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Humans have fundamentally altered the cycling of multiple elements on a global scale.

These changes impact the structure and function of terrestrial and aquatic ecosystems,

with many implications for human health. Most prior studies linking biogeochemical

changes to human health have evaluated the effects of single elements in isolation.

However, the relative availability of multiple elements often determines the biological

impact of shifts in the concentration of a single element. The balance of multiple elements

is the focus of ecological stoichiometry, which highlights the importance of elemental

ratios in biological function across all systems and scales of organization. Consequently,

ecological stoichiometry is a promising framework to inform research on the links

between global changes to elemental cycles and human health. We synthesize evidence

that elemental ratios link global change with human health through biological processes

occurring at two scales: in the environment (natural ecosystems and food systems) and

within the human body. Elemental ratios in the environment impact the key ecosystem

processes of productivity and biodiversity, both of which contribute to the production of

food, toxins, allergens, and parasites. Elemental ratios in diet impact processes within the

human body, including the function and interactions of the immune system, parasites,

and the non-pathogenic microbiome. Collectively, these stoichiometric effects contribute

to a wide range of non-infectious and infectious diseases. By describing stoichiometric

mechanisms linking global change, ecological processes, and human health, we hope

to inspire future empirical and theoretical research on this theme.

Keywords: ecological stoichiometry, biological stoichiometry, public health, global change, food security, water

quality, nutrition, disease

INTRODUCTION

Understanding the effects of global change on human health is amajor challenge for the twenty-first
century (Leaf, 1989; Whitmee et al., 2015). Anthropogenic activities drive substantial shifts in
biogeochemical cycles in ecological systems throughout the world (Peñuelas et al., 2013), many
of which can impact human health. For example, application of nitrogen (N) fertilizer directly
improves crop yields and reduces malnutrition but indirectly contributes to the prevalence and
severity of multiple infectious and non-infectious diseases (Townsend et al., 2003). Similarly,
increases in atmospheric carbon dioxide (CO2) concentrations driven by fossil fuel combustion
reduce the nutritional quality of food crops and other plants, with myriad human health outcomes
(Loladze, 2002).
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Biogeochemical effects on human health are typically studied
from a single-element perspective. However, the cycling of
carbon (C), N, and other elements relevant to health are
often linked through biogeochemical mechanisms and shared
anthropogenic drivers (Peñuelas et al., 2012), and the ratios
of these elements in nature are fundamental to biological
function (Sterner and Elser, 2002). Therefore, we need a multi-
elemental approach to better understand the mechanisms linking
anthropogenic effects on biogeochemical cycles with human
health. The balance of multiple elements in nature is the
focus of ecological stoichiometry (ES), a research framework
that highlights the importance of elemental ratios in biological
function across all systems and scales of organization (Sterner
and Elser, 2002).

Stoichiometric theory has been applied to many fundamental
research topics in ecology and evolution (Hessen et al., 2013;
Van de Waal et al., 2018). However, ES has been used relatively
infrequently in socio-ecological research (but see Ptacnik et al.,
2005; Cease et al., 2015) and has been applied to human health
in just a few studies (Table 1). Given the central importance of
elemental ratios to biological function, we suggest that ES is a
powerful tool to study links between global change and multiple
dimensions of human health.

Here we outline how stoichiometric effects on ecological
processes (hereafter, “stoichiometric effects”) link anthropogenic
activities, ecological function, and human health. We outline
stoichiometric effects at two major scales: in the environment
(natural ecosystems and food systems) and within the human
body. In the environment, anthropogenic activities including
fossil fuel combustion, fertilizer application, land use change, and
industrial production drive changes to elemental ratios in air,
water, and soil. The alteration of these ratios impacts ecosystem
productivity and biodiversity, both of which contribute to
the production of food, toxins, allergens, and parasites.
Stoichiometric constraints on the quantity and quality of food
production have implications for food security, and elemental
ratios in human diet impact immune function, metabolism,
parasite function, and the microbiome. Collectively, these
stoichiometric effects contribute to a wide range of non-
infectious and infectious diseases (Figure 1).

By synthesizing evidence that elemental ratios link
global change and human health, we hope to inspire future
stoichiometric research on this theme. To ensure that this
synthesis is accessible to a broad audience, including readers who
lack a background in ES, we summarize fundamental aspects of
stoichiometric theory (Figure 2) and begin by describing links
between human actions, elemental ratios in the environment,
and ecological processes that impact human health.

A BRIEF PRIMER ON GLOBAL CHANGE
AND ENVIRONMENTAL STOICHIOMETRY

All life on earth is composed of ∼25 elements (Kaspari and
Powers, 2016), each of which has a unique biogeochemical
cycle (Schlesinger and Bernhardt, 2013). Human activity has

dramatically changed the absolute and relative availabilities
of these elements around the world, which can limit the
growth and function of organisms in both terrestrial and
aquatic environments.

Fossil fuel combustion has increased the concentration of CO2

in the environment globally, as well as other elements found in
fossil fuels such as N and sulfur (S) (Smith et al., 2001). Fertilizer
application has increased the availability of N and phosphorus
(P) in croplands and adjacent landscapes, including aquatic
ecosystems. Commercial fertilizer often includes additional
elements, such as potassium (K), calcium (Ca), magnesium
(Mg), and S that can also be transported via dust, erosion, or
water (Kaspari and Powers, 2016). Biomass burning (to clear
land) releases C from plant material back to the atmosphere,
but it can also enrich local environments with trace elements,
especially K (Sardans and Peñuelas, 2015) and zinc (Zn,
Echalar et al., 1995). Industrial production has released trace
elements into the environment, such as mercury (Hg) and
arsenic (As, Adriano, 1986). These changes in the availability
of elements in the environment occur at different spatial
scales. For example, the elevation of atmospheric C occurs
globally, while N enrichment is a more localized or regional
phenomenon (Galloway et al., 2008).

Changes to biogeochemical cycles in aquatic ecosystems are
complicated by interactions with soils, plants, and microbes
along hydrologic pathways. Fossil fuel combustion has led to
increased concentrations of dissolved CO2 in aquatic ecosystems,
especially oceans, thereby increasing the availability of C relative
to other elements (Caldeira andWickett, 2003). Terrestrial inputs
increase the availability of N and P in freshwaters, but P is
preferentially retained by soils relative to N. Nitrogen deposition
can increase the P-limitation of aquatic ecosystems due to
increasing N:P (Elser et al., 2009) but analysis of rivers across the
United States shows that the change in N:P is not unidirectional
and is influenced by abiotic factors (Dodds and Smith, 2016).
Silica (Si) is also increasing in streams and rivers due to increased
erosion, but it can be retained by dams (Humborg et al., 1997,
2006; Carey and Fulweiler, 2012).

These shifts in the availability of multiple elements are
not occurring in synchrony across space and time, leading to
changes in elemental ratios in the environment. We present a
non-exhaustive list of human-driven changes to environmental
stoichiometry (Table 2) and briefly discuss their effects on
ecosystem productivity and patterns in biodiversity, both of
which are linked to multiple dimensions of human health.

Ecosystem Productivity
Primary Productivity
The absolute and relative concentrations of elements in the
environment commonly limit the primary productivity of both
aquatic and terrestrial ecosystems (Elser et al., 2007b). While
traditional perspectives on this topic often focus on a single
limiting element (sensu Liebig, 1855), recent studies highlight
the importance of co-limitation, the simultaneous limitation of
primary productivity by multiple elements, across aquatic and
terrestrial ecosystems (Elser et al., 2007b; Harpole et al., 2011; Fay
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TABLE 1 | Examples of prior research on ecological stoichiometry in a human health context.

Topic Finding References

Food security and nutrition C:element ratios in staple crops and other plants increase under elevated CO2. These shifts are

expected to contribute to deficiencies in protein, vitamins, and micronutrients.

Loladze, 2002, 2014;

Zhu et al., 2018

Cancer The growth of lung and colon tumor cells may be P limited. Cancer tissues have twice as much P and

a lower N:P than non-cancerous reference tissues.

Elser et al., 2006,

2007a

Infectious disease vectors Resource ratios in aquatic ecosystems impact the spatial distribution of larval mosquitoes. Larval diet

quality impacts rates of Zika-virus infection and transmission in adult mosquitoes.

Murrell et al., 2011;

Paige et al., 2019

Environmental toxins Se:Hg ratios impact the transfer of Hg through aquatic food webs (including to human food sources)

and the effects of Hg within the human body. High environmental As:P ratios disrupt ATP formation.

Drasch et al., 1996;

Yang et al., 2012;

Walters et al., 2015

FIGURE 1 | A stoichiometric framework linking global change with human health. Stoichiometric effects (ecological processes mediated by elemental ratios, dashed

lines) occur at two scales: in the external environment (to the left of the human figure) and within the human body (gray circle to the right of the human represents

internal processes, especially diet-mediated processes within the gut). Global environmental changes (icons represent fossil fuel combustion, land use change, fertilizer

application, and industrial pollution) alter the absolute (concentration) and relative (ratios) availability of elements in the environment (1). Environmental stoichiometry

impacts the key ecosystem processes of biodiversity and productivity (2). Both of these processes contribute to toxin, allergen, and parasite production (3), all of

which can impact human health directly by causing non-infectious and infectious disease (4). Stoichiometric effects on biodiversity and productivity also determine

food production in both managed (e.g., agricultural) and unmanaged (e.g., marine and freshwater) systems (3). The quantity and quality of food production can impact

human health directly (4), but these impacts may be mediated by stoichiometric effects occurring within the human body (5). Elemental ratios in human diet impact the

function of parasites, the non-pathogenic microbiome, and the immune system (6), which collectively influence both non-infectious and infectious disease (7).

et al., 2015). Primary productivity is often synergistically limited
by N and P, such that additions of N and P together increase
primary productivity beyond the additive effects expected based
on individual inputs of these elements (Elser et al., 2007b;
Harpole et al., 2011). Given that life is constructed from over 25
elements, it is also crucial that we expand our view of elemental

limitation and co-limitation to include elements beyond N and P
(Kaspari and Powers, 2016). The relative availability of elements
is also important for productivity in managed systems, such
as agriculture, where fertilizer application aims to provide the
correct balance of N, P, and other elements to maximize crop
yield (Van der Velde et al., 2014).
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FIGURE 2 | A primer of ecological stoichiometry and an overview of its application to human health.
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TABLE 2 | Human drivers of altered elemental ratios in the environment and ecological consequences relevant to human health.

Elements and drivers Elemental ratio altered by global change Ecological consequences

C↑

↑ C:element availability in soil ↑ C:element of plant tissue(1)

↑ C:N of crops(2)

↑ C stimulates methylation of Hg in water(8)
↑ herbivory due to compensatory feeding(3)

↓ pollination and seed set(4,5)

↑ pathogen inoculum due to slow litter

decomposition(6,7)

↑ bioaccumulation of Hg in fish

↑ C:element of coastal waters (9) ↑ HABs

N↑

↓ C:N of freshwaters ↑ microcystin toxin production(10)

↓ C:N coastal flux(9) ↑ HAB toxin production(11)

↓ C:N of crops ↑ pest populations(12,13)

↑ N:P in water ↓ growth rates of fish(9)

↑ HABs (11)

↑ N:P in soils ↑ P-limitation of plant production(14)

↑ N:element in soil and water ↓ diversity of plant and marine algal communities(15−19)

↑ K-limitation of crops(8)

P ↑↓

↑ N:P in constructed waterways (20) ↑↓ P-limitation impacts HAB toxin production (21−23)

↑ N:P of inputs to agricultural soils (globally)(24) ↑ P-limitation of crops (24)

S↑ ↑ S stimulates methylation of Hg in water(25) ↑ bioaccumulation of Hg in fish

Si ↑↓

↑ N:Si in aquatic ecosystems(26−28);

↑ Si:As in soil(30)
↓ fish production(9)

↑ HABs (9)

↓ As in rice (9)

Hg↑ ↑ Hg:Se increases retention of methyl-Hg(31) ↑ Hg bioaccumulation fish (31)

Global change symbols indicate drivers (fossil fuel combustion, fertilizer application, land and water alteration, industrial production). Numbers refer to publications listed at the bottom

of the table. These examples highlight how changes to the cycling of a single element impact elemental ratios in the environment.
1Loladze (2002); 2Sardans and Peñuelas (2012); 3 Bezemer and Jones (1998); 4 Rusterholz and Erhardt (1998); 5Lake and Hughes (1999); 6Thompson et al. (1993); 7Coakley et al.

(1999); 8Selin (2009); 9Ptacnik et al. (2005); 10Van de Waal et al. (2009); 11Van de Waal et al. (2014); 12Bobbink et al. (1998); 13Cisneros and Godfrey (2001); 14Peñuelas et al. (2013);
15Tilman (1996); 16Tilman (1997); 17Bobbink et al. (2010); 18Stevens et al. (2010); 19Payne et al. (2013); 20Maavara et al. (2015); 21Flynn (2002); 22Granéli and Johansson (2003); 23Pan

et al. (1996); 24Peñuelas et al. (2012); 25Gilmour et al. (1992); 26Humborg et al. (2006); 27Humborg et al. (1997); 28Carey and Fulweiler (2012); 29Parsons and Dortch (2002); 30Zhang

et al. (2017);31Bjerregaard et al. (2011).

Consumer Productivity
Elemental ratios in primary producers influence how energy and
elements move through food webs to fuel consumer productivity
at higher trophic levels (Sterner and Elser, 2002). Mismatches
between the ratios of elements required for consumer growth
and the elemental ratios of their resources lead to elemental
imbalance, which can constrain productivity at any trophic level
(Boersma et al., 2008). The effects of elemental imbalance on
trophic transfer may be exacerbated when interacting organisms
differ in their degree of stoichiometric homeostasis (maintaining
consistent organismal stoichiometry despite changes to resource
stoichiometry) vs. plasticity (shifting organismal stoichiometry to

reflect changes in resource stoichiometry) (Meunier et al., 2014).
Algae and terrestrial plants show much higher stoichiometric
plasticity than herbivores and other consumers, which can
result in substantial elemental imbalance and reduce consumer
growth efficiency (Boersma, 2000, Demott et al., 2010).
Therefore, changes to elemental ratios in the environment can
propagate through food webs to impact productivity at all
trophic levels.

Biodiversity
The relative availability of elements in the environment can
influence the local composition and richness of ecological
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communities. Primary producers vary among species in growth
response to environmental C:N:P, influencing community
composition across ecosystems (Agren et al., 2012). For example,
both legumes and N-fixing cyanobacteria have a competitive
advantage in low N:P environments (Schindler, 1977; Vitousek
and Walker, 1989). Stoichiometric effects on the competitive
dominance of primary producers may also impact community
composition at higher trophic levels (Singer and Battin, 2007),
although stoichiometry is often overlooked as a potential driver
of biodiversity patterns.

Stoichiometric effects may also contribute to global declines
in species richness. For example, N deposition reduces species
diversity in grasslands on a continental scale (Stevens et al., 2010).
This is likely driven by both non-stoichiometric (acidification,
Stevens et al., 2010) and stoichiometric effects (shifting N:P
ratios altering competition; Olde Venterink et al., 2003), which
are difficult to separate. The global increase in N availability
(primarily driven by N-deposition) without proportionate
increases in other elements may contribute to large-scale declines
in species richness (sensu Tilman et al., 1982).

FOOD SECURITY AND WATER QUALITY

Two key aims of the United Nations Sustainable Development
Goals are to achieve food security and to ensure access to
clean water for all people by 2030 (UN General Assembly,
2015). Food security incorporates both food quantity and
food quality. Currently, 820 million people suffer from acute
food shortage, and ∼2 billion experience chronic deficiency of
essential nutrients (FAO, 2019). Additionally, 785 million people
lack access to potable water, including 144 million who rely on
untreated surface water (WHO and UNICEF, 2019). Elemental
ratios in air, water, and soil impact both food security and
water quality (e.g., Loladze, 2002, Mueller et al., 2012). We
summarize stoichiometric effects on crop production, rangeland
and pasture-based production of meat and dairy, water quality,
and fisheries. Collectively, these stoichiometric effects on food
security and water quality propagate to impact both non-
infectious and infectious disease.

Food Crop Production
Between 1.2–1.5 billion hectares are used for crop production
globally (O’Mara, 2012), and yields have increased consistently
from 877 million metric tons in 1961 to 2,351million tons in
2007 (Tester and Langridge, 2010; Foley et al., 2011). However,
ongoing human population growth and changes in consumption
patterns necessitate continued increases in crop production, with
predicted requirements of more than 4,000 million metric tons
in 2050 (Tester and Langridge, 2010; Foley et al., 2011). Given the
potential for primary productivity to be limited by the availability
of multiple elements, understanding the stoichiometry of food
crop production under global change is essential to achieving
these production goals.

For example, P-limitation of crops is a global concern that
may be exacerbated by stoichiometric effects. In Sub-Saharan
Africa and Eastern Europe, soil P availability is a major factor
limiting productivity (e.g., 75% of soils in Sub-Saharan Africa

are P-deficient; Cordell et al., 2009; Mueller et al., 2012).
However, the global availability of mineable P is limited, which
will increase prices of P fertilizers (Van Vuuren et al., 2010),
exacerbate agricultural P-limitation, and threaten global food
production (Cordell et al., 2009). Human-induced increases
in environmental C and N availability outpace increases in P
availability, intensifying C:N:P imbalances globally (Peñuelas
et al., 2013; Carnicer et al., 2015).

Global shifts in the cycling of C and N impact food security
through additional stoichiometric effects on food quantity and
quality. Increases in atmospheric CO2 concentrations tend to
increase crop yields (Ainsworth and Long, 2005; Kimball, 2016),
with positive impacts on food quantity. However, crops produced
under elevated CO2 exhibit increased C:element ratios (e.g.,
C:N, P, Se, Fe, or Zn), lowering nutritional quality (Loladze,
2002). Nitrogen deposition or over-fertilization can leach K from
soils and increase the likelihood of plant K-limitation (Sardans
and Peñuelas, 2015), which can alter plant biomass allocation
and increase drought vulnerability (Cakmak et al., 1994).
Additionally, the availability of many elements in soil (including
N, P, K, Zn, and others) can impact the prevalence and severity
of infectious disease in crops through several mechanisms, with
substantial consequences for yields (Dordas, 2008; Veresoglou
et al., 2013). These effects have not previously been studied from
a stoichiometric perspective, although elemental ratios mediate
many infectious disease processes (Sanders and Taylor, 2018).
Overall, human-induced shifts in the ratios of multiple elements
in the environment lead to changes in both the quantity and
quality of food crop production.

Rangeland and Pasture-Based Production
of Meat and Dairy
Grasslands account for ∼60% of agricultural land world-wide
and support global meat and dairy production (O’Mara, 2012).
Like crop production, the productivity of grasslands depends
on both the relative and absolute availability of elements in
the environment. Elevated atmospheric CO2 and N deposition
generally increase grassland productivity (Thornton et al., 2009;
Hatfield and Prueger, 2011; Chapman et al., 2012), but the
effects of CO2 also contribute to increases in plant C:N that
represent decreased forage quality for livestock (Craine et al.,
2017; Augustine et al., 2018).

Water Quality
The relative balance of N, P, and other elements in aquatic
ecosystems are major drivers of algal bloom dynamics, and
anthropogenic inputs of these elements threaten the quality of
surface water as it pertains to human health. N:P ratios have
long been viewed as drivers of algal blooms (Schindler, 1977),
and more recent work has shown that the relative availability
of dissolved elements can influence water quality in a variety
of ways. For example, low N:P ratios provide a competitive
advantage for N-fixing cyanobacteria (Mazur-Marzec et al.,
2006), which can form harmful algal blooms (HABs). Elemental
ratios in water impact both the abundance of harmful algae or
flagellates and the amount of toxins they produce (increasing
toxin production in low C:N, low C:P, and high N:P waters;
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Townsend et al., 2003; Ptacnik et al., 2005, Van de Waal et al.,
2009; Anderson et al., 2012). Toxins from HABs have threatened
drinking water supplies of entire cities (e.g., Toledo, USA and
Wuxi, China; Liu et al., 2011; Steffen et al., 2017), and the
specific effects of HABs on human health are discussed in the
non-infectious disease section below.

Fisheries
Fish and shellfish (hereafter, “fish”) represent ∼5% of global
protein consumption (FAO, 2000). However, fish provide a major
source of essential fatty acids, vitamins, and other nutrients,
thereby playing an important role in global food quality (Golden
et al., 2016). The threshold of sustainable harvests in natural
systems is strongly linked to primary productivity and trophic
transfer efficiencies through food webs (Brander, 2007; Boyce
et al., 2010), both of which are subject to stoichiometric
constraints (Winder et al., 2009). Eutrophication resulting from
anthropogenic changes to biogeochemical cycles can alter fish
production in both marine and freshwater systems, and HABs
can lead to fish kills (Camargo and Alonso, 2006; Anderson et al.,
2012). Eutrophication also impacts the trophic transfer of fatty
acids through food webs, reducing the nutritional value of fish
for human consumption (Taipale et al., 2016).

NON-INFECTIOUS DISEASE

Elemental ratios link global change with non-infectious disease
(encompassing a broad suite of physical and mental health
outcomes) at two scales: through the effects of nutrition on
processes occurring within the human body and through
environmental processes occurring outside the body (Figure 3).

Nutritional Stoichiometry and
Non-infectious Disease
Traditional views of human nutrition focus on how imbalances
between dietary macromolecules and nutritional requirements
impact health, including a broad range of non-infectious diseases.
Ecological stoichiometry provides a parallel perspective on this
imbalance, with the focus on elemental ratios rather than
macromolecules. While ES is a reductionist approach that does
not capture the full complexity of nutritional biochemistry,
elemental ratios provide a common currency to link food
production in the environment with diet quality and its
consequences for health.

Dietary Stoichiometry and Physical Health
Perhaps the clearest stoichiometric link between global change
and human dietary health is evidence that elevated atmospheric
CO2 leads to higher C:element ratios in plants, including staple
crops (Loladze, 2002, 2014). This reduction in crop quality
means that consumption of staple crops in the future will
correspond to higher caloric intake relative to nutritional value
(as protein, micronutrient, and vitamin content). This change
may contribute to caloric overconsumption, a problem that
already drives many major public health crises, including global
diabetes and obesity epidemics (James, 2008; Zimmet et al., 2010).
Increasing C:element ratios in crops may also contribute to a
broad range of health effects caused by mineral and vitamin

deficiencies. Along with decreases in Ca, K, Mg, Fe, Zn, and Cu
concentrations (Loladze, 2014), elevated CO2 leads to declines in
many essential vitamins in rice (Zhu et al., 2018). Among the
B vitamins which decline under elevated CO2, the more N-rich
forms (such as folate and thiamine) show the greatest reductions
in concentration (Zhu et al., 2018).

Changes to elemental ratios in diet can also impact
human health through overconsumption of micronutrients and
interactions among elements that impact their absorption within
the gut. For example, most people in the United States consume
far more than the recommended daily allowance of P, and
overconsumption of P is associated with increased mortality
rates (Chang et al., 2014). However, P content is not required
on the labels of packaged foods, making consumption difficult
to monitor (Calvo et al., 2014). The overconsumption of P
may be particularly important given the high concentrations of
readily absorbed inorganic P present in many processed foods
(Ritz et al., 2012), which are absorbed much more efficiently
(80–100%) in the gut than organically bound P forms (40–
60%; Calvo et al., 2014). Stoichiometric effects may underlie
some of the observed links between P overconsumption and
negative health outcomes. For example, the ratio of dietary P:Ca
is important to maintaining normal physiological function and
bone health, independently of the consumption of P and Ca
individually (Brot et al., 1999; Ito et al., 2011; Lee et al., 2014).
Similar stoichiometric effects on other dietary micronutrients
are also possible. For example, interactions among Fe, Zn,
and Cu impact their absorption and bioavailability within the
gut (Sandström, 2001). Overall, these examples suggest that a
stoichiometric perspective can help to link global changes in food
production, human diet quality, and the effects of nutrition on
non-infectious disease.

Diet stoichiometry may also have consequences for cancer due
to the elemental requirements of tumor growth. One particularly
interesting prior application of ES to human health tested the
growth rate hypothesis in tumor dynamics. The growth rate
hypothesis (GRH) states that fast growing cells have lower N:P
requirements than slower growing cells due to the high P content
of ribosomal RNA (Elser et al., 1996, 2003). Rapidly growing
lung and colon tumors had 2-fold higher P content and lower
N content than normal tissue (although this was not the case for
kidney or liver tumors), suggesting some degree of P limitation
in cancer cells (Elser et al., 2006, 2007a). While these studies
did not specifically test the effects of dietary P content on tumor
dynamics, the ultimate source of P used by cancer cells is human
diet. High concentrations of inorganic P in food lead to increased
tumor proliferation and growth in mice (Jin et al., 2009), which
may be due to the P demand of rapidly-dividing cancer cells.
Additional research on the GRH in the context of cancer should
test the effects of elemental ratios in diet on tumor dynamics,
which is especially relevant given the many effects of global
change on food quality.

Stoichiometric effects on nutrition and related health
outcomes may be most severe among low-income populations
(within or among nations) because people in more affluent
populations have a greater ability to make dietary choices.
For populations obtaining the majority of their nutrients from
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FIGURE 3 | Elemental ratios link global change with non-infectious disease through stoichiometric effects occurring in the environment and within the human body.

(A) Fossil fuel combustion, land use change, fertilizer application, and industrial pollution change the relative availability of elements in the environment (1).

Environmental stoichiometry impacts the key ecosystem processes of biodiversity and productivity (2), both of which contribute to the production of toxins, allergens,

and food (3). Allergens and toxins directly contribute to non-infectious disease (4), while the effects of food quality are mediated by stoichiometric effects within the

body (5). Elemental ratios in human diet impact the efficiency of nutrient absorption and the structure and function of the gut microbiome (6), both of which mediate

the effects of nutrition on non-infectious disease (7). (B) Example: Industrial production increases the concentrations of Hg in the environment, which leads to higher

Hg:Se (1). The degree to which Hg bioaccumulates in aquatic organisms is mediated by Hg:Se (2), leading to greater Hg consumption through human diet (3).

Following consumption, Hg:Se within the body impacts Hg toxicity (4). (C) Example: Anthropogenic increases in CO2 lead to increased C:element in food crops (1).

Elemental ratios in diet (2) may lead to shifts the gut microbiome and impact nutrient absorption, both of which contribute to obesity (3).

staple crops, increasing C:element ratios are more likely to
lead to diseases stemming from malnutrition. Similarly, as low-
income populations continue to increase their consumption

of processed foods (Monteiro et al., 2013), the stoichiometric
mismatch between calories and micronutrients is likely to
increase (Chopra et al., 2002).
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Dietary Stoichiometry and Mental Health
The inefficiency of current medical treatments for common
mental illnesses such as major depression, along with emerging
evidence from longitudinal datasets, has led to a renewed
interest in the field of nutritional psychiatry (Sarris et al., 2015).
Recent meta-analyses have shown clear links between poor
diet and cognitive impairment, dementia, Alzheimer’s disease,
and especially depression (Psaltopoulou et al., 2013; Lai et al.,
2014; Jacka et al., 2017). Adults with mood disorders have been
shown to increase functioning when consuming diets high in
micronutrients (Davison and Kaplan, 2012; Jacka et al., 2017),
especially Mg (Black et al., 2015; Tarleton and Littenberg, 2015).
It is fair to assume that decreased nutritional quality, such as
increased C:Mg in staple crops, is likely to have pronounced
effects on mental health. Therefore, any stoichiometric shifts in
diet quality that are relevant to physical health outcomes should
also be evaluated in the context of mental health.

Microbiome Mediation of Diet-Health Links
The functional composition of the human gut microbiome is
inextricably linked with the physiological processes governing
many aspects of health. Microbial community composition
within the gut has been linked to a broad array of non-infectious
diseases, including cancer (Schwabe and Jobin, 2013), obesity
(Mathur and Barlow, 2015), diabetes (Barlow et al., 2015),
allergies (McKenzie et al., 2017), depression and anxiety disorders
(Foster and McVey Neufeld, 2013), autism (Mulle et al., 2013),
and a suite of neurological disorders (Tremlett et al., 2017).

Resource stoichiometry impacts the composition and function
of microbial communities across a broad suite of environments
(Cherif and Loreau, 2007; Hibbing et al., 2010; Larsen et al.,
2019), but this has not yet been explored in the human gut.
Both dietary fiber intake (Hamaker and Tuncil, 2014) and dietary
N (Holmes et al., 2017) have clear effects on gut microbial
community composition and function, suggesting that dietary
C:element ratios play a role in shaping the microbiome and its
effects on health. Additionally, the GRH predicts that faster-
growingmicrobes should dominate in environments with greater
relative P availability (Elser et al., 2003), but this has not
been tested in the context of human dietary P intake and the
microbiome. Future studies are necessary to determine the extent
to which elemental ratios in human diet impact the functional
composition of the microbiome and how these effects propagate
to human health.

Environmental Stoichiometry and
Non-infectious Disease
Elemental ratios also link non-infectious disease with global
change through ecological processes that occur in terrestrial
and aquatic ecosystems (Figure 3). Stoichiometric effects on the
productivity and biodiversity of these systems impact human
health through HABs, pollen production, and toxin exposure.

Harmful Algal Blooms
As previously discussed, elemental ratios in water (especially
N:P) can drive both the abundance of phytoplankton involved
in HABs and the amount of toxins they produce (Van de Waal

et al., 2009; Anderson et al., 2012). Toxins from HABs can have
both direct and indirect impacts on human health, including
endocrine, neurological, and digestive effects (Paerl and Otten,
2013). Depending on the causative organism, exposure to HABs
toxins can cause nausea, abdominal pain, diarrhea, respiratory
distress, chills, fever, memory loss, seizures, paralysis, and coma
(Backer, 1995).

Pollen Production
Elemental ratios in the environment are important drivers of
plant productivity (as discussed previously), and stoichiometric
effects on pollen production may impact human health through
both allergies and effects on pollinator populations that are
essential to the production of some food crops. Soil N and P
and atmospheric CO2 contribute to pollen production rate and
pollen grain size (Lau and Stephenson, 1993, 1994; Lau et al.,
1995; Perez-Moreno and Read, 2001), which may exacerbate
pollen allergies. Although pollen production has not been
specifically linked to elemental ratios in the environment, the
frequency of co-limitation in terrestrial ecosystems suggests that
stoichiometric effects on plant productivity may underlie pollen
production. Stoichiometric effects on biodiversity loss may also
contribute to pollen allergies; biodiversity loss has been linked
to increased prevalence of allergies and inflammatory diseases in
urban settings (Hanski et al., 2012).

Biogeochemical shifts can also impact pollen quality, with
implications for pollinator health and food crop production. For
example, elevated atmospheric CO2 led to increased pollen C:N
in both historical and experimental analyses, which corresponds
to a decline in pollen protein content (Ziska et al., 2016). Pollen
protein is essential to bee diet, so this stoichiometric shift in
pollen quality may have negative effects on bee health and the
pollination of food crops that are integral to human diet.

Toxin Exposure
While a large portion of ES literature focuses on ratios of C, N,
and P, the ratios of many other elements may impact human
health through exposure to toxins. For example, selenium (Se)
concentrations in water impact the amount of Hg transferred
through food webs (e.g., Sørmo et al., 2011; Walters et al., 2015),
thus mediating human exposure to Hg via fish consumption.
Following Hg consumption, the amount of Se and Hg circulating
through and released from the body also depends on their relative
concentrations (Drasch et al., 1996), suggesting that Hg:Se ratios
mediate the toxic effects of Hg.

The health effects of arsenic (As), another toxic element
that is globally prevalent and linked to a wide range of non-
infectious diseases (Amini et al., 2008; Naujokas et al., 2013),
are also mediated by its relative balance with other elements.
For example, As (in the form of arsenate) has the same shape as
phosphate, a molecule essential for all life (Finnegan and Chen,
2012). Consequently, As can be taken into cells in place of P
and decouple processes that require high amounts of P, like the
formation of adenosine triphosphate (ATP, the main currency of
energy in humans). The toxic effects of As are greater when P is
low since increased demand for P leads to greater As acquisition
(Rodriguez Castro et al., 2015). Arsenic uptake by organisms
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(and potential exposure to humans) is further complicated by
the stoichiometry of additional elements. For example, As uptake
by freshwater microbial communities is controlled by N:P ratios
(rather than P concentration alone, MacNeill, 2019), and Si:As
ratios in soil determine the degree of As accumulation in rice
(Zhang et al., 2017). Overall, these examples demonstrate that
complex stoichiometric effects can mediate the human health
outcomes associated with exposure to toxic elements.

INFECTIOUS DISEASE

Anthropogenic changes to N and P cycles are associated with
increased prevalence of many infectious diseases in human
hosts (McKenzie and Townsend, 2007; Johnson et al., 2010).
Although previous research has used stoichiometric theory to
link biogeochemical cycles with parasite and pathogen infection
in a range of non-human hosts (Aalto et al., 2015; Sanders and
Taylor, 2018), this topic has not been explored in the context
of human health. We outline stoichiometric effects linking
infectious disease in humans with global change at two scales:
through the effects of nutrition on parasite-host interactions
within the human host and through environmental processes
outside the human host (Figure 4). Hereafter, we use “parasite”
to refer to a broad suite of pathogenic organisms (e.g., viruses,
protozoa, bacteria, and helminths) that infect human and non-
human hosts.

Nutritional Stoichiometry Shapes
Parasite-Host Interactions and Disease
Development
The effects of human nutrition on infectious disease have
received extensive consideration (Field et al., 2002; Cunningham-
Rundles et al., 2005), though not yet from a stoichiometric
perspective.Within a human host, we can view parasites, the non-
pathogenic microbiome, and human immune cells as consumers
that require specific resource quality to function optimally (Smith
and Holt, 1996). The collective function of the consumers in
this scenario determines the symptomatic response observed as
infectious disease. Ecological stoichiometry provides a common
currency to link elemental ratios in human diet with nutritional
impacts on infectious disease development through several
mechanisms (Figure 4).

Effects of Host Nutrition on Parasite Function
Parasites are ecological consumers whose survival, growth,
and reproduction are limited by the quality of resources
provided by their hosts (Smith, 2007). From a stoichiometric
perspective, the rates of these physiological processesmay depend
on elemental ratios originating from host diet. Several core
concepts from stoichiometric theory may contribute to our
understanding of links between parasite function and human
diet: the GRH, threshold elemental ratios, and stoichiometrically-
mediated interactions among species.

The GRH provides a promising avenue to link human diet
quality with parasite function. The rapid growth rates of parasites
relative to their hosts suggests that parasitic taxa should be

limited by C:P or N:P within hosts. Experimental evidence from
other disease systems supports this prediction: viral production
increased in algal hosts grown at low C:P (Clasen and Elser,
2007), and bacterial infection rates increased when zooplankton
hosts were fed a low C:P diet (Frost et al., 2008). While the
GRH has not been tested for parasites infecting human hosts,
understanding links between dietary C:P or N:P and parasite
growth are especially relevant given the overconsumption of P
in many human diets (Razzaque, 2011).

However, parasites vary widely in elemental ratios across
species (Paseka and Grunberg, 2019), so the limitation of parasite
growth rate by P is unlikely to be universal. For example, fungal
parasites infecting cyanobacteria had the highest replication
rate when hosts were grown at high N:P, suggesting that N is
more limiting to these parasites than P (Frenken et al., 2017).
The concept of threshold elemental ratios (TERs) provides a
framework for predicting how nutritionally-limited consumers
respond to variation in resource quality (Boersma and Elser,
2006). In contrast to the GRH, TERs are not specific to P but
could instead be applied to any elemental ratio. A consumer’s
TER represents an “ideal” resource ratio where consumer growth
is equally limited by both elements under consideration. The
cost of processing excess elements is predicted to create a hump-
shaped response of growth rate to diet quality around the TER
(Boersma and Elser, 2006). TERs have not been explored as a
means to study stoichiometric limitation of parasite growth, but
this concept could aid in making specific predictions about how
parasites will respond to shifts in human diet.

Finally, ES may also provide a framework for predicting how
human diet influences the outcome of interspecific interactions
among parasites and the non-pathogenic microbiome. These
organisms interact through complex mechanisms, and the
composition and function of the microbiome can limit or
promote infectious disease (Baümler and Sperandio, 2016). As
described earlier, we lack critical data on potential effects of
elemental ratios in host diet on the structure and function of the
human microbiome and its effects on disease.

Nutritional Controls on the Immune System
There is ample evidence that human diet regulates infectious
disease through immune function (Field et al., 2002;
Cunningham-Rundles et al., 2005), though this has not been
studied in the context of ES. From a stoichiometric perspective,
human immune cells can be viewed as consumers that function
optimally at specific elemental ratios. For this reason, applying
the concept of TERs to immune cells (and comparing host
immune TERs to parasite TERs) could help to draw links
between human diet quality, optimal immune function, and
defense against infectious disease.

Environmental Stoichiometry Mediates
Human Infection Risk
Elemental ratios also link infectious disease with global change
through processes occurring in terrestrial and aquatic ecosystems
that mediate human exposure to environmentally transmitted
parasites (Figure 4). Stoichiometric effects on ecosystem
productivity shape the population dynamics of consumers,
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FIGURE 4 | Elemental ratios link global change with infectious disease through stoichiometric effects occurring in the environment and within the human body.

(A) Fossil fuel combustion, land use change, fertilizer application, and industrial pollution change the relative availability of elements in the environment (1).

Environmental stoichiometry impacts the key ecosystem processes of biodiversity and productivity (2). These processes impact the production of environmentally

transmitted parasite species (3). Biodiversity may mediate parasite transmission to human hosts via the dilution effect (4). Together, these processes impact the rate at

which human hosts are exposed to environmentally transmitted parasites (5). Biodiversity and ecosystem productivity also impact food production (6), and elemental

ratios in human diet (7) lead to stoichiometric effects on infectious disease development within the body. Diet stoichiometry impacts the function of parasites, the

non-pathogenic microbiome, and the immune system (8), which collectively determine the development of infectious disease within an individual host. The same

within-host processes also apply to the development of disease caused by directly transmitted parasites (species that do not require environmental replication) (9).

(B) Example: Human-driven changes to N availability increase N:element ratios in soil (1), which can contribute to declines in plant community diversity (2). Changes in

plant diversity may alter the richness and composition of consumer communities, including potential reservoir hosts for infectious diseases of humans (3). The diversity

of host communities may impact disease vector abundance and human risk of infection through a dilution effect (4). (C) Example: Anthropogenic increases in CO2

lead to increased C:element in food crops (1), which corresponds to reduced nutritional quality (as dietary C:element) (2). Within a human host, changes to diet

stoichiometry may impact the function of parasites, the microbiome, the immune system, and their interactions. Collectively, these functions determine the

development of infectious disease (3).
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including parasites that require development outside the human
host. We use “environmental parasites” to refer to species that
replicate during free-living stages in the environment and those
that replicate within vector or intermediate host species.

Population Dynamics of Parasites, Intermediate

Hosts, and Vectors Impact Human Risk of Exposure
Stoichiometric effects on ecosystem productivity will impact
parasites that have free-living stages in the environment
(i.e., those that live independently of a host or vector).
For example, Vibrio cholerae, the causative agent of cholera,
lives as a heterotrophic bacterium in aquatic environments
when outside the human host and is therefore impacted by
environmental resource availability (Cottingham et al., 2007).
Associations between algal blooms and cholera outbreaks
have been observed for decades (Epstein, 1993; Colwell,
1996), yet it remains unclear what mechanisms link elemental
availability, primary production, and V. cholerae population
dynamics. Elemental ratios in aquatic ecosystems may regulate
V. cholerae directly by providing resources required for
growth or indirectly by promoting the growth of attachment
surfaces (phytoplankton, zooplankton, and macrophytes) on
which the bacteria aggregate during blooms (Cottingham
et al., 2007). Elemental ratios constrain the growth of non-
pathogenic bacteria in aquatic ecosystems and mediate algal
bloom dynamics (Sterner and Elser, 2002), suggesting that
stoichiometric effects may impact the population dynamics
of V. cholerae and other human parasites with free-living
environmental stages.

The effects of elemental ratios on ecosystem productivity
can also constrain the distribution and population dynamics of
vectors or intermediate hosts, thereby limiting the populations
of their associated parasite species. For example, elemental ratios
in aquatic ecosystems impact the distribution and population
dynamics of larval mosquitoes (Murrell et al., 2011; Yee
et al., 2015), which in turn determine the populations of
adult mosquitoes that transmit a wide array of viruses and
protozoan parasites.

In addition to the number of vectors or hosts in the
environment, the quality of these organisms as resources
for parasites may also be mediated by stoichiometric effects.
Like parasites within human hosts, environmental parasites
may be nutrient limited within intermediate hosts or vectors.
Evidence from several disease systems indicates that shifts in
the stoichiometry of the environment can cascade to alter the
elemental composition or other aspects of host and vector
physiology, thus altering the resources available to parasites and
mediating transmission risk (Sanders and Taylor, 2018). For
example, mosquitoes that consumed high quality diets as larvae
matured into adults that were higher in %N, which corresponded
to lower rates of Zika virus infection and transmission potential
(Paige et al., 2019). While the mechanism behind this shift is
unknown, it may reflect elemental requirements of mosquito
immune function. These studies on mosquito vectors are a
rare demonstration of the importance of elemental ratios for
vector population dynamics, traits, and transmission of a human

virus, and this topic represents an important direction for
future research in additional disease systems. Like within-host
disease dynamics, we suggest that TERs and the GRH are core
stoichiometric concepts that should be used to study the effects of
elemental ratios on environmental parasites, intermediate hosts,
and vectors.

Ecological Communities Mediate Parasite

Transmission to Human Hosts
In addition to the effects of environmental stoichiometry on
the direct interactions between environmental parasites and
their intermediate hosts and vectors, broader properties of
ecological communities also have important implications for
infectious disease. Stoichiometric effects on species richness and
composition may mediate human infection risk through the
dilution effect, a well-supported, inverse relationship between
infectious disease and biodiversity (Keesing et al., 2006; Ostfeld
and Keesing, 2012). There is robust support for the dilution
effect across a broad range of infectious disease systems,
including human diseases (Civitello et al., 2015). The effects
of environmental stoichiometry on human infectious disease as
mediated by community richness and composition have not been
studied, though results of a grassland experiment suggest that N-
fertilization can reduce the strength of the dilution effect and
lead to greater levels of fungal disease in plant communities
(Liu et al., 2017).

Overall, stoichiometric constraints on ecosystem productivity
and biodiversity may mediate the rate at which humans
encounter infective parasite stages produced in the environment.
Future research on how elemental ratios cascade through food
webs to impact parasite production and transmission will
provide new opportunities to link global change with infectious
disease risk.

DISCUSSION

Limitations of a Stoichiometric Approach
to Human Health
Ecological stoichiometry is a powerful framework for studying
the effects of global change on human health because it enhances
our understanding of how elements and energy are transferred
across scales of biological organization. However, one limitation
to the application of ES is that organisms (including humans)
cannot assimilate all molecular forms of elemental nutrients. For
example, humans require N in complex molecules because we
are only able to synthesize half of the amino acids required for
physiological function. Such nuance is lost when considering
only the C:N ratios (or N content alone) of human diet.
Nevertheless, a stoichiometric approach can often complement
more traditional considerations of dietary macromolecules. For
example, the elevation of C:N content in rice corresponds to
decreased concentrations of N-rich B vitamins (Zhu et al., 2018).
In this case, stoichiometric and macromolecular perspectives
provide complementary insight into links between global change
and human nutrition.
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However, some biogeochemical effects of global change
on human health can be effectively characterized using a
single-element approach. For example, nitrate leaching due
to over-fertilization has numerous human health implications
(Townsend et al., 2003). The human health effects of nitrate in
groundwater are largely a function of N alone, not N:P or another
stoichiometric interaction. Similarly, the health effects of toxic
elements such as Hg are better expressed as Hg concentration
in the body than as an C:Hg ratio. However, the ratios of Hg
with other elements (such as Se:Hg) influences human health
risk through stoichiometric processes both in the environment
and within the human body. While a reductionist, stoichiometric
approach has limitations, the interdisciplinary, cross-scale
power of ES also holds great potential to inform human
health research.

Stoichiometric Insight for Human Health
Under Global Change
We have outlined many potential mechanisms through which
elemental ratios link changing biogeochemical cycles with food
security and water quality, as well as a wide array of infectious
and non-infectious diseases in humans. However, we note that
stoichiometrically-explicit data on this topic are generally scarce.
We advocate for future research to harness the power of ES by
testing some of its core tenets in the context of human health.
This review is not an exhaustive exploration of these ideas,
the current literature, or potential future directions. Instead,
we hope that this work will inspire future research on the
application of stoichiometric theory to human health under
global change.
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