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A lack of information about urban habitats, and a lack of professionally-collected species

occurrence data are often cited as major impediments to completing bioassessments

in urban landscapes. We developed an urban biodiversity assessment framework

that addresses these challenges. The proposed framework combines a customized

hierarchical urban habitat classification scheme with citizen science-generated species

occurrence data, such as iNaturalist and eBird. It integrates publicly available data

on the physical and anthropogenic environment with species occurrence information

and serves as a novel method for conducting urban biodiversity assessments. This

framework provides insights into how species occurrences within an urban landscape

are associated with spatial variation in the physical and anthropogenic environment. It

can also yield information useful for planning and conservation management aimed at

maintaining and enhancing the abundance and diversity of native and other desirable

species in urban areas. This framework requires minimal taxonomic expertise on the

part of those who employ it, and it can be implemented in urban areas worldwide,

wherever adequate data exist. We demonstrate the application of this framework in

the highly urbanized portion of Los Angeles County, California, USA. Our demonstration

used 18 physical and anthropogenic variables to classify our study area into nine urban

habitat types. We then assessed relationships between these urban habitat types with

species occurrences using research-grade data from iNaturalist. This analysis detected

significant differences in distributions of some species between these nine urban habitat

types and demonstrated that the proposed framework can be used to conduct urban

biodiversity assessments.With increasing availability of remote sensing data and publicly-

generated biodiversity data, this framework may be used for analysis of urban areas

around the globe.
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INTRODUCTION

As the percentage of people living in urban areas continues
to grow, and the extent of urbanized lands continues to
expand (United Nations Department of Economic Social
Affairs Population Division, 2014), understanding and protecting
biodiversity in cities where large numbers of people live is of
global conservation relevance (Kaplan et al., 1998). Importantly,
making cities more welcoming to nature can provide large
portions of the populace with greater chances for regular contact
with, and appreciation for, biodiversity (Parker, 2015). However,
developing a widely adoptable methodology to assess, plan for,
and conserve urban biodiversity remains a challenge (Margules
and Pressey, 2000; Ferrier, 2002). This is largely attributable to the
lack of information about wildlife habitat and species occurrence
data in urban areas and a lack of understanding about the role
that spatial variation in anthropogenic factors (i.e., factors related
to human social structure or the built environment) may play in
species distributions across urban areas. These information gaps
often stem from limited access to private property to collect such
data, as well as the tendency among those conducting regional
biodiversity assessments to classify urbanized areas using a small
number of general, “developed” land cover types (e.g., Figure 1),
and to assume that all of these land cover types have little or no
biodiversity value (Pickett et al., 2001).

Species’ abundances and distributions are highly dependent
on fine-scale environmental variation (Blair and Launer, 1997;
Williams et al., 2009). Thus, conducting biodiversity assessments
in large urban areas requires spatially explicit characterizations
of their heterogeneity (Pickett and Cadenasso, 1995; Stein
et al., 2014). However, existing methods to quantify urban
heterogeneity differ in how they combine biophysical and
anthropogenic components (Grimm et al., 2000) and in the
spatial scales at which they are applied (Wu and Loucks,
1995). Coarse-scale ecosystem classifications based on physical,
climatic, and biological conditions, such as the Anderson
or Anderson-derived classification systems (Anderson et al.,
1976) or the Multi-Resolution Land Characteristics classification
system (Wickham et al., 2014) often fail to capture the dynamic
social processes and varied built environments that typify urban
areas and that may greatly influence species distributions (Pickett
and Cadenasso, 1995). Fine-scale approaches like HERCULES
(Cadenasso et al., 2007) and “ecotopes” (Ellis et al., 2000; Chan
and Paelinckx, 2008), while highly detailed, combine social use
and biophysical parameters within a single patch, but each
of the resulting urban types/ecotopes are independent of each
other, thereby obscuring how they are related in terms of
physical features and ecological functions (Wiens et al., 1993;
Steenberg et al., 2015). Although a growing number of studies
have conducted site-specific analyses to elucidate how urban
heterogeneity structures biodiversity (e.g., Kinzig et al., 2005;
Hand et al., 2016), the methods used are often too complex and
costly to scale up to the level of entire cities or metropolitan
regions (Goddard et al., 2010).

Heterogeneity in both natural and urban ecosystems is relative
and scale-dependent (Klijn and de Haes, 1994; Grimm et al.,
2000); for example, patches at a particular scale (e.g., blocks) can

be aggregated into larger patches (e.g., neighborhoods) and are
often themselves composed of smaller patches (e.g., home lots).
Thus, an urban ecosystem classification is best structured as a
nested hierarchy. A hierarchical approach to urban ecosystem
classification captures the scale-dependent nature of ecosystems
and facilitates understanding (Wu, 1999). This approach has
rapidly gained ground in urban ecology, due to its ability to
incorporate biophysical and anthropogenic components (Wu
and Loucks, 1995). Hierarchical approaches have been adopted
for a variety of research andmanagement purposes (e.g., Nielsen-
Pincus et al., 2015; Steenberg et al., 2015; Jackson-Smith et al.,
2016). However, to our knowledge, no hierarchical classification
has been developed with a focus on understanding how the
distribution of urban biodiversity is related to urban habitat
heterogeneity, and specifically on how species’ distributions
in urban areas are structured by variation in the biophysical
landscape, the built environment, and the social structure of
the region.

Urban biodiversity assessments have also been hampered
by a lack of species occurrence data (Ferrier, 2002). However,
the explosive growth in citizen science projects, and the
use of platforms such as eBird and iNaturalist, have greatly
enhanced the amount and availability of species occurrence
data from urban areas (Silvertown, 2009; Spear et al., 2017).
Although citizen science data have been critiqued for being
gathered with non-standardized survey methods, similar biases
and errors often exist in surveys conducted by professional
biologists, even in some of the most commonly used species
occurrence datasets (Devictor et al., 2010). Occurrence data
gathered by citizen scientists in urban areas are proving to
be particularly valuable because these same urban landscapes
are typically under-surveyed by traditional, professional survey
methods (Ballard et al., 2017). Citizen science has become
an established method for advancing scientific knowledge
in urban areas, including tracking population trends and
distributions of species (e.g., Gardiner et al., 2012; Border et al.,
2017; Spear et al., 2017), researching animal behaviors (e.g.,
Bonier et al., 2007; Boydston et al., 2018; Pesendorfer et al.,
2018), and identifying and prioritizing urban conservation and
management actions (e.g., Gregory et al., 2005; Crall et al.,
2010). Likewise, data gathered by citizen science programs have
served as the basis for thousands of peer-reviewed publications
(Sullivan et al., 2009).

We developed an urban biodiversity assessment framework to
address the challenges associated with the lack of information
about urban habitats and the lack of professionally-collected
species occurrence data available for urban areas. Our urban
biodiversity assessment framework has two main components
(Figure 2): a customized hierarchical urban habitat classification
scheme that uses physical and anthropogenic factors to
systematically differentiate habitat types within an urban
landscape; and the use of citizen science-generated species
occurrence data to examine species distributions across these
habitat types. Serving as a novel and broadly applicable approach
for conducting urban biodiversity assessments, this framework
aims to integrate and make the best possible use of available
environmental, and species information. This framework allows
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FIGURE 1 | Study area with National Land Cover Data (NLCD) classification demonstrating that much of the study area is developed with only a few NLCD classes.

users to investigate: (1) how different species use different types
of urban habitats, (2) which species have been observed only in
certain types of urban habitats, and (3) community compostion
differences across different urban habitat types. Additionally,
such pattern exploration can help users generate hypotheses to
further investigate the underlying drivers of urban biodiversity
patterns. These analyses may also reveal particular areas or
urban habitat types that have been undersampled and where
new citizen science projects might be targeted. We demonstrate
this framework in the highly urbanized portion of Los Angeles
County, California, USA, and we term this demonstration
Biodiversity Analysis in Los Angeles (BAILA). With increasing
availability of remote sensing data and publicly-generated
biodiversity data, the proposed framework can be adopted
globally, and provide information useful for urban planning and
conservation management aimed at maintaining and enhancing
the abundance and diversity of native and desirable species in
urban areas.

METHODS

Study Area
The first step in developing an urban classification scheme
is to specify the boundaries of the study area (Figure 2).
To demonstrate our framework, we selected the urbanized
portion of Los Angeles County, California, USA as our study
area (Figure 1). The study area is situated in the California
Floristic Province, one of the world’s 36 recognized biodiversity
hotspots (Myers et al., 2000). It covers 3,208 km2, including 80
incorporated cities and 69 unincorporated neighborhoods, and is
home to more than 9 million people. It contains several different

biophysical environments, and three major landscapes: the Los
Angeles Basin, the San Fernando Valley, and the San Gabriel
Valley. Bordered to the west and south by the Pacific Ocean and
to the north and east by mountains and hills, the coastal Los
Angeles Basin is generally cooler in the summer and milder in
the winter but receives less rainfall than the inland San Fernando
and San Gabriel Valleys. Daytime temperatures can vary as much
as 20◦C (36◦F) between the coastal Los Angeles Basin and the
San Fernando Valley or San Gabriel Valley. Although 86% of our
study area has been heavily modified through the development
of residential, commercial, industrial, and transportation
infrastructure (Figure 1), recent studies and iNaturalist data
demonstrate that it nonetheless contains a broad array of species
(e.g., Clarke et al., 2013; Hartop et al., 2015; Allen et al., 2016).
However, there is little understanding of how different taxa are
distributed across the study area and of the factors that drive
those distributions.

Identifying the Geographic Unit for the
Urban Classification Scheme
The second step in developing an urban classification scheme
is to select a basic geographic unit for analysis (Figure 2).
The geographic unit should be selected based on the scale at
which users wish to apply the resulting classification scheme,
as well as the scale at which relevant data are available
within the study area. The geographic unit may be based
on ecosystem-based boundaries (e.g., subwatersheds or climate
zones), jurisdictional boundaries (e.g., cities or neighborhoods),
demographic boundaries (e.g., U.S. Census Tracts or U.S. Census
Block Groups), or artificial grids that divide a study area into
equally-sized cells. The decision about the geographic unit should
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FIGURE 2 | Diagram of the urban biodiversity assessment framework.

take into consideration the future applicability and usability
of the classification. For example, an artificial grid might be
less useful for those focused on urban conservation planning
and management, whereas jurisdictional and/or demographic
boundaries may be more familiar and more easily used
by decision-makers.

In the case of BAILA, to balance the trade-offs between
the resolution of the available datasets, the need to ensure
our results would be useful for city and county-level planning
processes and conservation management programs, and to
address computational limitations, we chose the U.S. Census
Block Group (hereafter referred to as “BG”) as our basic
unit of classification. A BG is a geographic unit that is
intermediate in size between the Census Tract and the
Census Block. It represents a cluster of Census Blocks (often
the same as or similar to city blocks). BGs are generally
bounded by roads, natural features, or political boundaries,
and often approximate neighborhood boundaries recognized
by local residents. Generally, within a BG, biophysical factors
(such as microclimate and elevation), socioeconomic status,
housing development type, and landscaping are relatively

homogenous (Geronimus and Bound, 1998). BGs are available
in Geographic Information System (GIS) format across the
entire U.S. (and can be downloaded at: http://www.census.gov/
cgi-bin/geo/shapefiles/index.php). Many other countries have
similar census units. BGs have been widely used in U.S. urban
landscape classification studies as an appropriate unit to quantify
heterogeneity across large urban areas (Grove et al., 2006).
Within the BAILA study area, there were 6,040 BGs ranging
in size from 0.03 km2 to 23.65 km2, with an average size
of 0.53 km2.

Variable Selection for the Urban
Classification Scheme
To effectively understand how fine-scale environmental variation
shapes urban biodiversity, an urban habitat classification scheme
must include variables that represent three key elements of an
urban region: the biophysical landscape, the built environment,
and the human social structure. However, the inclusion of
variables can vary based on data availability within the study
area and data resolution compatibility. We suggest that users
who adopt our framework first identify variables that have
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demonstrated or suspected direct effects on shaping biodiversity.
This can be achieved through literature review or by consulting
with local experts who have on-the-ground knowledge of
the factors that shape local biodiversity. The next step is to
inventory whether the proposed variables have suitable spatial
datasets. Generally, local county GIS portals, Natural Earth Data
(https://www.naturalearthdata.com/), USGS Earth Explorer
(https://earthexplorer.usgs.gov/), US Census Bureau (https://
factfinder.census.gov/faces/nav/jsf/pages/index.xhtml), NASA’s
Socioeconomic Data and Applications Center (https://sedac.
ciesin.columbia.edu/), and Esri Open Data (https://hub.arcgis.
com/pages/open-data) are reputable places to search for free,
remotely sensed and GIS-based data. We also encourage
potential users to contact local biodiversity experts, researchers,
and conservation agencies for input on sources of available
and suitable data. Fortunately, remotely sensed and GIS-
based environmental data are becoming increasingly available
worldwide. Finally, users must refine the list of candidate
variables and develop a final set to be used in the analysis. In
this step, users first should ensure that the data are of similar
resolution and fully cover the study area. Users may also address
collinearity between variables, either by extracting features
using Principle Component Analysis (PCA) (Wold et al.,
1987; Jackson-Smith et al., 2016), or by running correlation
analyses among variables, and removing highly correlated
variables based on knowledge about which variable has a weaker
mechanistic relationship with urban biodiversity. The advantage
of using correlation analyses is that they are easier to interpret
than PCA.

In BAILA, through discussions with experts and literature
review, we first identified 48 candidate variables relevant to
the distribution of biodiversity in our study area. Those
variables represent the biophysical, built environmental, and
social aspects of the urban landscape. After data screening,
31 variables were kept whose data resolution was suitable for
BG level classification and had full coverage of the study area.
We further narrowed down those 31 variables to 18 based
on reducing collinearity between variables. Specifically, when
variables were highly correlated (r > 0.6), we kept variables
that had the most direct impact on biodiversity. For example,
we excluded land use (e.g., commercial, residential, industrial,
etc.) and housing type (e.g., single-family housing, multi-
family housing) from the framework because these attributes
are highly correlated with percentage of imperviousness and
greenness, population density, and traffic density (Appendix S1
in Supplementary Material); further, it is these latter factors, and
not land use and housing type, that are the more direct drivers
of urban biodiversity (Luck and Wu, 2002). Notably, we did not
include a variety of socio-economic variables, such as education,
income, property value, and ethnicity. Although some studies
have identified correlations between socio-economic factors and
urban vegetation (Luck and Wu, 2002), the relationship between
socioeconomic factors and urban biodiversity, independent of
other biophysical and built environment attributes, is not well-
understood. In addition, we performed a sensitivity analysis
by removing those highly-correlated variables (e.g., number of

housing units, BG size, and nighttime light) one at a time
to evaluate whether the final classification outcome changed
dramatically and meaningfully in a way that was consistent
with local knowledge of the region. We kept 18 variables for
which there are strong empirical or theoretical grounds for
presuming that they affect urban biodiversity and for which
there are appropriate datasets for the analysis (Table 1). They
include temperature, precipitation, terrain, landcover, greenness,
distance to natural areas, population, and traffic noise and
density. As it happens, these 18 variables are all well studied
and known to have effects on biodiversity in urban areas around
the world. These 18 variables may serve as examples for variable
selection globally.

All 18 variables were calculated for each of the 6,040 BGs
based on the definitions provided in Table 1. Given that the 18
variables have different units of measurement, we standardized
each variable to range from 0 to 1. Data extraction and
consolidation were performed in R 3.4.2 utilizing sf and
tidyverse packages.

Conducting the Hierarchical
Cluster Analysis
A hierarchical clustering algorithm is recommended for users to
develop a customized urban habitat classification. Hierarchical
clustering starts by treating each unit (in our BAILA case study,
the units are the BGs) as a separate cluster, then repeatedly
merges the two most similar clusters (Wilks, 2011). This
continues until all the clusters are merged together, resulting
in a nested hierarchical structure of the clusters (Wilks, 2011).
Thus, it is an ideal method to reveal the hierarchical structure
of complex urban environments. Hierarchical clustering can be
performed with either a distance matrix or raw data. When raw
data are provided, the algorithm requires a specified distance
method to convert it to a distance matrix. Another feature
of a hierarchical clustering algorithm is that the user decides
how many final types the classification will identify (e.g., 5
types, 9 types, or 40 types). This grants users the flexibility to
classify urban areas into a few, generally distinctive types, or
numerous types that have more subtle differences. There is no
definitivemethod for determining the optimal number of clusters
in an analysis. A simple and frequently used solution consists
of visually inspecting the dendrogram produced by hierarchical
cluster analysis to see if it suggests a particular number of clusters
(Bridges, 1966; Köhn and Hubert, 2006). Gap statistic is another
method to estimate the optimal number of clusters by identifying
at which point the rate of increase of the gap statistic begins to
slow (Tibshirani et al., 2002). Whatever approach is used, we
suggest that users check the final classification results to ensure
that they are consistent with local knowledge. Decisions about
the final number of clusters should also take into consideration
the potential application and usability of the final urban
habitat classification.

In BAILA, we used hierarchical cluster analysis to categorize
the 6,040 BGs based on variation in the 18 input variables.
We used Euclidean distance to measure dissimilarity between
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TABLE 1 | List of variables used in the BAILA urban typology classification framework.

Variables Description and definition Source

BIOPHYSICAL LANDSCAPE

Average annual

temperature

Mean temperature per block group The basin characterization model (BCM) dataset: http://climate.calcommons.org/

dataset/2014-CA-BCM (resolution:270m)

Maximum temperature Mean maximum temperature of June,

July, and August per block group

The BCM dataset: http://climate.calcommons.org/dataset/2014-CA-BCM

(resolution:270m)

Average annual

precipitation

Mean precipitation per block group The BCM dataset: http://climate.calcommons.org/dataset/2014-CA-BCM

(resolution:270m)

Elevation Mean elevation per block group 2006U.S. Geological Survey (USGS) National Elevation Dataset (NED): https://

egis3.lacounty.gov/dataportal/2011/01/26/2006-10-foot-digital-elevation-

model-dem-public-domain/ (resolution:10 ft.)

Slope Mean slope degree per block group 2006 USGS NED: https://egis3.lacounty.gov/dataportal/2011/01/26/2006-10-

foot-digital-elevation-model-dem-public-domain/ (resolution:10 ft.)

Percentage of forest Percentage of forest per block group National Land Cover Database (NLCD) 2011 Land Cover Layer: https://www.

mrlc.gov/data/nlcd-2011-land-cover-conus-0 (resolution:30m)

Percentage of

grassland

Percentage of grassland per block

group

NLCD 2011 Land Cover Layer: https://www.mrlc.gov/data/nlcd-2011-land-

cover-conus-0 (resolution:30m)

Percentage of water

and wetlands

Percentage of water bodies per block

group

USGS National Hydrography Dataset: http://prd-tnm.s3-website-us-west-2.

amazonaws.com/?prefix=StagedProducts/Hydrography/NHD/State/

HighResolution/Shape/ (resolution:30m)

BUILT ENVIRONMENT

Tree canopy Average percentage of tree canopy

cover per block group

NLCD 2011U.S. Forest Service Tree Canopy Analytical Layer: https://www.mrlc.

gov/data/nlcd-2011-usfs-tree-canopy-cartographic-conus-0 (resolution:30m)

Greenness (EVI) Mean Enhanced Vegetation Index per

block group

2016–2017 USGS Landsat 7 surface reflectance: http://clim-engine.appspot.

com (resolution:30m)

Imperviousness Average percentage of impervious

surface per block group

NLCD 2011 Percent Developed Imperviousness Layer: https://www.mrlc.gov/

data/nlcd-2011-percent-developed-imperviousness-conus-0 (resolution:30m)

Percentage of urban

open space

Percentage of urban open space per

block group

NLCD 2011 Land Cover Layer: https://www.mrlc.gov/data/nlcd-2011-land-

cover-conus-0 (resolution:30m)

Percentage of urban

areas

Percentage of urban areas per block

group

NLCD 2011 Land Cover Layer: https://www.mrlc.gov/data/nlcd-2011-land-

cover-conus-0 (resolution:30m)

Distance to the nearest

natural areas

Average distance to the nearest

natural areas per block group

L.A. County Land Types Dataset Wildlife Sanctuary Layer: https://egis3.lacounty.

gov/dataportal/2015/01/08/la-county-land-types/ (resolution: parcel)

SOCIAL STRUCTURE

Population Total population per block group U.S. Census 2010 Dataset: https://factfinder.census.gov/faces/nav/jsf/pages/

searchresults.xhtml?refresh=t (resolution: U.S. Census Block)

Population density People/km2 per block group U.S. Census 2010 Dataset: https://factfinder.census.gov/faces/nav/jsf/pages/

searchresults.xhtml?refresh=t (resolution: U.S. Census Block)

Traffic density Average traffic density per block

group

CalEnviroScreen 3.0 Dataset: https://oehha.ca.gov/calenviroscreen/indicator/

traffic-density (resolution: U.S. Census Tract)

Traffic noise Average traffic noise per block group U.S. Bureau of Transportation the National Transportation Noise Map: http://

osav-usdot.opendata.arcgis.com/datasets/

aa9154e1eab44ccf8fab309052799ba0 (resolution:30m)

each pair of BGs and Ward’s minimum variance method to
measure dissimilarity between clusters of BGs. All analyses were
performed in R 3.4.2 using fastcluster, dendextend, and tidyverse
packages. We used visual inspection of the dendrogram and
the gap statistic to estimate the optimal number of clusters.
The gap statistic was performed with 30 bootstraps and a
maximum of 15 clusters. The R script used to perform the
hierarchical cluster analysis and gap statistic can be found
at: https://github.com/enjieli/BAILA. Last, we inspected the final
results of the classfication to verify that each of those urban
habitat types were consistent with our local knowledge of the
study area.

Citizen Scientist-Generated Species
Occurrence Data
Owing to growth in citizen science efforts, there is an increasing
availability of species occurrence data for urban areas (Spear
et al., 2017). Some citizen science platforms/programs are
focused on a single taxon (e.g., eBird; https://ebird.org/home),
while others are focused on diverse groups of organisms
(e.g., iNaturalist; https://www.inaturalist.org). Generally,
citizen scientist-generated species occurrence data are free
and publicly accessible, and many programs/platforms also
provide easy online access to download and use data. In
addition, the Global Biodiversity Information Facility (GBIF,
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https://www.gbif.org/en/) is a global data repository where,
through a single portal, users can access biodiversity data from
diverse sources including museum specimen records and citizen
science observations.

For BAILA, we used iNaturalist observations as our source of
species occurrence data. iNaturalist has gained great popularity
in Los Angeles County due to a series of ongoing citizen
science projects managed by the Natural History Museum of
Los Angeles County (Ballard et al., 2017). Also, the iNaturalist
database contains species occurrence records for a broad suite
of taxa, making it ideal for biodiversity assessments. We used
59,842 observations (2,281 species) of species-level, research-
grade iNaturalist observations spanning a variety of taxa (e.g.,
birds, plants, insects, reptiles, mammals, gastropods, arachnids,
fungi, etc.) reported between 1 January 2010 and 15 September
2017 (GBIF.org, 2017) to assess biodiversity patterns across our
study area. iNaturalist data can be downloaded through a data
export tool (https://www.inaturalist.org/observations/export) or
through GBIF. Research-grade observations are defined by
iNaturalist as observations with a photo voucher, locality, date,
and community-supported identification, and they cannot be
cultivated or captive organisms. Importantly, depending on the
research questions, users might want to include cultivated or
captive organisms as these may be important components of
the flora and fauna in some urban areas. Such information
is also downloadable on iNaturalist. Our case study focuses
on wild biodiversity; therefore, we did not include cultivated
or captive organisms. Additionally, we gathered information
on the provenance (native/introduced status) of these species
from the California Department Fish and Wildlife, Calflora, the
California Bird Records Committee, and iNaturalist. We were
able to categorize 857 species as native to California and 434
as introduced. An additional 990 species (mostly insects) lacked
provenance information.

Coupling Species Occurrences With the
Urban Habitat Classification
Using species occurrences in parallel with an urban habtiat
classification, our framwork can offer insights on the distribution
of local urban biodiversity, facilitating the exploration of a
variety of ecological questions. Using BAILA as an example, our
framework can be used to explore the number of observations
and species observed within each urban habitat type, the numbers
of native and introduced species across taxa and urban habitat
types, as well as aspects of the urban habitat that could be
modified to make the area more welcoming to certain species.
Further, our framework can investigate the shared species among
urban habitat types, and the suites of species unique to specific
urban habitat types. Lastly, our framework can be used to
examine community dissimilarity across the urban habitat types.
Due to the non-standardized survey method of citizen science-
generated biodiversity data, we suggest that users develop criteria
for data inclusion to address questions of interest. For example,
when analyzing species found only in certain types of urban
environments, a minimum number of observations can be set
to ensure that those species have been commonly observed and
therefore, that the observations are unique to that urban habitat
type(s). However, such a cutoff is subjective, will depend on the

total number of occurrences and the desired accuracy of the
assesment, and may sharply limit the number of species and
occurrences available for analysis. We suggest users set a cutoff
based on inspection of the histogram or percentile rank of the
numbers of observations per species.

In the case of BAILA, when analyzing the shared species
among urban habitat types, and the suites of species unique
to each urban habitat type, many species were observed only
a few times within our entire study area, making it difficult
to distinguish whether they were unique to a certain urban
habitat type, or whether they were simply difficult to observe
or under-sampled. Therefore, we only included species with at
least 5 observations (945 out of 2,281 species) in our analysis.
In the BAILA dataset, there are 59,842 observations of 2,281
species. The median number of observations per species is 3, the
60th percentile is 5, and the 75th percentile is 13. While using
the 75th percentile cutoff (species with at least 13 observations)
would surely increase the confidence of finding unique species
in each urban habitat type, it would significantly reduce the
number of species to be included in the analysis. In this case, only
587 out of 2,281 (about 26%) species would be kept for further
analysis, which would dramatically reduce the representation of
the biodiversity of the region. Therefore, to ensure we have some
representation of the diverse species in the region, we choose
the 60th percentile as the cutoff, which is five observations
per species.

We used Non-metric Multidimensional Scaling (NMDS;
Kruskal, 1964) to examine community dissimilarity across
the urban habitat types. For ordination analyses, we treated
each BG containing iNaturalist observations as a sample.
Within each sample, the iNaturalist observations were treated
as sampling units. Because it is mathematically difficult to
calculate community dissimilarity with 2,281 species, especially
when sites share few species, we analyzed only the 100 most
frequently observed species using BGs that contained at least
30 observations. As a result, 160 BGs with 24,571 observations
of the 100 most observed species were retained for ordination
analyses. All 9 of our urban habitat types were included within
the 160 BGs. We used the Jaccard coefficient, treating species
with observations as “present” and those without observations as
“absent,” to construct similarity matrices of those 160 BGs. This
reduces the noise caused by uneven and biased sampling efforts
in the iNaturalist dataset and heightens the signal of species
distribution patterns. The fit (or stress) of an NMDS ordination
was evaluated at both 2- and 3-dimensions with 1,000 iterations.
We also performed a Permutational Multivariate Analysis
of Variance (PerMANOVA) to test whether the community
compositions among the various urban habitat types were
significantly different based on 1,000 permutations of the data.
Both NMDS analysis and PerMANOVA were performed using
the vegan package in R 3.4.2.

RESULTS

A Typology for Urban Biodiversity
The gap statistic (Figure 3) indicated the study area could be
optimally divided into three (gap3 = 1.5211; Figure 3) distinct
categories which are the less urbanized habitat types (Types 1–4),
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FIGURE 3 | Dendrogram showing the hierarchical clustering of Census Block Groups and the distance among clusters in multivariate data space. The gap statistic

(upper right) showing the total within-cluster variation for different values of k; the number of optimal clusters was determined by identifying at which point the rate of

increase of the gap statistic began to slow down. Refer to Figure 4 for definitions of the nine urban habitat types.

FIGURE 4 | Spatial layout of the nine urban habitat types in the study area. These nine urban habitat types were identified from hierarchical clustering of 18 variables.

and two categories of more urbanized types: Valley urban habitat
types (Types 5–6), and Basin urban habitat types (Types 7–9;
Figures 3, 4). We also identified 9 distinct urban habitat types
nested within these three different categories based on visual
inspection of the dendrogram (Figures 3, 4). Each of these nine
urban habitat types was given a name that reflects its geographic

location and/or an additional distinctive feature to improve
communication (Appendix S2 in Supplementary Materials). It
should be noted however, that each of these nine urban habitat
types was delineated by a cluster analysis of 18 variables, and
the names that we assigned these urban habitat types are at best
a shorthand that allows us to more readily communicate about
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them, but which in no way fully describes how they differ from
one another.

Overall, there were significant differences between the less
urbanized and the more urbanized habitat types in percentage
of impervious surface (M = 32.78, SD = 13.46 vs. M = 64.78,
SD = 11.04; t(6038) = 2.89, p < 0.001), percentage of tree canopy
cover (M = 4.78, SD = 4.51 vs. M = 64.78, SD = 1.76; t(6038)
= 62.46, p < 0.001), and greenness (M = 0.22, SD = 0.05 vs. M
= 0.14, SD = 0.04; t(6038) = 52.90, p < 0.001). The dendrogram
(Figure 3) also indicated that there was great variation among
the four less urbanized habitat types, while variation among the 5
more urbanized habitat types was not quite as strong.

Differences among the more urbanized habitat types in
climatic factors, such as temperature and precipitation, were
largely explained by geography, with Types 7 (Basin developed
areas), 8 (Most developed areas), and 9 (Furthest from regional
parks with natural vegetation) occurring largely in the more
coastal Los Angeles Basin, and Types 5 (Valley arterial areas), and
6 (Valley developed areas) occurring largely in the San Gabriel
and San Fernando Valleys to the north. The Basin urban habitat
types had significantly cooler mean annual temperatures (M =

23.05◦C, SD = 1.05 vs.M = 25.68◦C, SD = 0.58; t(5104) = 52.90,
p < 0.001), and less rainfall (M = 347.94mm, SD = 25.95 vs. M
= 421.27mm, SD = 32.77; t(5104) = 62.46, p < 0.001) than the
Valley urban habitat types.

Patterns of iNaturalist Observations
The iNaturalist observations were unevenly distributed
across the study area (See Table 2 and Appendix S3 in
Supplementary Materials for species accumulation curves for
each urban habitat type). There were more observations in the
less urbanized habitat types (Types 1–4; n = 40,122) than in the
more urbanized habitat types (Types 5–9; n = 19,720) (Table 2).
For BGs that have iNaturalist observations, the average number
of observations, number of species observed, and the density
of observations were higher in the less urbanized habitat types
(Table 2). Types 1 (Low development with natural vegetation), 2
(Dams, reservoirs, and wetlands), and 4 (Urban parks and open
space), where the majority of the public lands are located, had
the most observations per BG (139, 164, and 53 respectively),
highest species richness per BG (51, 64, 23, respectively), and
highest species richness per unit area (35/km2, 102/km2, and
28/km2, respectively), while Type 5 (Valley arterial areas), which
contains busy and loud traffic areas, had the fewest number of
observations (2,421) and the fewest species (523) observed.

Insects, birds, and flowering plants (Magnoliophyta)
constituted the majority of observations across all 9 urban
habitat types (Figure 5). Type 1 (Low development with
natural vegetation) had the greatest diversity of observed native
flowering plant species (207). However, even in the highly
urbanized areas, such as Types 5 (Valley arterial areas), and 9
(Furthest from regional parks with natural vegetation), more
than 50 native flowering plant species were observed. Overall,
we found 26,824 observations of 772 of California native species
in the less urbanized habitat types (Types 1 through 4) and
9,679 observations of 539 native species in the more urbanized
habitat types (Types 5 through 9). Native species accounted for T
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FIGURE 5 | Summary of iNaturalist data by select taxa in each urban habitat type.

the majority of occurrences (67%) in the less urbanized habitat
types. Type 4 (Urban parks and open space) had the highest
number of both native species (559 species) and introduced
species (247 species).

The observed abundance and richness of introduced species
varied depending on taxon and urban habitat type, and they were
not dominant in any of the 9 urban habitat types (Table 2 and
Figure 5). Across all types, 83% (Type 5; Valley arterial areas)
to 89% (Type 2; Dams, reservoirs, and wetlands) of the bird
species occurrences reported were native to California; fewer
than 10% (12–14 species) were introduced species (Figure 5).
For mammals, we found that there were more occurrences of
native species than introduced species in areas with lower human
population densities and less human activity, such as Types 1
(Low development with natural vegetation), 2 (Dams, reservoirs,
and wetlands), and 4 (Urban parks and open space), whereas
in areas with higher human populations and more activity,
such as Types 3 (Foothill areas), and 5 (Valley arterial areas)
through 9 (Furthest from regional parks with natural vegetation),
introduced mammal occurrences were reported twice as often
as native mammals (Figure 5). This result was largely driven
by observations of a single species, the Eastern Fox Squirrel
(Sciurus niger), which is the focus of a museum-led citizen
science project.

The distribution of species (with at least 5 observations) varied

across the 9 urban habitat types. A total of 185 species (20%)

were found in all nine urban habitat types, including theWestern

Fence Lizard (Sceloporus occidentalis), Eastern Fox Squirrel,
European Honey Bee (Apis mellifera), Brown Garden Snail
(Cornu aspersum), Monarch Butterfly (Danaus plexippus), House
Sparrow (Passer domesticus), and House Finch (Haemorhous
mexicanus). Those 185 commonly observed species included
61 bird species, 50 of which were native, and 45 flowering

plant species, of which only one third (15 species) were native,
and 28 were introduced. Seventeen species were exclusively
observed in only one of the 9 urban habitat types. Most of
these were native plants in Type 1 (Low development with
natural vegetation) and shorebirds and freshwater birds in Types
2 (Dams, reservoirs, and wetlands), and 4 (Urban parks and
open space). In addition, 120 species were unique to the less
urbanized habitat types (Types 1 through 4), themost common of
which were California Broomsage (Lepidospartum squamatum),
California bordered plant bug (Largus californicus), Phainopepla
(Phainopepla nitens), Rock Wren (Salpinctes obsoletus), and
White-breasted Nuthatch (Sitta carolinensis). 20 species were
found exclusively in the more urbanized habitat types (Types
5 through 9), with 7 being introduced, 4 native, and 9 of
unknown provenance, including: the slug Deroceras invadens,
Spotted Lady Beetle (Adalia bipunctata), and Common House
Spider (Parasteatoda tepidariorum).

Ordination Analysis Using the 100 Most
Commonly Observed Species
For the 160 BGs included in the ordination analysis, Types 1–
9 had 40, 16, 22, 33, 8, 13, 10, 13, and 5 BGs, respectively.
Thus, we had samples in each of the nine urban habitat types.
There were more than 4 times more observations from the less
urbanized habitat types (19,748) than from the more habitat
urbanized types (4,823). We used a 3-dimensional solution for
the NMDS (Appendix S4 in Supplementary Materials), because
we could not find a 2-dimensional solution for convergence.
Overall goodness-of-fit was good (stress = 0.161). Results
of PerMANOVA suggested that observed species composition
differed between the urban habitat types (r2 = 0.15743,
p= 0.001).
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TABLE 3 | Results of PerMANOVA pairwise comparisons of community

composition among the nine urban habitat types. Refer to Figure 4 for definitions

of the nine urban habitat types.

Pairs F r2 p-value padjust

1vs. 2 6.542 0.108 0.001 0.036

1 vs. 3 7.874 0.116 0.001 0.036

1 vs. 4 4.505 0.060 0.001 0.036

1 vs. 5 6.186 0.119 0.001 0.036

1 vs. 6 10.333 0.168 0.001 0.036

1 vs. 7 6.033 0.112 0.001 0.036

1 vs. 8 12.663 0.199 0.001 0.036

1 vs. 9 6.147 0.125 0.001 0.036

2 vs. 3 3.329 0.085 0.001 0.036

2 vs. 6 2.839 0.095 0.001 0.036

2 vs. 8 5.297 0.164 0.001 0.036

3 vs. 4 2.677 0.048 0.001 0.036

3 vs. 8 2.098 0.060 0.001 0.036

4 vs. 5 2.773 0.066 0.001 0.036

4 vs. 8 5.592 0.113 0.001 0.036

5 vs. 8 2.284 0.107 0.001 0.036

The F is a Pseudo F test score to compare among-group variances and within-

group variances with no assumption of multivariate normality. p-values obtained by

comparing the actual F test result to that gained from 1,000 random permutations of the

objects between the groups. Bonferroni correction reported as padjust. Only significant

comparisons were reported.

Pairwise comparisons showed that Type 1 (Low development
with natural vegetation) and Type 2 (Dams, reservoirs, and
wetlands) had significantly different species compositions
from the remaining 7 urban habitat types (Table 3). The 4
less urbanized habitat types had very distinct community
compositions from each other, with the exception of Types 4
(Dams, reservoirs, and wetlands) and 2 (Urban parks and open
space), which were relatively similar to one another (F = 2.434,
r2 = 0.049, p= 0.004, and padjust = 0.144). This is not surprising,
considering some urban parks contain lakes and ponds.
However, with the exception of the pair of Type 5 (Valley arterial
areas) and Type 8 (Most developed areas), we did not find
statistically significant differences in species composition
amongst the 5 most urbanized habitat types (Types 5
through 9) (Table 3).

DISCUSSION

BAILA Case Study
We found quantifiable environmental and biological differences
within the BAILA study area. Instead of treating the urban area as
one mass region with low biodiversity potential, our hierarchical
clustering analyses distinguished nine urban habitat types that
differed in extent of urbanization (i.e., percentage of impervious
surface cover, human population density, percentage of urban
area cover), climate, and other variables including traffic density
and traffic noise. Species were distributed across these types in
various ways, with some species being found across all types
and others that were more restricted to one or a subset of

types. Each of the 9 urban habitat types, support a variety of
organisms, albeit with different levels of observed species richness
and overall abundance (Table 2 and Figure 5). For example,
more than 200 native species were observed in Type 5, one of
the more urbanized habitat types, and one of the types covering
the smallest total area. This also indicates that native species can
be found not only in large urban green spaces but also within
commercial, industrial, and residential districts (Rudd et al.,
2002; Blair, 2004; Acar et al., 2007). This in turn indicates there is
potential to enhance biodiversity in all of the urban habitat types
with strategic interventions.

The variables used for this classification span the biophysical,
built, and social landscapes, and urbanization was found to be
the main factor driving the basal divergence in the hierarchical
classification (less urbanized types vs. more urbanized types;
Figure 4). Ordination analysis also showed that there were
significant differences in community composition associated
with differences between the urban habitat types (Table 3).
This finding corroborates other studies that have shown that
urban heterogeneity affects species distributions (Stein et al.,
2014; Norton et al., 2016). Although we did not find significant
differences in observed species distributions among the 5 most
urbanized habitat types (Types 5 through 9) (Table 3), this
might have resulted from our use of only the 100 most
commonly observed species in the ordination analysis. While
analyzing commonly observed species increased the statistical
confidence of the community composition analysis, it might
have caused us to overlook species that are truly unique to
just one or a few of the more urbanized types. On the other
hand, this finding might be indicative of “biotic homogenization”
within the more urbanized types across our study area. Many
studies indicate that urban areas can be biotically homogenous,
containing a suite of “cosmopolitan,” generalist species (Blair,
2004; McKinney, 2006; McDonald et al., 2013; Leong and
Trautwein, 2019). Collection of additional occurrence data in
the 5 more urbanized types would help answer questions
about whether they support distinctive suites of species or are
“biotically homogenized.”

Our study demonstrates that the iNaturalist platform provides
taxonomically diverse biodiversity data that can be used for
spatially explicit urban biodiversity studies (see also Cooper
et al., 2007; Bonney et al., 2009; Spear et al., 2017). About 60%
of the land within our study area is privately owned, making
it difficult to access and survey using traditional approaches.
Datasets of professionally gathered species occurrence data, such
as the California Natural Diversity Database (CNDDB), and
other state Natural Heritage Program and national Conservation
Data Center databases, contain few records for urban areas.
For example, CNDDB had 956 occurrence records for only
154 species within our study area, and most of those
species are rare and/or of special conservation concern, with
little information about common and/or introduced species
and with even less information from the more urbanized
areas. Further, the number of records in such databases is
growing only slowly, especially for heavily urbanized areas. In
contrast, iNaturalist contained more than 59,842 observations
of a diverse assortment of 2,281 species, including birds,
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plants, insects, reptiles, mammals, gastropods, arachnids, and
fungi across all 9 urban habitat types, and those numbers
are growing rapidly as more and more people participate
in citizen science projects and as more and more people
use iNaturalist.

Our case study could also provide insights for on-the-ground
conservation management and planning in the Los Angeles area.
There is increasing interest in enhancing native plant biodiversity
within our study area, and other urban areas, through urban
habitat restoration. Our analysis has generated a list of native
plants that naturally occur and are commonly found across
all 9 urban types [e.g., Eastern Mojave buckwheat (Eriogonum
fasciculatum var. foliolosum), laurel sumac (Malosma laurina),
toyon (Heteromeles arbutifolia), willow baccharis (Baccharis
salicina), black sage (Salvia mellifera), California brittlebush
(Encelia californica), western sycamore (Platanus racemosa),
Southern California black walnut (Juglans californica), California
poppy (Eschscholzia californica), and Coulter’s Matilija poppy
(Romneya coulteri)], even in areas with high percentages of
impermeable cover (i.e., buildings and pavement). This offers
practical suggestions for the implementation of urban habitat
enhancement projects that intend to incorporate plants. In
addition, our analyses found that while introduced species
occurred in all urban habitat types, introduced mammals and
spiders were observed more frequently in the more urbanized
habitat types (Figure 5). These results suggest that efforts to
detect and track introduced species should be concentrated
in more urbanized areas, where citizen science approaches
can be especially effective at overcoming the challenges of
private property access for detecting the arrival and spread of
introduced species.

Merits and Shortcomings of This
Framework
Biodiversity assessments require information on both
environmental variation and spatial distributions of the
organisms within a study area. On the one hand, habitat
classification derived from remotely sensed environmental
data (such as climate, terrain, soil, landcover, etc.) have been
widely used as surrogate information in assessing biodiversity.
However, mapped habitat types may or may not correspond
with actual biological differences. The potential for mismatches
between assumed vs. real species-habitat relationships is high.
On the other hand, species occurrence data are often sparse
or unevenly sampled. Despite the abundant amount of citizen
science-generated species occurrence data, it is still challenging
to detect the geographical patterns, particularly in relation to
environmental variation. By using an urban habitat classification
in tandem with species distribution data, our framework serves
as a useful tool to better evaluate whether mapped habitat
types are meaningful in predicting biodiversity, as well as to
detect species distribution patterns in relation to environmental
variation. The combination of an urban habitat classification
and species distribution data allows users to generate hypotheses
to futher investigate the underlying drivers of the observed
biodiversity patterns.

Remote sensing and GIS have progressed over the past
decade with inexpensive, fine-resolution, and easily available
data, as well as advanced analytical techniques that allow
for the development of urban habitat classification systems
tailored to urban biodiversity. An urban habitat classification
generated using our framework will differ depending on the
urban area evaluated, the variables used, the scale at which
the classification is done, and the number of clusters chosen.
In the future, data for many of our 18 variables are likely to
exist at a finer resolution across our study area than those
available today. Data on other variables may also become
available, allowing further improvements to our analyses. We
identified several other variables that may have been particularly
useful for our study but for which data were unavailable or
were not available at a fine enough scale across our study
area to warrant inclusion. Examples include GIS data of soil
types, street tree species, vegetation types, and irrigation system
presence and use. When adopting this framework for other
regions, we encourage users to carefully select variables based on
availability of data, socio-ecological context of the locale, species
of interest, and specific objectives of the analysis. While we
developed this framework to study broad patterns in biodiversity,
it could be easily modified to address other questions, such
as how certain taxa use particular urban environments. In
that case, the variables used for the urban classification
should be key drivers that affect the distribution of the taxa
of interest.

Citizen science-generated biodiversity data provide
taxonomically diverse information in urban areas that are
historically under-sampled by professionals. Our framework
has several advantages, especially in urban areas where the
lack of professionally-collected species occurrence data have
historically limited opportunities for such analyses. Among
these benefits are the incorporation of more data gathered on
privately-owned lands, educational and other societal benefits
related to involving volunteer citizen scientists in the gathering
of data (Ballard et al., 2017), and avoiding the expense involved
in employing professional biologists for field or lab work.
Biodiversity assessments typically require taxonomic experts to
carry out surveys or identify specimens in existing collections;
however, this taxonomic expertise can now be crowdsourced to
the online iNaturalist community (which includes taxonomic
experts), such that the input dataset can be made up of high-
quality occurrence records for which the species identity has a
high level of confidence.

Our framework may also serve as a useful tool for identifying
gaps in citizen science-generated species occurrence data. An
analysis of the locations of the iNaturalist observations across
the entire study area reveals specific areas (i.e., specific BGs)
and specific urban habitat types that apparently have not
been sampled by community scientists or where surveys for
specific taxa have not yet been undertaken, thus revealing
specific locales that could be targeted for future surveys. More
observations from unsampled and under-sampled areas will
improve our understanding of how different species utilize
different urban habitats. In particular, such information will
be useful to guide future citizen science projects to fill in
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such data gaps, and to improve the appreciation of and
engagement with nature in communities located in currently
under-sampled BGs. Furthermore, there are BGs that have
no iNaturalist records at all. Using our framework, we can
predict which species might occur in an under-sampled BG
based on those that have been observed in other BGs of
the same urban habitat type. Citizen science projects that
focus on data collection in these BGs can be used to test
these predictions.

In order to generate a meaningful urban habitat classification
and be able to detect geographic patterns of local urban
biodiversity, our framework requires a large amount of
environmental and species occurrence data. Although the
hierarchical classification could be performed with aminimum of
one input variable, the outcome would be less comprehensive in
terms of representing the full spectrum of the biophysical, built
environmental, and social aspects of the urban environment.
For example, for areas with a lack of social data, one could
generate an urban habitat classification with only biophysical
and built environment data. However, such an urban habitat
classification might be weak in interpreting the effects of social
variables on urban biodiversity. One can also generate an
urban classification solely using social factors, but the resulting
classification might not provide direct insights into how physical
features shape local biodiversity. In general, we recommend
that users select a suite of variables spanning the biophysical,
built environmental, and social aspects of urban environments
to achieve a more comprehensive urban habitat classification.
However, it is not necessary to overload the classification model
with variables, as many of the variables are correlated. On the
other hand, the more species occurrence data incorporated,
the more rigorous the biodiversity assessment can be. For
areas lacking in species occurrence data, we encourage users
to promote citizen science projects that gather occurrence
records for use in future urban biodiversity studies. In addition,
where citizen science-generated species occurrences data are
growing rapidly, we encourage users to take advantage of
the increasing availability of data to continuously improve
their understanding of biodiversity. For example, in BAILA,
we used 59,842 iNaturalist observations collected between 1
January 2010 and 15 September 2017. As of 28 June 2019, an
additional 114,295 research grade (twice as many) observations
were added in our study area. We are confident that with
such significant growth in species occurrence data, some
intricate and complex patterns of urban biodiversity could
be revealed in our study area. To sum up, with continuous
growth and development in GIS, remote sensing, and citizen
science projects, many urban areas around the globe now
have, or will soon have, both the environmental data and the
species occurrence records needed to conduct robust urban
biodiversity assessments.

CONCLUSION

The goal of this study was to generate an urban biodiversity
assessment framework that is relatively simple to undertake,

uses data from public sources and citizen science efforts,
and is broadly applicable to other urban areas around the
world. The novelty of this framework is that it combines
urban habitat information with citizen science-generated species
occurrence data and offers an improved understanding of
urban biodiversity patterns that neither an urban habitat
classification nor species occurrence information alone could
reveal. With continuing advancement in GIS and remote-
sensing, and the exponential growth of citizen science-
generated species occurrence records, we believe that our
framework will provide even more robust knowledge of urban
biodiversity over time as the data used in the analyses
improve. We hope our pioneering case demonstrates the
importance of citizen science-generated species occurrence
records such as those available from iNaturalist, and inspires
and encourages other urban areas to promote citizen science
projects that gather occurrence records for use in future urban
biodiversity studies.
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