05], arboreal (RA, PA, and SA), C1 = 0.424,
P < 0.05) and terrestrial (ST and RT), C1 = 0.560, P < 0.05)],
which indicate that evolution has reduced the distances in the
gliding species and terrestrial species by showing more than
50% similarity than expected by chance, and in the arboreal
species by more than 40% (Table 1). In addition, we also explore

FIGURE 2 | Phylomorphospace plot of 122 Euarchontoglire species based on the scores of a principle component analysis (PCA) of three phalangeal indices of
manual digit III. The yellow color represents the Scandentia Arboreal (SA) species; the gray color represents the Scandentia Terrestrial (ST) species; the red color
represents the Dermoptera Gliding (DG) species; the green color represent the Primate Arboreal (PA) species; the purple color represents the Rodentia Arboreal (RT)
species; the blue color represents the Rodentia Terrestrial (RT) species; the indigo color represents the Rodentia Gliding (RG) species.
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TABLE 1 | The C-metrics analyses of three locomotory modes (C1–C4 metrics).

Locomotory modes Groups C1 C2 C3 C4

Gliding (11) RG&DG 0.563* 0.082* 0.290* 0.008*

Terrestrial (28) ST&RT 0.560* 0.083* 0.290* 0.009*

Arboreal (83) SA&RA&PA 0.424* 0.054* 0.222* 0.006*

The numbers of species used in each locomotory modes were given in
parentheses. The “*” represents significant P-values among each locomotory
modes with P < 0.05 generated from 1,000 simulations.

the potential species that show more signals of convergence
for the three locomotory modes, as used by the method of
Stayton (2015). The phylomorphospace plot analyses and the
C-metrics analyses identified and quantified at least 72 species
in total showing more signals of convergence for the three
locomotory modes, respectively (Supplementary Table S3 and
Supplementary Figure S2).

Therefore, our morphometric analyses based on quantitative
methods provide insight into the convergent evolution
of terrestrial, arboreal, and gliding locomotory modes in
Euarchontoglires. In our analyses, the terrestrial species (ST and
RT groups) demonstrate a relatively long metacarpal (MC3) and
short phalange (MPP3 and MIP3) compared with the arboreal
and gliding species (P < 0.05) (Figure 3), which would help
increase their speed for hunting or feeding on the ground (Peng
et al., 1991; Kirk et al., 2008; Samuels and Van Valkenburgh, 2008;
Fuchs and Corbach-Söhle, 2010). In addition, previous studies
have reported the possible genetic mechanisms at the gene level
involving muscle contraction and skeletal morphogenesis for
locomotory adaptation of terrestrial in Scandentia group (Fan
et al., 2014). Our study not only confirmed the long metacarpal
and short phalange in the terrestrial species of both Scandentia
and Rodentia, but also demonstrated convergent evolution
with the terrestrial locomotory mode in these two orders of
Euarchontoglire.

In comparison, the arboreal species (RA, PA, and SA groups)
show an elongated phalange MPP3 and MIP3 compared with
terrestrial species (P < 0.05) (Figure 3), which would help
them grasp branches while they are moving. This phenomenon
has been demonstrated in arboreal Primates (Lemelin, 1999;

Hamrick, 2001; Bloch et al., 2007; Kirk et al., 2008; Young and
Chadwell, 2020) and Rodentia (Kirk et al., 2008; Samuels and
Van Valkenburgh, 2008). Our study not only observed this in the
arboreal species of Scandentia, Rodentia, and Primates, but also
demonstrated convergent evolution with the arboreal locomotory
mode in these three orders of Euarchontoglire.

The gliding species (DG and RG groups) demonstrated an
elongation of the phalangeal MIP3 compared with arboreal
and terrestrial species (Figure 3), which is likely associated
with their unique attachment of the patagia to adapt the
gliding locomotory habitat (Macphee, 1993) or to their roosting
behavior (Grossnickle et al., 2020). Although they both possessed
patagium, but they are different in that the former shows
the patagium attachment by the styliform cartilages from the
wrist or elbow while the latter’s patagium are attached to
the digits (Jackson, 2012). Further examination of the gliding
species from these two orders showed that the gliding species
from Rodentia have MPP3 lengths similar to those of arboreal
species and have elongated MIP3, while the gliding species from
Dermoptera have the shortest MPP3 and the most elongated
MIP3 compared with species of the other two locomotory
modes and the gliding species from Rodentia (Supplementary
Table S1). According to these above observations, we speculate
that the similarities and differences between these two orders
make them both distant from the other locomotory modes,
but prevent their clustering like that seen for the other two
locomotory modes, although they do show a trend of having
closer proximity in the phylomorphospace plot and do show the
significant convergence signal in C-metrics analyses. Besides the
phalangeal indices of manual digit III examined here, the gliding
mammals also developed other morphological modifications
for gliding adaptation, including the relatively elongated neck,
longer forearms, lumbar, and shorter thoracic vertebrae, hands,
feet bony as well as the more sensitivity of bony labyrinth
morphometry in the inner ear (Thorington and Santana, 2007;
Pfaff et al., 2015; Kawashima et al., 2018). So we hypothesized
that additional morphological traits, in addition to the three
indices used in the present study, are also necessary to address
the convergence in the gliding locomotory mode. Indeed, a
recent phylogenetic comparative analysis of 31 skeletal traits from

FIGURE 3 | The distribution of the three indices among each locomotory mode. The abscissa represents the locomotory modes and the ordinate represents the
ratios of the indices. MC3(p): The proportion of MC3 in the total combined length of the three elements; MPP3(p): The proportion of MPP3 in the total combined
length of the three elements; MIP3(p): The proportion of MIP3 in the total combined length of the three elements. Terrestrial mode includes ST and RT groups;
Arboreal mode includes SA, RA, and PA groups; Gliding mode includes DG and RG groups. Wilcoxon tests of the three indices among each locomotry mode all
show significant P-values (P < 0.05).
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the gliding mammals has observed convergence, including the
gliding Dermoptera and Rodentia (Grossnickle et al., 2020).

CONCLUSION

In the present study, we used morphometric analyses based on
quantitative methods to explore the convergence of locomotory
modes across diverse Euarchontoglires orders. Our results
showed that the phalangeal morphology of species with
terrestrial, arboreal, and gliding locomotory modes from
multiple Euarchontoglire orders are convergent, supporting the
convergent evolution of these three locomotory modes. This
study adds evidence of phenotypic convergent evolution of
the locomotory modes in Euarchontoglires by extending the
investigation into the terrestrial, arboreal, and gliding locomotory
modes across four Euarchontoglires orders, which had previously
only been studied for the gliding mode of Euarchontoglires or for
the other modes only within Primates and Rodentia. With these
findings we provide a framework for future work on convergence
in mammals, and the application of the phalangeal indices used
here to allow the inference and interpretation of locomotory
modes of unknown or fossil species.
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