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Urban soils differ from those in other managed ecosystems in many ways, including

their heterogeneity, unique organic matter inputs and exposure to past and present

anthropogenic activities. Soil processes in urban systems are influenced by the

microbiome, specifically bacterial and fungal communities that are currently recognized

as the primary drivers of soil organic matter dynamics. However, our understanding

of biotic controls on microbial communities is incomplete, particularly in regard to the

roles of invertebrates. We aim to highlight how invertebrates and their interactions with

microbial communities may shape ecosystem processes in urban systems. We discuss

three primary pathways through which invertebrates are known to influence the soil

microbiome: dispersal of microorganisms throughout soils, grazing onmicrobial biomass,

and mixing of organic inputs within soils and subsequently altering microbial resource

accessibility. These invertebrate-mediated pathways may be particularly important

because of their influence on soil microbiomes of urban systems. We also propose future

research directions aimed at quantifying the influence of invertebrates on soil microbial

processes to gain a more comprehensive understanding of urban microbiome function.

Understanding the impact of invertebrates on the microbiome of urban systems can

potentially lead to better management of microbiomes and enhance microbe-driven

ecosystem services.
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THE URBAN SOIL MICROBIOME

Urban soils are typically defined first by the simple fact that they occur in urban areas.
Beyond that, soils within urban areas are highly heterogeneous in their physical structure,
chemical composition, temperature and moisture regimes, and land use among other
characteristics (Lehmann and Stahr, 2007). Thus, urban soils can be defined in different ways
and these definitions take into account the diverse impacts of human activities including
physical disturbance and redistribution of the soil matrix, and chemical modification of
soil by contaminants and other inputs (e.g., Lehmann and Stahr, 2007; Pouyat et al.,
2009; Food Agriculture Organization of the United Nations, 2015; Morel et al., 2015).
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Despite the challenges this variability creates in defining an urban
soil, urban soils are an important natural resource within urban
ecosystems, supporting a wide variety of biotic communities and
many ecosystem services (McIntyre, 2000; Tratalos et al., 2007;
Gardiner et al., 2014; Ramirez et al., 2014; Setälä et al., 2014;
Morel et al., 2015; Ossola et al., 2016; Herrmann et al., 2017;
Pavao-Zuckerman and Pouyat, 2017; Anne et al., 2018; da Silva
et al., 2018; Szlavecz et al., 2018).

As in other ecosystems, belowground processes in urban soils
are heavily influenced by the communities of bacteria, fungi,
and other microorganisms (i.e., the soil microbiome, Fierer,
2017) inhabiting them. These processes and ecosystem services
include the breakdown and mineralization of nutrients, the
formation of soil organic matter, and carbon sequestration (Van
Der Heijden et al., 2008; Bradford et al., 2013; Cotrufo et al.,
2013; Kallenbach et al., 2015, 2016). Such ecosystem services
in urban soils are also critical for aboveground services of
importance to human quality of life within cities, such as the
maintenance of urban greenspaces. For example, soils in New
York and Los Angeles, the United States’ first and second largest
cities by population, support roughly of one quarter and one
third greenspace (parks and gardens), respectively (New York
City Department of Planning, 2010; Los Angeles Department
of Parks Recreation, 2016). Additionally, cities along the U.S.
Rustbelt have tens to hundreds of square kilometers of vacant
lots that contain soils that support other ecosystem services such
as habitat and resources for urban wildlife and water filtration
(Uno et al., 2010; Gardiner et al., 2013; Green et al., 2016;
Herrmann et al., 2017).

While there is growing awareness of the potential importance
of the soil microbiome within urban soils for maintaining
belowground ecosystem services, studies of the factors that
govern the urban soil microbiome, and its performance remain
limited. Studies of the urban soil microbiome have focused
primarily on the diversity of these communities and have found
that abiotic factors such as pH and soil type are important
drivers of microbial diversity (e.g., McGuire et al., 2013; Ramirez
et al., 2014; Schmidt et al., 2017), as has been observed in non-
urban systems (e.g., Fierer and Jackson, 2006; Lauber et al.,
2009; Rousk et al., 2010). With a growing interest in urban
soil ecosystem services, particularly for urban agriculture and
responses to disturbances and global change, we must develop
a more comprehensive understanding of the biotic controls
on the urban soil microbiome. Plant communities have been
identified as an important biotic control on par with the abiotic
factors that control microbiomes such as moisture and nutrient
availability (Fierer, 2017). However, our understanding of other
biotic controls, especially the effects of soil-dwelling animals,
is incomplete. Recent work has shown that the high variability
observed in microbial community composition among different
urban soil fragments (e.g., McGuire et al., 2013) is partly
driven by soil invertebrate functional diversity, where increased
invertebrate functional diversity can lead to increased microbial
diversity (Bray et al., 2019). Yet, the actual mechanisms through
which invertebrates affect microbial diversity and function
have not been fully explored, especially in urban settings.
In this perspective, we discuss how soil invertebrates have

the potential to affect the diversity, biomass and activity of
the microbiome and their influence on ecosystem services in
urban soils.

SOIL INVERTEBRATE COMMUNITY
COMPOSITION AND FUNCTION IN URBAN
SOILS

Invertebrate communities in urban soils can be taxonomically
and functionally rich, containing detritivores, microbivores,
predators and ecosystem engineers (e.g., Byrne and Bruns,
2004; Rochefort et al., 2006; Schrader and Böning, 2006; Byrne
et al., 2008; Joimel et al., 2017). In some cases, urban soils
even exhibit greater invertebrate abundances than in nearby
natural systems (Philippot et al., 2013). Urban soil invertebrate
communities are shaped by not only the inherent physical
and chemical characteristics of urban soils but also heavily
by past and present land use and management practices
(Table 1). Many studies have highlighted that soil invertebrates
are sensitive to many human activities and resulting soil
conditions such as physical disturbance, metal contamination,
pesticide inputs, site age and land use history (McIntyre,
2000; Pavao-Zuckerman, 2008; Pouyat et al., 2010; Jones and
Leather, 2013; Table 1). While many anthropogenic activities
have been shown to suppress the abundance and diversity
of soil invertebrates, the direction and magnitude of the
responses can also vary across different taxonomic groups. For
instance, most invertebrates decrease in density in response
to soil metal contamination (Nahmani and Lavelle, 2002;
Santorufo et al., 2012; Pouyat et al., 2015); however, one
group of soil macroinvertebrates, the isopods, has exhibited a
positive density response to metal contamination in urban soils
(Pouyat et al., 2015). Pesticides are also well-known to decrease
microarthropod densities in urban soils; however, the effects can
vary considerably with pesticide active ingredient, application
rate, and frequency of use (Peck, 2009; Gan andWickings, 2017).
Other anthropogenic activities can have uniform positive effects
on soil invertebrate communities. For example, the addition
of organic matter is known to increase invertebrate densities
across multiple taxonomic and functional groups in urban soils
(Smith et al., 2006; Smetak et al., 2007; Byrne et al., 2008; Joimel
et al., 2016, 2017).

Anthropogenic influence, a defining feature of urban soils, is
not always uniform, creating distinct pressures on invertebrate
communities and site-specific variation across urban soil habitats
and patches. If anthropogenic influences shaping invertebrate
communities are in fact site-specific in urban soils, then their
ecological function across different urban soils may be site-
specific and therefore their effects on microbiomes may also be
site-specific. It is unknown how altered invertebrate communities
act as a biotic control on urban soil microbiomes and affect
microbial community structure and function. Their importance
may be high under some circumstances but may also vary
considerably both within and among different urban areas such
as lawns, gardens, vacant lots, and green roofs. This presents a
challenge for assessing and predicting ecosystem services that are
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TABLE 1 | Select factors affecting invertebrates within urban soils; the response of the invertebrate community is either to an increase in the factor or to the addition of

the factor.

Factor Invertebrate Metric Response References

Site or soil age Springtails Total abundance None Schrader and Böning, 2006

Springtails Species

Hypogastrura sahlbergi

Lepidocyrtus lignorum

Thalassaphorura encarpata

Negative

Springtails Species

Folsomides parvulus

Lepidocyrtus cyaneus

Cryptopygus thermophiles

Cryptopygus bipunctatus

Mesaphorura krausbaueri

Positive

Enchytraeids Species

Buchholzia appendiculata

Negative Amossé et al., 2016

Earthworms Total density Positive Smetak et al., 2007

Total density None Amossé et al., 2016

Total density Negative Vergnes et al., 2017

Percent urbanized area Isopods Total abundance Positive Philippot et al., 2013

Plant input chemistry (C:N) Springtails Total abundance Negative Vauramo and Setälä, 2010

Total abundance Positive Vauramo and Setälä, 2011

Nematodes Bacteriovores, plant-parasitic Negative Vauramo and Setälä, 2010

Nematodes Fungal feeders None Vauramo and Setälä, 2010

Soil bulk density Earthworms Total density Negative Smetak et al., 2007

Soil pH Macro-invertebrates Total Lumbricidae, Chilopoda, Diplopoda,

Isopoda, Formicidae

Positive Smith et al., 2006

Soil temperature Springtails Total density and diversity Negative Rumble and Gange, 2013

Soil moisture Springtails Total density Positive Rumble and Gange, 2013

Management intensity Nematodes Total, free-living, plant-parasitic, number of

genera

Negative Grewal et al., 2011

Nematodes Total, free-living, plant-parasitic, number of

genera

None Grewal et al., 2011

Metal contamination Earthworms Total abundance Negative Pouyat et al., 2015

Earthworms Species

Aporrectodea caliginosa

Negative Nahmani and Lavelle, 2002

Addition of organic matter Earthworms Total number Positive Byrne et al., 2008

Earthworms Total density Positive Smetak et al., 2007

Macro-invertebrates Total Lumbricidae, Chilopoda, Diplopoda,

Isopoda, Formicidae

Positive Smith et al., 2006

Addition of pesticides Springtails Total abundance Negative Gan and Wickings, 2017

Mites Total oribatid abundance Negative Gan and Wickings, 2017

Springtails Total abundance Negative Peck, 2009

linked to soil invertebrates and the ecosystem services provided
by soil microorganisms because of themultiple pathways through
which invertebrates influence microbial community composition
and function. Invertebrate effects onmicrobial function therefore
require targeted investigations to fully gauge their impacts
on the urban soil microbiome and the ecosystem services
it provides.

To explore the roles of invertebrates in the urban soil
microbiome, we selected the invertebrates classified as
microbivores and/or detritivores given their potential to
alter microbial communities. Furthermore, we identified
three pathways through which invertebrates affect microbial

processes: (1) microorganism dispersal, (2) grazing on
microorganisms, and (3) fragmentation and mixing of
organic matter resulting in altered resource accessbility for
microorganisms (Figure 1). Through these direct and indirect
pathways, invertebrates have been shown to exert strong controls
on microbiome composition, activity and biomass, suggesting
that invertebrates have the potential to influence microbial
processes (Grandy et al., 2016). In the following sections, we
highlight important future research directions to clarify the
roles of invertebrates on microbial community composition
and microbe-driven ecosystem services in the unique context of
urban soil ecosystem.
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FIGURE 1 | Three proposed invertebrate pathways that alter microbial communities in urban soils; invertebrates either have positive (+) and/or negative (−) effects on

the different microbial response metrics and interactions between the different invertebrate pathways and the microbial metric affect distinct soil processes.

THE ROLE OF INVERTEBRATES IN
MICROBIAL DISPERSAL AND IN SHAPING
URBAN SOIL MICROBIOME STRUCTURE

The physical dispersal of microorganisms through soil may
be a particularly important mechanism by which invertebrates
influence community assembly and composition of the urban
soil microbiome. Despite the potentially high cumulative area
of urban greenspace soils, soil habitats in urban systems can
be patchy and not well connected. Examples of urban patchy
habitats include urban gardens, parks, green roofs, and street
planters. Elucidating the relationships between invertebrate and
microbial dispersal in urban habitats will help to determine
whether invertebrates facilitate connectivity for less mobile
soil microorganisms.

Studies have shown that soil invertebrates can transport
both free-living and plant symbiotic microorganisms through
gut passage, fecal deposition, and passive transport on their
exoskeletons (McIlveen and Cole, 1976; Rabatin and Stinner,
1985; Gange, 1993; Moody et al., 1996; Lilleskov and Bruns,
2005). These studies were conducted in laboratory settings
and non-urban soils; therefore, the roles of invertebrates in
transporting microorganisms in urban soils and how this
shapes microbial community composition in urban soils is
an important future research direction. One key group of

invertebrate-transported microorganisms are mycorrhizal fungi,

which have positive effects on plant nutrient uptake, productivity

and diversity (Van Der Heijden et al., 1998) and consequently

soil ecosystem processes. In urban soils, factors such as habitat
fragmentation, and pollution have the potential to negatively
affect fungal diversity (Newbound et al., 2010). Therefore,
exploring invertebrates as dispersal agents and promoters of these
beneficial symbiotic relationships in urban soils may provide
a unique ecosystem service, particularly in newly established
soils. However, invertebrate transport of microorganism is not
limited to beneficial symbiotic microorganisms. Invertebrates
can transport other organisms such as seeds and plant
pathogens (Thompson et al., 1994; Friberg et al., 2005; Eisenhauer
et al., 2009). Limited work on this in urban soils has shown that
invertebrates can play important roles in seedling recruitment
and plant diversity in urban ecosystems (e.g., Sperling and Lortie,
2010) indicating potential for dispersal of weedy species. The net
effects of plant-invertebrate-microbe interactions generally need
to be further explored in urban soils, particularly if invertebrates
are to be considered a tool for promoting microbial diversity.

Furthermore, to fully gauge the importance of this
mechanism, a deeper understanding of invertebrate movement
among urban soils is key to understanding their influence over
soil microbiome formation and structure within urban soils
and across urban soil fragments. While some work has shown
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that green spaces and corridors can help mobile invertebrates
disperse across urban landscapes (Vergnes et al., 2012; Braaker
et al., 2014), general principles regarding routes of colonization
or constraints on soil invertebrate dispersal and population
establishment within isolated urban soil fragments are lacking.
This is relevant for not only the movement of native soil
invertebrates but also for invasive soil fauna, such as the
Asian jumping worms (Amynthas and Metaphire spp.), which
disperse rapidly through urban habitats (Hale, 2008; Greiner
et al., 2012; Qiu and Turner, 2017) and are known to alter
soil microbial communities (Chang et al., 2018). Clarifying the
relationships between invertebrate and microbial dispersal in
urban habitats will help to determine whether invertebrates
facilitate connectivity for less mobile soil microorganisms within
urban soil habitats and across urban soil patches. This should
be addressed by establishing long-term studies to characterize
the colonization of newly established soils in urban ecosystems
or re-colonization of defaunated soils of varying patch sizes and
degrees of connectivity and identity surrounding source pools of
potential colonizing invertebrates, both native and invasive, and
assess changes in the soil microbiome.

THE EFFECTS OF INVERTEBRATE
GRAZING ON THE SIZE AND ACTIVITY OF
THE URBAN SOIL MICROBIOME

The size, or biomass, of the soil microbial community is a widely-
used metric to assess the capacity of the microbiome to provision
ecosystem services (Zak et al., 2003; Jangid et al., 2008; Van Der
Heijden et al., 2008; Fierer et al., 2009; Rinkes et al., 2013; Serna-
Chavez et al., 2013; Wagg et al., 2014) and there is growing
interest in using it as a soil health metric (Gonzalez-Quiñones
et al., 2011). While microbial biomass is influenced by many
abiotic factors, biotic factors such as soil invertebrate grazing on
bacteria and fungi can also impact it. Microbial grazing (a.k.a.
microbivory) has been identified as one of the main pathways
through which soil invertebrates can affect not only the microbial
community but also soil biogeochemical processes (Grandy et al.,
2016); however, its importance under field settings is unclear.
We propose that investigating invertebrate effects on microbial
biomass in urban soils under different invertebrate diversity
and density scenarios will elucidate invertebrate controls on
this important soil health metric and lead to better predictions
of microbial biomass responses in recently disturbed or newly
formed urban soils.

Previous studies have demonstrated that microbivory can
either increase or decrease microbial biomass and activity and
a review by Crowther et al. (2012) suggests that observed
differences in the direction andmagnitude of microbial responses
to microbivory are linked to grazer identity and density.
For example, the effects of microarthropods (e.g., springtails)
stimulate fungal growth, whereas macroinvertebrates such as
isopods decrease fungal growth (Crowther et al., 2011; Crowther
and A’Bear, 2012). Grazer density also determines the responses
of microbial communities to microbivory with low-intensity
grazing leading to higher microbial biomass and activity and
high-intensity grazing leading to decreased microbial biomass

and activity (Lenoir et al., 2007; Crowther and A’Bear, 2012;
Crowther et al., 2012). This is not only true for free-
living saprotrophic microorganisms, but also for root-symbiotic
microorganisms such as mycorrhizal fungi (Klironomos and
Kendrick, 1996). Root-symbiotic microorganisms can be altered
by the presence of invasive earthworms in urban soils leading
to changes in organic matter in the rhizosphere and fine root
growth (Baxter et al., 1999). Despite the variability in invertebrate
effects on microbial biomass, one of the primary consequences
of invertebrate grazing on microbial biomass is an increase in
nitrogen availability (Anderson, 1988; Osler and Sommerkorn,
2007), indicating that by grazing on microorganisms, soil
invertebrates play important roles in soil nitrogen cycles and
potentially promote or reduce soil fertility.

Given that changes in microbial biomass and activity have
implications for soil microbiome-derived ecosystem services,
understanding the biotic interactions that contribute to changes
in microbial biomass and activity is essential. Integrated studies
exploring concurrent patterns of both microbial and invertebrate
population dynamics specifically in urban soils would provide
more insight into how the microbiome may change with
invertebrate community composition and density. Additionally,
manipulative field studies using fauna exclusions or fauna
additions and assessing microbiome responses in urban soils can
provide important insights into community-level changes due to
soil invertebrates. This could potentially elucidate an important
pathway through which invertebrates mediate microbially-
driven ecosystem services through their effects on the urban
soil microbiome.

THE ROLES OF INVERTEBRATES IN
ORGANIC MATTER FRAGMENTATION AND
MIXING IN URBAN SOILS

Many soil invertebrates are involved in the mixing and
breakdown of plant residue inputs to soil (Chamberlain et al.,
2006). As such, invertebrates alter the physical and chemical
composition and accessibility of organic matter in soil, which
can influence microbial resource acquisition and resource use
efficiency (Scheu and Wolters, 1991; Wardle, 2002; Wieder
et al., 2014). Yet, the impact of invertebrates on plant residue
breakdown is known to vary with residue chemistry (Garcia-
Palacios et al., 2013; Suzuki et al., 2013) suggesting that their
importance as moderators of resource inputs for the urban soil
microbiome may depend heavily on the type or amount of
organic matter input a system receives.

Organic matter inputs across urban soil habitats can range
widely in physical and chemical composition (Lorenz and Lal,
2009) from tree leaf litter in urban forests to grass clippings
and root exudates in lawns. Organic matter is also frequently
added to urban soils in the form of mulches, compost, biosolids,
biostimulants, and high-organic matter topsoil. Along with their
addition, it is also common practice to remove organic matter
from some urban soils (e.g., lawn and leaf waste) which can
reduce organic matter inputs to soils (Craul, 1985; Byrne et al.,
2008). Such notable modifications to organicmatter within urban
soils can alter microbial activity and decomposition (Byrne et al.,
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2008; Carlson et al., 2015), modify plant nutrient availability
(Beniston et al., 2016) and impact carbon storage (Beesley, 2012).
There is general evidence that the composition of the decomposer
community can affect the rate of decomposition in urban
soils through interactions between inputs, invertebrates and
microorganism (Ossola et al., 2016; Jusselme et al., 2019; Tresch
et al., 2019); however, the importance of invertebrates in shaping
organic matter-microbe interactions in urban soils is not fully
understood. We therefore need to account for all the potential
consequences of alterations to organic matter while supporting
management goals within urban soils. Future work should focus
on targeted approaches to assess invertebrate contributions to
microbial resource accessibility and how resource accessibility
alters the structure and function of the urban soil microbiome.
This could include trackingmicrobiome responses in field studies
with wide-ranging input chemistries such as labile grass clippings
to compost to tree leaves in which invertebrate communities are
present or excluded.

CONCLUSIONS

Urban soils are a unique habitat for microorganisms and
invertebrates, and there is ample evidence that biota can be both
abundant and diverse within urban soils (e.g., McIntyre, 2000;
Tratalos et al., 2007; Gardiner et al., 2014; Ramirez et al., 2014;
Setälä et al., 2014; Ossola et al., 2016; Szlavecz et al., 2018). Yet,
going beyond characterization and moving to management of
microbiomes to increase plant productivity and bolster other
ecosystem services is an important future direction for urban

soil ecology research. Therefore, identifying and assessing all

the biotic pathways that can change microbiomes is key to
achieving this management goal. Through the three pathways
identified here, soil invertebrates may be particularly important
drivers of soil microbiome function in urban soils. Invertebrate-
microbe interactions in urban soil may be site-specific given
the variability within and across urban areas. Advancing
knowledge of invertebrate-microbe interactions in urban soils
has the potential to improve our ability to make more accurate
predictions about belowground biogeochemical processes across
diverse urban soils. Many unknowns remain surrounding the
relative importance of invertebrates for predicting soil microbial
processes under different urban soil conditions but targeted
approaches that investigate invertebrate-microbe interactions
in urban soils may eventually increase our ability to manage
microbiomes and the ecosystem services they provide.
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