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INTRODUCTION

Barnacles are ecologically and economically important species that are common in the intertidal
zone and in submerged artificial surfaces, including the bottom of ships, and they are one of the
fouling species that cause problems for marine industries (Chan et al., 2009). The dispersal of
barnacle larvae by ballast water tanks in ships is the major contributor to the introduction of
invasive species, which affect the distributions and the ecosystems of native species around the
world (Yamaguchi et al., 2009; Choi et al., 2013). From an application point of view, cement proteins
secreted by barnacles which attaching their bases firmly on the substratum are considered as a
strong underwater glue (Kamino et al., 1996). Barnacles are present in almost all marine ecosystems,
including the intertidal, deep-sea hydrothermal vents, floating objects, turtle, and whales surfaces
(Chan and Hǿeg, 2015). Fossils of the whale-specific barnacles can be indirect evidences to study
the prehistoric cetacean migration patterns (Buckeridge et al., 2018). The intertidal acorn barnacle,
Amphibalanus amphitrite (Darwin, 1854), belonging to the family Balanidae, is a major fouling
organism worldwide and present in a huge variety of habitats including ports, estuaries, and
mangroves. A. amphitrite is believed to originate from the southwestern Pacific and Indian Oceans,
but it has been found worldwide owing to global trade, worldwide industrial shipping, and dispersal
through ballast waters (Chen et al., 2014a). A. amphitrite as a model species for larval biology
studies because it has a wide distribution and the settlement of the cyprids can be easily performed
in the laboratory (Qiu and Qian, 1999).

Several studies have mainly focused on the expression of the proteins or genes in the
development and adaptive strategies of barnacle larvae. The transcriptome analysis of different
larval stages of A. amphitrite enabled the identification of the possible gene functions required for
settlement (Yan et al., 2012). Two other studies have showed the potential adhesion-related genes
for cement proteins and proteomes of the developmental stages of A. amphitrite and Tetraclita
japonica (Chen et al., 2014b; Lin et al., 2014). These studies have attempted to elucidate the
settlement mechanisms at the gene levels. However, understanding the settlement, bioadhesion,
and biofouling aspects of barnacles in detail at the gene level will require a genome-wide approach,
which is not possible currently owing to the absence of a reference genome (Patrick and David,
2012). Whole-genome sequences of marine crustaceans have recently been analyzed (Huete-Pérez
and Quezada, 2013). To date, to the best of our knowledge, there is no draft genome for the entire
Balanidae family, which comprises highly evolved sessile barnacles (Burden et al., 2014). Thus,
the aim of our study was to report the first de-novo draft genome of A. amphitrite using Pacific
Biosciences (PacBio) sequencing for the generation of a comprehensive genome, which will be
useful for understanding the cementation, attachment, and different life histories of the barnacles.
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DATA

The A. amphitrite (Figure 1A) genome size was estimated to
be ∼481 megabase (Mb) pairs by k-mer analysis using the
Jellyfish software (Marçais and Kingsford, 2011) (Figure 1B) and
GenomeScope (Vurture et al., 2017) (Table 1). The 56.08 gigabase
(Gb) PacBio long-read sequences were assembled into a genome
comprising 4,351 contigs totaling 609.7Mb pairs with anN50 size
of 0.24Mb pairs (Table 1). To further evaluate the correctness
of the genome assembly, we aligned the Illumina short-read
sequences from whole-genome sequencing data against the
genome assembly using the Burrows-Wheeler aligner (BWA
v0.7.17) (Li and Durbin, 2009), and mapping statistics were
created using Samtools v1.6 (Supplementary Table 1) (Li et al.,
2009). We found that 78.1% of the reads were properly aligned to
the genome with their mates and 97.1% of the reads were reliably
aligned to the genome assembly (Supplementary Table 1). In
particular, 16% of the contigs were over 500 kilobase (Kb) in
length and only 2% of the contigs were <10Kb (Figure 1C).
The repeat contents in the genome were 27Mb (4.48%) bases,
and most predicted subclasses were simple repeats and LTR
elements (Figure 1D). Additionally, the BenchmarkingUniversal
Single-Copy Orthologs (BUSCO) analysis recovered highly
conserved metazoa and arthropoda genomes and genes from
our draft genome, 93.46% (914/978) in metazoa genome, 94.09%
(1,003/1,066) in the arthropoda genome, 85.59% (837/978) in
the metazoa gene, and 86.59% (923/1,066) in the arthropoda
gene, confirming the completeness of the annotated genes in
the assembled genome (Supplementary Figure 1). To further
confirm the identity of the present barnacle genome, BLAST
was conducted to find the presences of the Settlement-Inducing
Protein Complex (SIPC) gene (Dreanno et al., 2006). SIPC is
a cuticular glycoprotein which induces gregarious settlement in
barnacles. This protein is considered as a keystone protein in
barnacle identity. BLAST results show that Protein 008197 is
an SIPC gene with Alignment_length 1556, Pct_identity 90%,
and E-value 0. The SIPC gene is registered in UniRef. An
orthologous analysis of seven species (Supplementary Table 2)
showed that A. amphitrite has 8,903 orthologous clusters out of
16,187 orthologous clusters of all species and has 4,285 singletons
(Figure 1E). The A. amphitrite genome shared its genomemostly
with Daphnia pulex, which is also a crustacean. In total, 704
one-to-one orthologous genes were provided to construct a
phylogenetic tree. According to the time-calibrated species time
tree, A. amphitrite and D. pulex had diverged 493 million
years ago (Figure 1F). Therefore, we suggest that these results
are nearly a complete reference genome for A. amphitrite. In
addition, this is the first assembled draft for the family Balanidae
and subclass Thecostraca at the contig/scaffold level.

MATERIALS AND METHODS

Sample Collection and Genomic DNA and
Transcriptomic RNA Preparation
Specimens ofA. amphitritewere collected from Beolpo, Sanyang-
eup, Tongyeong-si, Gyeongsangnam-do, Republic of Korea

(34◦82
′

N, 128◦38
′

E) on August 12, 2018 (Figure 1A). To obtain

high-quality DNA, barnacle species assemblages were carried
alive to the laboratory with the molluscan shells attached. Some
of them were preserved in RNAlater (Qiagen, Hilden, Germany)
to avoid RNA degradation. The total DNAs of A. amphitrite
were extracted according to the protocol suggested by Panova
et al. (2016). First, two individuals were selected from the
barnacle assemblage. To reduce the possibility of contamination
of bacteria or algae growing on shell surfaces, the shells of the
individuals were rinsed several times in pure water. When live
barnacles were rinsed in freshwater, the opercular plates were
closed tightly to avoid freshwater entering the mantle, which is a
response to situations such as raining in the natural environment.
Rinsing live barnacle shells with freshwater will not damage
the barnacle somatic body. The opercular plates of each of the
individuals were then removed using sterilized tweezers, and the
soma was detached without the cirri and trophi. Because the
sizes of these individuals vary around 10–20mm in diameter,
and the numerable cells in the tissue samples are low, the soma
samples from the two individuals were pooled for better analysis.
Total DNAs were extracted from the isolated tissues using the
E.Z.N.A. Blood DNA Mini Kit (Omega Bio-Tek, GA, USA). For
accurate gene annotation in the draft genome, total RNAs were
extracted from the barnacle samples in RNAlater solution using
the RNeasy Mini Kit (Qiagen, Hilden, Germany). The quality of
the extracted total DNAs and RNAs was investigated using the
NanoDrop 1000 spectrometer (Thermo Scientific, DE, USA) and
the 2100 Bioanalyzer system (Agilent Technologies, CA, USA).

Genomic DNA Library Preparation,
de-novo Genome Sequencing, and
Genome Size Estimation
To pass the quality control of the PacBio standard, the two
high-quality DNA samples were pooled because of their small
somatic body size and lack of cell counts in the soma. These
two individuals were collected from the same colony to avoid
any population level variations. Eight microgram of the pooled
DNA sample was used to prepare the 20Kb SMRTbell templates.
Genomic DNAwas sheared using G-tube (Covaris Inc., Woburn,
MA, USA) and purified with AMPurePB magnetic beads
(Beckman Coulter Inc., Brea, CA, USA). The SMRTbell libraries
were sequenced using Sequel sequencing kit 3.0 (included in
Sequel Sequencing chemistry 3.0) in the PacBio Sequel (Pacific
Biosciences) sequencing platform.

The mate-paired libraries (3, 5, 8, and 10Kb) were constricted
for scaffolding using the Nextera Mate Pair Library preparation
kit. Illumina pair-end libraries were also constructed for error
correction. Mate-paired and illumina paired-end sequencing
was performed using Illumina HiSeq X with paired-end 150
bp (Illumina, San Diego, USA). For RNA sequencing, a
transcriptome library was constructed using the TruSeq RNA
library preparation kit and sequenced using Illumina HiSeq
4000 (Illumina).

Before genome size estimation, low-quality reads (Q < 20)
and adapter reads were removed using Trimmomatic (Bolger
et al., 2014). Filtration was performed through the Contig Blast
to verify the genome assembly. Of the 2,240 scaffolds, 2,086
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FIGURE 1 | Characteristics of the Amphibalanus amphitrite genome assembly. (A) Photograph of A. amphitrite assemblages with an adult specimen (scale bars:

mm); (B) k-mer based genome size estimation; (C) length distributions of the assembled contigs; (D) de-novo repeat predictions and subclass distributions; (E) a

Venn diagram of the orthologous gene clusters among the three arthropod lineages; and (F) phylogenetic relationship of A. amphitrite with six other species (estimated

divergence time: million years ago).
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TABLE 1 | Summary of genome assemblies and gene annotations.

Bases (Gb) The number of reads Coverage

A. Sequences

PacBio Sequel reads 56.08 7,188,890 116.78

Illumina reads (Short-insert size) 119.55 791,707,072 248.43

Illumina reads (3Kb) 63.54 420,806,872 132.04

Illumina reads (5Kb) 53.34 353,237,272 110.84

Illumina reads (8Kb) 40.22 266,338,658 83.57

Illumina reads (10Kb) 34.51 228,561,316 71.72

B. Assembly

No. of Contigs 4,351

Total Bases 609,658,918

Average length 140,119

Minimum length 1,698

Maximum length 1,252,999

N50 239,160

N (%) 0

GC (%) 49.82

C. Gene

Number of genes 28,182

Average gene length 1,628

Average exon length 280.40

Genome coverage (gene region) 7.48%

D. Annotations

Blast hits 22,867

No hits 5,315

scaffolds matched those of the A. amphitrite, 97 no-hits, and 57
others. As a result of checking the 57 scaffolds matched different
species one by one, both the coverage and the matching rate
are considered very low and are regarded as no-hits. Therefore,
no scaffolds were suspected of different species sequences. After
filtering, the genome size of the remaining reads were estimated
based on k-mer analysis. The distribution of the k-mer of 17,
21, and 25 bp was estimated using the JELLYFISH tool (Marçais
and Kingsford, 2011). GenomeScope was also used to investigate
the characteristics of the genome such as size, heterozygosity
rates, and repeat content (Vurture et al., 2017). The genome size
was calculated by dividing the number of k-mer by their peak
coverage depth.

PacBio Error Correction and de-novo

Genome Assembly
The genome of A. amphitrite was fully assembled using the
PacBio raw data with the HGAP4 protocol of the SMRT Link
Software (v6.0.0.47841), which contains the read-correction
step. To ensure assembly integrity, another long-read method
assembler Wtdbg2 was also performed. However, Wtdbg2
assembly resulted in more contigs and lower N50 than HGAP4.
Thus, HGAP4 was considered as a reliable method of assembly
in the present study. To remove the sequence errors, the error
correction of the assembled PacBio data was processed using

Pilon (v1.21) with Illumina HiSeq short reads (Walker et al.,
2014). Purge Haplotigs was used to identify and remove the
haplotypic contigs (Roach et al., 2018) because it was confirmed
that A. amphitrite has a high heterozygosity rate (Figure 1B).
Through the pipeline of Purge Haplotigs, the error corrected
PacBio reads were filtered haplotypic contigs and curated contigs
were obtained. The curated contigs were scaffolded with mate
pairs libraries of various insert sizes (3, 5, 8, and 10Kb) using
SSPACE (Boetzer et al., 2010). After scaffolding, the gaps were
filled from the scaffolds using PBJelly (English et al., 2012)
and GMcloser (Kosugi et al., 2015). The completeness of the
final assembled sequences was assessed by analyzing the BUSCO
scores (Simão et al., 2015). The reference BUSCO databases were
metazoa_odb9 and arthropoda_odb9.

Gene Prediction and Annotation
The protein-coding genes of A. amphitrite were predicted
using two strategies: transcriptome data-based gene prediction
and ab initio gene prediction. Before predicting the genes
of A. amphitrite, RepeatMasker was performed with RepBase
library (release 20140131) to identify the repeats in the
genome of A. amphitrite (Tarailo-Graovac and Chen, 2009). For
transcriptome data-based gene prediction, transcriptome data
were mapped to the assembled genome using Tophat (v.2.0.13)
(Trapnell et al., 2009) and these data were used to predict the
gene model using Trinity (r20170127) (Grabherr et al., 2011).
For ab initio gene prediction, the gene prediction process was
followed using the Seqping pipeline (v0.1.33) (Chan et al., 2017).
The assembled transcriptome data and genome sequences were
used for the training set of AUGUSTUS (v3.2.2) (Stanke and
Morgenstern, 2005). MAKER2 (v2.31.8) was used to determine
the final genemodel based on the two prediction results (Holt and
Yandell, 2011). The predicted genes were searched for functional
annotation against biological databases [EggNOG (Huerta-Cepas
et al., 2015) Uniprot (Apweiler et al., 2016), GO (Ashburner et al.,
2000), InterPro (Mitchell et al., 2018), Pfam (Bateman et al.,
2000), CDD (Marchler-Bauer et al., 2016), and TIGRFAMs (Haft
et al., 2001)] using BLAST (v2.6.0+) (Camacho et al., 2009) with
an e-value <1.0E-5.s.

Phylogenomics Analysis
An orthologous analysis was conducted of seven species
(Supplementary Table 2) using Orthovenn2 (Xu et al.,
2019) which contains high-quality genome information. A
phylogenetic tree was constructed using the neighbor-joining
tree with a bootstrap value of 500 and a JTT model by MEGA 6
(Tamura et al., 2013).

DEPOSITED DATA AND INFORMATION TO
THE USER

The complete sequences and DNA libraries used in the current
draft genome assembly for A. amphitrite have been deposited
at NCBI under the BioProject accession number PRJNA549550.
The sequences of the A. amphitrite draft genome has been
deposited at figshare with doi: 10.6084/m9.figshare.8317106.
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Analyzed results of annotation were deposited at figshare with
doi: 10.6084/m9.figshare.8317109.
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