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Urbanization rapidly changes landscape structure worldwide, thereby enlarging the

human-wildlife interface. The emerging urban structures should have a key influence on

the spread and distribution of wildlife diseases such as canine distemper, by shaping

density, distribution and movements of wildlife. However, little is known about the

role of urban structures as proxies for disease prevalence. To guide management,

especially in densely populated cities, assessing the role of landscape structures in

hampering or promoting disease prevalence is thus of paramount importance. Between

2008 and 2013, two epidemic waves of canine distemper hit the urban red fox

(Vulpes vulpes) population of Berlin, Germany. The directly transmitted canine distemper

virus (CDV) causes a virulent disease infecting a range of mammals with high host

mortality, particularly in juveniles. We extracted information about CDV serological state

(seropositive or seronegative), sex and age for 778 urban fox carcasses collected by

the state laboratory Berlin Brandenburg. To assess the impact of urban landscape

structure heterogeneity (e.g., richness) and shares of green and gray infrastructures

at different spatial resolutions (areal of 28 ha, 78 ha, 314 ha) on seroprevalence we

used Generalized Linear Mixed-Effects Models with binomial distributions. Our results

indicated that predictors derived at a 28 ha resolution were most informative for

describing landscape structure effects (AUC = 0.92). The probability to be seropositive

decreased by 66% (0.6 to 0.2) with an increasing share of gray infrastructure (40 to

80%), suggesting that urbanization might hamper CDV spread in urban areas, owing to a

decrease in host density (e.g., less foxes or raccoons) or an absence of wildlife movement

corridors in strongly urbanized areas. However, less strongly transformed patches such

as close-to-nature areas in direct proximity to water bodies were identified as high risk

areas for CDV transmission. Therefore, surveillance and disease control actions targeting

urban wildlife or human-wildlife interactions should focus on such areas. The possible

underlyingmechanisms explaining the prevalence distributionmay be increased isolation,

the absence of alternative hosts or an abiotic environment, all impairing the ability of CDV

to persist without a host.
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INTRODUCTION

Urbanization rapidly changes landscape structures worldwide,
thereby enlarging the human-wildlife interface (Parris, 2016). In
combination with human disturbance, this can influence wildlife
distribution patterns inmultiple ways, as animals can for instance
aggregate in areas with high artificial food concentrations or
adjust their home range size and activity patterns to avoid
humans (Cavallini, 1996; Smith and Engeman, 2002; Riley et al.,
2003; Prange et al., 2004). High resource availability, low hunting
pressure and the absence of large predators cause high density
of wildlife in urban areas compared to their conspecifics in
rural areas (Cavallini, 1996; Contesse et al., 2004; Börner, 2014).
Importantly, the close proximity of dense wildlife and domestic
animal populations together with humans in urban areas make
zoonoses or disease spillovers between host species more likely
than in rural areas (Adkins and Stott, 1998; Ditchkoff et al., 2006).

In this context, a particularly important, yet challenging
task is to determine the key transmission mechanisms
ultimately leading to disease spread and factors maintaining
high seroprevalence, i.e., distribution of wildlife diseases in space
and time (House and Keeling, 2011). Lacking knowledge on
these key mechanisms makes indeed disease surveillance and
control difficult and expensive. In urban ecosystems, such active
management is particularly important for pathogens relevant to
humans and their pets, such as canine distemper virus (CDV),
small fox tapeworm (Echinococcus multilocularis) or rabies virus
(Stubbe, 1980; Appel and Summers, 1995; Harder and Osterhaus,
1997; Bradley and Altizer, 2007; Rentería-Solís et al., 2014). It is
therefore of paramount importance to delimit hotspots of disease
spread and distribution to guide urban wildlife management.
To date, very little is known about the role of urban landscape
structures as proxies for disease seroprevalence (Hassell et al.,
2016), and assessing their role in hampering or promoting the
disease spread and distribution should therefore be a priority
task.

The direct transmission of diseases is driven by contact rates
between hosts, which depend on the ecology of both the host
species and the disease (Tompkins et al., 2011). For instance,
the infection duration and the way of spreading the disease to
other individuals can vary with age (Damien et al., 2002; Lloyd-
Smith et al., 2005; Kramer-Schadt et al., 2009). Such variation is
often not due to age per se but to other reasons related to age
such as the acquired immune system or different types of social
interactions. High wildlife densities typically increase intra- and
interspecific contact rates and thus direct disease transmission,
thereby accelerating the spread of an epidemic (Cleaveland et al.,
2000; Ditchkoff et al., 2006; Almberg et al., 2009), particularly
when diseases are spread by aerosols or smear infections, such
as CDV. It is thus crucial to identify the structural landscape
variables that promote high wildlife densities in urban areas, as
well as the preferred movement corridors that enhance disease
spread.

Urban environments provide a diverse mixture of landscape
structures such as parks, private/public green spaces, water
bodies, densely built-up areas and streets, the so-called
green (terrestrial close-to-nature), blue (water) and gray

(anthropogenically built-up) infrastructure (Dugord et al., 2014).
Often, these urban landscape structures change abruptly, e.g.,
due to sharp borders between parks and housing, and shape
the spatial distribution and density of biodiversity, including
mammalian species (Beninde et al., 2015). Such landscape
patterns may thus have a key influence on the spread and
distribution of wildlife disease epidemics in anthropogenic
ecosystems (Meentemeyer et al., 2012).

The successful investigation of host distribution and density
in concert with disease transmission further depends on the
spatial resolution of the environmental variables studied. Indeed,
the spatial resolution (precise vs. coarse) mediates changes of
calculated heterogeneity of the landscape matrix. If calculated at
a too coarse spatial resolution, the coarse resolution may cover
the effects of important landscape structures such as corridors,
which are strongly influencing disease spread (Meentemeyer
et al., 2012). A high spatial heterogeneity impedes the spread of a
disease (Kauffman and Jules, 2006). This indicates that disease
spread needs to be investigated in environments with varying
levels of spatial heterogeneity.

Urban ecosystems can be seen as large-scale experimental
units to study ecological or evolutionary phenomena or
mechanisms (Johnson and Munshi-South, 2017). The urban
landscape of Berlin, capital of Germany, is highly fragmented and
provides locally both large and small patches, as well as green and
built-up areas, distributed in a polycentric manner (Dugord et al.,
2014). The human population density increases continuously
from the administrative boundary to the geographic center
(Dugord et al., 2014). Consequently, Berlin is an optimal area
to study the influence of urban landscape structures on disease
spread. As this study area does not have one main urban center,
as is the case inmany other large cities, we also have the advantage
of avoiding high spatial autocorrelation.

The first serological surveys conducted in urban red foxes
(Vulpes vulpes) in Berlin and its surroundings reported relatively
low levels of CDV antibodies in the population (Hentschke,
1995; Truyen et al., 1998; Frölich et al., 2000). However, between
2007 and 2013, two epidemic waves of CDV hit the urban fox
population of the metropolitan area of Berlin after a spillover
event from a domestic dog to a fox (Rentería-Solís et al., 2014),
and individual-level serological investigations of foxes found
dead were conducted. More generally, interspecific spillover
has been reported between domestic dogs, foxes, and raccoons
(Roelke-Parker et al., 1996; Damien et al., 2002; Almberg et al.,
2009; Rentería-Solís et al., 2014).

CDV affects various species and taxa (e.g., Canoidea and
Feloidea), is highly contagious, worldwide distributed and causes
very high mortality rates (Appel and Summers, 1995; Roelke-
Parker et al., 1996; Harder and Osterhaus, 1997; Deem et al.,
2000; Frölich et al., 2000; Pomeroy et al., 2008). Most infected
individuals are juveniles (Haas et al., 1996; Cleaveland et al., 2000;
Marescot et al., 2018), which either recover, i.e., turn seropositive
and develop a lifelong immunity (Greene, 2013) or die within a
short period (21 to 120 days; Almberg et al., 2009).

Foxes are well studied urban-dwelling mammals that occur
worldwide (Stubbe, 1980; Harris and Smith, 1987; Harris and
Trewhella, 1988; Cavallini, 1996; Baker et al., 1998; Contesse
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et al., 2004; Janko et al., 2012; Börner, 2014). Urban foxes inhabit
various urban landscape structures such as home gardens, little-
vegetated dense built-up areas or bushy and well-vegetated areas
(Harris, 1981; Adkins and Stott, 1998). Most juveniles disperse
between 6 and 24 months of age (Harris and Trewhella, 1988;
Harris and Baker, 2001) and males disperse three times further
than females (males: 1.8 km vs. females 0.6 km) on average
(Harris and Baker, 2001). The size of home ranges is larger in
adults than in juveniles, but similar in both sexes (Janko et al.,
2012), except during the rut, when the home range sizes of males
enlarge (Gloor, 2002).

Here, we studied CDV infection in urban foxes, using
carcasses collected throughout the entire city. As seropositive
animals have undergone previous exposure to and infection by
CDV, we take seroprevalence, especially in juveniles, as a signal
that the disease has been present at the respective location where
the fox carcass was found. In contrast to adults, seroprevalence
in juveniles indicates that they had undergone exposure and
infection only recently, or were even still infected when found,
with quickly developing severe clinical signs (Kimoto, 1986),
allowing for pinning down actual infection patterns in space and
time. The aims of this study were to (1) identify urban landscape
structures facilitating the spatiotemporal spread and distribution
of CDV in urban foxes based on their serological status by using
susceptible (seronegative) and immune/infected (seropositive)
individuals, and to (2) create a prediction map of disease risk
suitable to improve surveillance and disease control.

We aimed at delineating areas with a high probability
of finding seropositive foxes from urban landscape structure
variables, finding a changing response toward these structures
over the course of disease spread, and identifying distinct patterns
between age and sex classes. Specifically, we investigated the
following questions:

1) How does heterogeneity in landscape structures (richness,
evenness, and Shannon index) and the share of green/blue
(close-to-nature) or gray (strongly anthropogenically
modified) landscape structures influence CDV seroprevalence
in urban foxes?

2) Are the effects of landscape structures consistent across
different spatial resolutions?

3) Are the effects of landscape structures consistent across time,
i.e., during the course of disease spread?

We predicted that the probability of finding seropositive animals
would be higher in close-to-nature structural variables within
the city than in other areas, because we expect the highest
host densities there, and because these areas are preferred
movement corridors, especially for dispersing juveniles. We
further predicted that this is especially pronounced in the juvenile
age class, as this is the age class currently or recently infected,
because the spatial distribution of immune adult foxes may have
already been blurred by other effects like successful dispersal
into new habitats. We further expected that females responded
more strongly to the close-to-nature variables than males, as they
are less mobile: juvenile females are more philopatric and home
ranges of the adult males may increase, especially when in rut.
However, we expected a stronger effect of age than of sex. During

the analysis, the highest spatial resolution (most precise) should
provide the highest predictive power. Finally, we expected that
after the initial phase of disease invasion in the urban space, the
response towards close-to-nature areas would decrease over time,
and that more seropositive foxes are found close to the city center
in the most urban habitats.

METHODS

Study Area in Berlin, Germany
The study took place within the administrative boundary of
Berlin, Germany (see Figure 1; area of Berlin: 891.7 km2;
population: 3,469,849; Amt für Statistik Berlin-Brandenburg,
31.12.2015). Berlin contained 38% green infrastructure such as
urban green space (e.g., parks), forests, private green space
(gardens) and 7% blue infrastructure (i.e., water bodies). Forests
alone covered about 20% of the area in 2015 calculated from
a land use map provided by SenStadtUm 2012 (https://fbinter.
stadt-berlin.de/fb/index.jsp) in Stillfried et al. (2017). Fifty-Five
Percent of the city area were gray infrastructure composed of
20% of streets or railway tracks and 35% of built-up areas such
as industrial areas or inner-city block buildings (Dugord et al.,
2014). The landscape of Berlin is heterogeneous with a relatively
low building height, scattered population density peaks and
greater amounts of open landscapes close to the administrative
boundary. The overall land use patterns have remained constant
over the last decade (Lauf et al., 2014). To cover the potential
home range of foxes found close to the administrative boundary
of Berlin we added a 4 km buffer zone (Brandenburg land use
map) during all analyses.

Red Fox and Landscape Structure Data
Acquisition and Preparation
Data management, analyses and Figures were done in R 3.4.1
(R Core Team, 2017) using the packages car 2.1-5 (Fox and
Weisberg, 2011), corrplot 0.77 (Wei and Simko, 2016), DHARMa
0.1.5 (Hartig, 2017), data.table 1.10.4 (Dowle and Srinivasan,
2017), dismo 1.1-4 (Hijmans et al., 2017), dplyr 0.7.1 (Wickham
et al., 2017a), effects 3.1-2 (Fox, 2003), GISTools 0.7-4 (Brunsdon
and Chen, 2014), lattice 0.20-35 (Deepayan, 2008), lme4 1.1-13
(Bates et al., 2015), MuMIn 1.15.6 (Barton, 2016), pbapply 1.3-
3 (Solymos and Zawadzki, 2017), raster 2.5-8 (Hijmans, 2017),
readr 1.1.1 (Wickham et al., 2017b), rgdal 1.2-8 (Bivand et al.,
2017), rgeos 0.3-23 (Bivand and Rundel, 2017), rpostgis 1.3.0
(Basille and Bucklin, 2017), RPostgreSQL 0.6-2 (Conway et al.,
2017), sf 0.5-1 (Pebesma, 2017), sp 1.2-5 (Pebesma and Bivand,
2005; Bivand et al., 2013), tidyr 0.6.3 (Wickham and Henry,
2017), vegan 2.4-3 (Oksanen et al., 2017), viridis 0.4.0 (Garnier,
2017), zoo 1.8-0 (Zeileis and Grothendieck, 2005). Additionally
we used SAGA GIS 4.0 and Gimp 2.8.

Red Fox Carcass Data
In total 813 fresh fox carcasses were collected between June
2008 and July 2013 in Berlin by the state laboratory of Berlin
and Brandenburg. Berlin is a well-developed area with regular
governmental street cleaning, thus the detection probability of
carcasses across the whole area and throughout the study period
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FIGURE 1 | Study area and buffers to derive the landscape variables. The Figure shows different land use structures and the locations of the fox carcasses

discovered between 2008 and 2013 in Berlin, Germany (black dots). The red framed detailed inset shows the area covered to analyze different spatial resolutions of

the landscape variables; i.e., 28 ha (r = 300m), 78 ha (r = 500m), and 314 ha (r = 1,000m) areas at the carcass finding locations.

was similar, and all found foxes are sent to the state laboratory
(StrRein, 1979). Fox carcasses were found across the whole city
except for forested areas where dead foxes remained hidden. We
used various information associated with each carcass: finding
location of the carcass, finding date, sex, age, cause of death
(COD), and CDV serological status (i.e., presence or absence of
CDV antibodies). The age of the foxes was determined based on
dental appearance, and individuals were classified as “juvenile”
(age <12 month) or “adult” (age >12 month) based on dentition
changes and abrasion. To detect CDV antibodies in foxes the
state laboratory used a direct immunofluorescence test (see
Supplementary Material “S1 Description of lab methods”). A
positive test result indicates seroconversion and thus previous
exposure of the animal to CDV (Elnekave et al., 2016). All
records providing an exact location (i.e., including the street

name, the house number and postcode) were geocoded using
the online tool GeoVisualizer (http://www.gpsvisualizer.com/
geocoder/). Incomplete records (28 carcasses) were excluded,
resulting in a final data set of 785 (see Data Sheet 1) carcasses.
The specified GeoVisualizer source was “MapQuest Open”
to obtain geographic WGS84 coordinates. In 2008 no age
assessment was done by the laboratory, hence these data were
excluded from all analyses demanding the incorporation of age.

Landscape Structure Data
To derive landscape variables we used land use maps of
Berlin (SenSW, 2010) and Brandenburg (LfU, 2015). As all fox
carcass records were within Berlin’s administrative boundary
we focused our analysis on the administrative boundary plus a
4 km buffer area to handle findings close to the administrative
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boundary. Both maps were intersected to obtain a topologically
correct map of the study area (Berlin plus 4 km buffer zone
from Brandenburg area). Based on this map we reclassified all
occurring land use structures (752 categories) into 12 land use
structures (see Figure 1) typical for urban areas and meaningful
for urban foxes (Harris, 1977; Harris and Rayner, 1986; Janko
et al., 2012; Börner, 2014): (1) arable land, (2) inner-city blocks
(typical Berlin apartment houses), (3) forest, (4) private green
space (gardens, allotments, camping sides), (5) industrial area
(warehouses, power plants), (6) public building (schools, train
stations), (7) urban green space (parks, botanical gardens),
(8) streets, (9) detached houses (villa, leisure residence) (10)
water bodies (rivers and lakes), (11) railway tracks (railway
sidings and embankments), (12) brownfields covering unbuilt
and anthropically unused areas.

Georeferenced carcass finding locations indicate the
individual’s death location; thus, we assigned a wider area
(buffer) to each location to capture the possible land cover
structures an individual might have used shortly before dying.
In literature, home ranges—the area an animal uses during
lifetime—of urban foxes differ from 25 to 78 ha (Harris, 1980;
Gloor, 2002; Janko et al., 2012). Consequently, buffering was
done at three different scales to identify the optimal spatial
resolution of the landscape variables (Figure 1). We selected
28 ha, (300m radius) and 78 ha (500m radius) sized buffers
reflecting literature findings (see above). In addition, a coarse
resolution buffer of 314 ha (1,000m radius) was selected due
to preliminary results of an ongoing GPS telemetry study of
foxes in Berlin (Sophia Kimmig, personal communication). All
environmental variables (twelve land use structures and three
landscape heterogeneity indices) were extracted for all locations
of fox carcasses and at all spatial resolutions. We calculated
the proportional share for each of the land use structures and
calculated three landscape heterogeneity indices: (1) Shannon
index, (2) Pielou’s evenness, and (3) landscape structure richness
to estimate land use heterogeneity for each location using the
following formulas:

1) Richness: [S] is the count of land use structures at each
location.

2) Shannon index: H = −
∑S

i=1 ρi log
(

b
)

ρi with [ρi] being
the proportion of the land use structures[i], [S] the number of
land use structures and [b] the base of the logarithm.

3) Pielou’s evenness: J = H
log(S) with [H] the Shannon index and

[S] the richness.

Statistical Analysis, Model Selection and
Evaluation of the Disease Seroprevalence
Models
The workflow is pictured in Figure 2 and described below.

Fitting the Candidate Disease Seroprevalence Models
To find a final model predicting serostatus of CDV in foxes based
on urban landscape structures and individual-level information,
we compared sets of twelve candidate models (see Figure 2V)
testing our hypotheses using multi-model inference based on
AICc to maximize predictive power while controlling for model

complexity (Symonds andMoussalli, 2011).We usedGeneralized
Linear Mixed-Effects Models using the Laplacian approximation
to the deviance (Bates et al., 2015) to correlate the landscape
structure variables and CDV seroprevalence (presence vs.
absence of CDV antibodies; seropositive= 1 vs. seronegative= 0)
over the course of time, ignoring unlikely but possible method
related errors (see Supplementary Material Description S1). To
control for individual-level information effects, we used the
covariates sex (female/male), age (juvenile/adult), cause of death
(COD) (roadkill, n= 260 deliberately killed (no reason reported),
n = 100 perished from disease or trauma, n = 149), their 3-
way interaction and the random effect of administrative district
(twelve levels). The random effect “administrative district” was a
priori selected to capture social as well as historic developmental
differences of the administrative districts in Berlin. The cause
of death (COD) was included to control for the spatial pattern
of roads in mortality while testing for the effect of landscape
elements on CDV presence. For the level “perished from other
disease or trauma” of the variable COD, the specific fatal
disease was not reported. As age was not recorded in 2008,
and occasionally not recorded afterwards, we had to drop 275
observations. From here onwards “whole study period” stands
for the period from 2009 to 2013. Then we applied a four-fold
partitioning to the data (n = 509) to obtain test (25%) and
training (75%) datasets to assess the model’s goodness of fit or
discriminative ability, respectively (Area Under the Curve or
AUC), leaving 382 observations to train the model. Assuming
a necessary minimum of ten records for each factor level of a
parameter the categorical fixed and random effects consumed 330
observations, leaving space to include four numeric landscape
variables such as share of urban green space or landscape
structure richness while avoiding overfitting. Thus, we created
twelve ecologically different candidate models and compared the
predictive power to obtain one final model offering the highest
predictive power (see below). All numeric landscape variables
were scaled around the mean and divided by standard deviation
for easing model convergence during fitting.

Grouping and Selecting of Numeric Variables
We grouped all twelve landscape structure variables and the
three landscape metrics by their ecological meaning and
assigned them to one of the following ecological groups: (1)
landscape metrics, (2) share of wildlife friendly area and (3)
share of wildlife hostile area. More specifically, (1) “landscape
metrics” consists of landscape structure richness, landscape
structure Shannon index, landscape structure Pielou’s evenness,
(2) “blue/green infrastructure” of share of brownfields, private
green space, water bodies, forest, railway tracks, urban green
space, arable land and (3) “gray infrastructure” of share
of industrial area, public buildings, detached houses, inner-
city blocks, streets. Additionally we created (4) a “combined
model”. The combined model was built by selecting the one
landscape structure variable providing the highest predictive
power out of the ecological groups one to three. To compare
the predictive power of all landscape structure variables we
fitted single-variable models (Figure 2III; formula in R language
see Supplementary Material S2) at each spatial resolution (300,
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FIGURE 2 | Workflow of the data analysis.
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500, and 1,000m). The predictive power was assessed by AICc
computation as described below.

Spatio-Temporal Autocorrelation, Nonlinearity and

Correlation of Predictors
First, we tested for spatial and temporal autocorrelations in
model residuals (Hartig, 2017). The administrative district
was used as random effect and therefore a test for spatial
autocorrelation non-significant. Second, we used the fixed
effect observation day (the number of days since the first
carcass was recorded) as integer covariate to handle temporal
autocorrelation. The test for temporal autocorrelation became
non-significant when observation day was included. Third,
we fitted Generalized Additive Models (GAMs) to visually
examine potential nonlinearity between predictor and response
variable (see Supplementary Material Figure S3a). When the
plots indicated some nonlinear second order relationships, we
included the quadratic term of the given numeric predictor
variable in each fitted model. Fourth, among the land use
structures used in a given candidate model, no correlations were
detected, but the Shannon index correlated with richness and
evenness; thus we included only richness and evenness to handle
collinearity (see Figure S5a).

Predictor Selection and Simplification of all Twelve

Candidate Disease Prevalence Models
Here we applied a two-step procedure. First, we reduced the
number of separate predictors within each of the three ecological
groups of predictors (landscape metrics, share of wildlife
friendly area and share of wildlife hostile area) by selecting
the four most promising variables by fitting single predictor
models (Figure 2IV, Supplementary Material Description S2,
as described above but using only one numeric predictor) and
assessing the predictive power of the resulting model using AICc
(see Table S4a). To assess the change in predictive power due
to the inclusion of numeric predictors, we compared all single
predictor models to a null model (no fixed effects) and a model
entailing only categorical predictors (individual-level variables as
control). We selected the four predictors resulting in the lowest
model AICc in each of the three ecological groups and tested
Spearman’s rank correlation coefficient (Wei and Simko, 2016)
(see Figures S5a.1–S5a.12). The four best (lowest AICc) and not
correlating predictors were refitted in one model entailing up
to four numeric variables (Figure 2V). Additionally, we fitted
a fourth combined model. The combined model was built by
combining the one predictor providing the lowest model AICc of
each ecological group and fitting all three within one model (see
Table S6a candidate model list). These four models were fitted
three times, each time using variables derived in another spatial
resolution (28, 78, and 314 ha). Consequently, we got a set of
twelve models.

Second, we applied a multi-model inference procedure
(Figure 2VI), at it we retained the single predictor variables
while the “variable importance” (Barton, 2016; number of models
including the variable divided by the number models excluding
the variable out of the best set of models, identified by delta AICc
<10) was calculated for interactions and 2nd order polynomial;

terms having a value below 0.6 were dropped to optimize the
predictive power of each model (Barton, 2016) (final model
configuration see Table 1). Across all twelve fitted models we
compared AICc and selected the model with the lowest AICc. For
thismodel we computed the AUC (Figure 2VII) and reported the
model formula as final predictive model (Figure 2VIII).

Modeling the Infection Period
Due to the longitudinal pattern of the recorded seropositive foxes
(Figure S7) and because we had complete individual-level data
(“age” variable) from foxes only since 2009 (Figure S8) when
the disease had already started spreading, we could monitor the
beginning of the disease spread only fromApril 2012 to July 2013.
Hence, we modeled the second infection period again separately.
To do so, we applied the whole procedure described above to a
subset of the data gathered from April 2012 until July 2013 (see
Supplementary Material S3b–S6b).

Identifying a Final Predictive Model, Assessing the

Predictor Effects and Plotting of the Results
To obtain one final predictive model, we compared the results
of the model assessments of both modeling approaches for (1)
the whole period (2009–2013) and (2) the second infection
period (2012–2013). The landscape metrics model at 28 ha
spatial resolution was among the best (delta AIC <4) models
for both analyses (see Table 1), i.e., the whole data analysis and
the analysis restricted to the second infection period. Thus, we
selected this model as final prediction model and reported the
predictor configuration in Table 2. Statistical significance of the
predictor variables retained during the multi-model inference
procedure was derived by applying an ANOVA Type II (Fox
and Weisberg, 2011). To visualize the interactions, we plotted
the estimated effects of all sex/age categories and predicted the
probability of finding seropositive individuals due to landscape
variables in the area of of Berlin (Fox and Hong, 2009; Hijmans,
2017).

Assessing of the Temporal Pattern
To assess the longitudinal disease spread i.e., the effect of
time on the relationship of CDV seroprevalence and landscape
variables, we introduced the interaction of study day and all
other predictors in our final model and assessed the significance
applying an ANOVA Type II (Fox and Weisberg, 2011). Hence,
the slope (serostatus vs. landscape structure) could vary during
the course of time.

Prediction Map
Based on the final model for the whole period we predicted
the probability of seropositivity across the whole area of Berlin.
The prediction was based on the configuration of the landscape
variables. The new values for each variable were obtained from
raster images having a spatial resolution of 28 ha.

RESULTS

CDV seropositive samples showed local clustering in different
years (Figures 1, 3). The landscape variables showed distinct
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TABLE 1 | Comparison of candidate models.

Model (Jan 2009–July 2013) AICc Delta Model (Sep 2012–July 2013) AICc Delta

300 m Landscape metrics model 259.74 0 300 m Landscape metrics model 135.69 0

300 m Gray model 266.27 6.53 300 m Gray model 137.62 1.93

1,000 m Combined model 267.57 7.83 1,000 m Green/blue model 137.96 2.27

300 m Combined model 268.15 8.41 300 m Green/blue model 139.3 3.61

1,000 m Green/blue model 268.48 8.74 300 m Combined model 140.63 4.93

300 m Green/blue model 270.88 11.13 1,000 m Combined model 141.32 5.62

1,000 m Landscape metrics model 273.27 13.53 500 m Green/blue model 146.79 11.09

500 m Landscape metrics model 274.95 15.21 1,000 m Gray model 148.12 12.42

500 m Green/blue model 276.34 16.6 1,000 m Landscape metrics model 148.44 12.75

1,000 m Gray model 276.62 16.88 500 m Combined model 150.34 14.65

500 m Combined model 282.85 23.11 500 m Landscape metrics model 153.89 18.2

500 m Gray model 284.09 24.35 500 m Gray model 155.99 20.3

Italic writing means delta AIC > 4.

TABLE 2 | Variable configuration of final prediction models (landscape metrics).

Period Res. Model Variables 2nd order term Interactions

2012–2013 300 Landscape metrics (1) Age

(2) Sex

(3) Cause of death

(4) Evenness

(5) Richness

(6) Close-to-nature areas

(7) Study day

– (1) Sex: Age

(2) Age: Evenness

(3) Age: Close-to-nature areas

2009 −2013 300 Landscape metrics (1) Age

(2) Sex

(3) Cause of death

(4) Evenness

(5) Richness

(6) Close-to-nature areas

(7) Study day

(1) Study day

squared

(1) Age: Close-to-nature areas

(2) Sex: Richness

“Res.” stands for spatial resolution (in meter).

spatial distribution patterns such as high proportions of close-
to-nature areas at the administrative boundary (Figure S9). In
the analyzed fox samples the sex ratio was 0.8 (170 females vs.
214 males) and the ratio of adults to juveniles was similar in
both sexes (∼1.63) (Figure S10). For all analyzed individuals, the
proportion of CDV seropositive animals was higher in adults of
both sexes than in juveniles (Figure 4).

The comparison of twelve candidate models across all
ecological groups and spatial resolutions identified the landscape
metrics model with variables derived at 28 ha (r = 300m)
resolution as the most powerful predictive model (Table 2). The
result holds for the analysis of the whole study period from
Jan 2009 to July 2013 (AUC = 0.92; delta AIC 2nd ranked
model = 6.53) and the separately analyzed second infection
period from April 2012 to July 2013 (AUC= 0.90; delta AIC 2nd
ranked model= 1.93).

The ANOVA Type II of both models showed [see (1a)
and (2) in Table 3, Table S11] (1) a significantly higher
proportion of seropositive individuals among adults than
juveniles (Chisq. 2009-2013= 8.01; P 2009–2013= 0.005, Chisq.

2012–2013 = 6.21; P 2012–2013 = 0.013), (2) that foxes killed in
a car accident were least seropositive (Chisq. 2009–2013= 39.20;
P 2009–2013 = <0.001, Chisq. 2012–2013 = 19.07; P 2012–
2013 = <0.001) and (3) that juveniles but not adults were more
often seropositive when the share of close-to-nature habitats
increased (Chisq. 2009–2013 = 8.43; P 2009–2013 = 0.004,
Chisq. 2012–2013 = 7.01; P 2012–2013 = 0.008). The temporal
pattern was a second order polynomial peaking at the beginning
and the end of the study period when modeled from 2009 to 2013
(Chisq. Study day = 72.39; P Study day = <0.001; Chisq. Study
day∧2= 78.23; P Study day∧2= <0.001) and a linear, increasing
relationship when the second infection period—from 2012 to
2013—was modeled separately (Chisq. Study day = 17.81; P
Study day= <0.001).

Detailed view of the landscape structures driving spatial
heterogeneity in CDV seroprevalence of urban foxes (Figure 5,
Table 3, Table S11), showed that the number of positive juvenile
foxes was lower with low shares of available close-to-nature
habitats (Chisq. = 8.43, P = 0.004). In adult foxes this effect
was not found (Chisq. = 3.36, P = 0.07). In females, CDV
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FIGURE 3 | Spatiotemporal distribution of seropositive and seronegative fox carcasses in Berlin and the administrative districts (gray polygons).

seroprevalence only tended to be higher with high richness
of landscape structures (Chisq. = 3.25, P = 0.07, Table 3;
Effect size = 0.61 ± SE 0.34, Table S11). The random effects
showed slight differences (variance 0.029, standard deviation
0.17). Compared to fixed effects the random effects did not
contribute substantially in explaining the variance of the data
(marginal R² = 0.707, conditional R² = 0.709). Fitting the
model with (A) and without (B) COD did not change the
results. (A) No COD variable, Interaction age-suitable landscape:
Estimate = 1.16, P = 0.003; (B) With COD variable, Interaction
age-suitable landscape: Estimate = 1.23, P = 0.004. Moreover by
dropping COD from the model the AUC changes from 0.92 to
0.88.

The separate analysis of the reinfection period from 2012 to
2013 showed similar patterns but at a higher temporal resolution.
Hence, it was possible to describe an interaction of sex and age
(Chisq. = 0.54, P = 0.02), by which the number of seropositive
juveniles exceeded the number of seropositive adults in males
(Table S11). The remaining interaction of juveniles and evenness
indicates that more seroprevalence positive foxes were found in
more even landscapes (Table S11). Juvenile females responded
somewhat delayed and at a lower level than the other classes of
foxes (Table S11).

The added interaction of study day and all other predictors
in our final model was significant for share of close-to-nature
area (Chisq. = 4.39, P = 0.036). Hence, the effects of landscape
structures changed over time, showing an increasingly steep slope

FIGURE 4 | Relative proportions of CDV seropositive and negative foxes by

sex and age.

during times when many foxes were found [see model (1b) in
Table 3, Figure S12]. That means that seropositivity, which in
juveniles most likely is infection, is significantly bound to the
share of close-to-nature areas. The change over time in addition
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TABLE 3 | ANOVA (Type II Wald chi square tests) table: landscape metrics models

(1a) Jan 2009–July 2013, (1b) Jan 2009–July 2013 with study day interaction and

(2) Apr 2012–July 2012.

Variable Chisq. Df Pr(>Chisq.)

(1a) MODEL 2009–2013

Age 8.01 1 0.005 **

Cause of death 39.50 2 <0.001 ***

Evenness 0.15 1 0.704

Richness 1.34 1 0.247

Close-to-nature areas 3.36 1 0.067 .

Study day 71.39 1 <0.001 ***

Study day∧2 78.23 1 <0.001 ***

Sex 0.48 1 0.491

Age: close-to-nature areas 8.43 1 0.004 **

Richness: Sex 3.25 1 0.071 .

(1b) MODEL 2009–2013 WITH STUDY DAY INTERACTION

Age 6.43 1 0.011 *

Sex 1.05 1 0.307

Cause of death 39.38 1 <0.001 ***

Evenness 0.02 1 0.888

Richness 1.37 1 0.242

Close-to-nature areas 2.03 1 0.154

Study day 55.94 1 <0.001 ***

Study day∧2 62.67 1 <0.001 ***

Age: close-to-nature areas 5.56. 1 0.018 *

Sex: richness 2.89 1 0.089 .

Sex: study day 0.16 1 0.692

Age: study day 2.14 1 0.144

Evenness: study day 2.59 1 0.108

Richness: study day 1.12 1 0.290

Close-to-nature: study day 0.001 1 0.972

Age: close-to-nature: study day 4.39 1 0.036 *

Sex: richness: study day 2.656 1 0.103

(2) MODEL 2012–2013

Age 6.21 1 0.013 *

Cause of death 19.07 2 <0.001 ***

Evenness 2.67 1 0.102

Richness 0.07 1 0.789

Study day 17.81 1 <0.001 ***

Close-to-nature areas 1.25 1 0.264

Sex 0.89 1 0.346

Age: sex 0.54 1 0.020 *

Age: evenness 0.54 1 0.461

Age: close-to-nature areas 7.01 1 0.008 **

Signif. codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “.” 0.1 “” 1.

means that this represents the wave of infection spreading
through these areas, and can be interpreted as a density-
dependent process of transmission, because we can assume that
fox density and contact is especially high in close-to-nature areas
within the urban matrix. The prediction for the first infection
peak had high errors, which were clearly lower during the second
infection period (Figure S12).

The predicted time series (Figure 6) for adults and juveniles
shows the temporal pattern very well, as the probability of being

CDV seropositive was lowest in April 2011 in juveniles and
adults. The probability for adults was almost even in space,
but the probability for juveniles showed a clearly higher spatial
heterogeneity with highest probabilities in the north, west and
south-east of Berlin. The overall effect could be quantified, as the
standard deviation across the map is much higher for juveniles
compared to adults (e.g., in 2009: SD juveniles 0.29 vs. SD adults
0.05). The spatial patterns were strongest in times with a high
seropositive rate (>50%) of the sampled individuals probabilities
in 2009 and 2013.

The prediction map (Figure 7) shows areas with high or
low seroprevalence in distinct landscape structures at a 28 ha
(r = 300m) spatial resolution. We identified areas close to large
and homogeneous structures and water bodies as areas having the
highest probability of CDV seropositive foxes (Figures 1, 7). In
particular, forest edges close to water bodies showed probabilities
above 0.8.

DISCUSSION

We showed that a model including the share of close-to-
nature habitats, landscape structure richness, landscape structure
evenness, sex and age was the best in predicting CDV
seroprevalence of urban foxes in Berlin. The probability to be
CDV seropositive dropped by 66% for juvenile females (from
0.6 to 0.2) while the share of close-to-nature habitats dropped
from 60 to 20%. Juvenile males showed a similar response,
yet of lower magnitude. A landscape effect limited to juvenile
foxes is likely, as CDV is known to infect mostly juveniles
in several host species (Haas et al., 1996; Cleaveland et al.,
2000), which then either recover and develop lifelong immunity
(Greene, 2013) or die within a short period (Almberg et al.,
2009). Hence, many seropositive adult foxes in this study were
likely exposed to CDV as juveniles. This is supported by the
fact that we observed a 30% higher CDV seroprevalence in
adults than in juveniles, and that seroprevalence of adult foxes
was independent of all tested landscape structure variables.
Moreover, most foxes disperse in their second year of life
(Harris and Trewhella, 1988), hence the majority of juveniles
in our study (age <12 months) died in the areas where they
lived their whole lives. The adults may have already dispersed,
which most likely explains effects of the local landscape being
restricted to juvenile foxes. Because of this specific infection
process and dispersal behavior, similar results are to be expected
when analyzing samples from foxes trapped alive instead of
carcasses. Given the high effort required to capture foxes in
Berlin (only 20 foxes could be captured in 4 years of continuous
sampling effort as reported from another ongoing project),
analyzing carcasses provides an interesting alternative in terms
of sample size and hence power to detect spatial distribution
patterns.

Harris and Trewhella (1988) showed that juvenile foxes born
closer to the city center were older at time of death. Hence,
they survived longer in an urban environment. They did not
discuss this result, but several studies suggest increased fitness
benefits in urban areas due to a high resource availability, a low
hunting pressure and an absence of large predators as possible
explanations (Cavallini, 1996; Contesse et al., 2004; Börner,
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FIGURE 5 | Landscape-seroprevalence relationship during the course of the study. Top: bar plot on showing the number of analyzed fox carcasses and the

proportion of CDV seropositive foxes (raw data is presented in Figure S7, S8). Bottom: bottom row shows the modeled relationship of probability of CDV

seroprevalence (y-axis) and the landscape structure richness in April of each analyzed year (x-axis).

FIGURE 6 | Map of predicted probability of CDV seropositive foxes from April 2009 to April 2013. The top row of plots shows adults (AD) the bottom row shows the

pattern for juveniles (JUV). The color gradient indicates the probability of finding a seropositive fox based on landscape variables. SD stands for standard deviation and

indicates the spatial variability of each prediction map.

2014). Here, we reveal that juvenile foxes in areas with high shares
of built-up areas had a lower exposure to CDV. Consequently, the
absence of diseases or the reduced risk of disease transmission
due to spatial isolation may be another factor contributing to
increase the fitness of foxes in strongly urbanized areas.

We showed that areas providing low shares of close-to-nature
habitats harbor less locally seroconverted foxes, i.e., juveniles
younger than 1 year. A decreasing share of close-to-nature
areas corresponds to an increasing share of physical barriers.
This result may thus indicate that artificial physical barriers
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FIGURE 7 | Map of predicted probability of CDV seropositive foxes (adults and juveniles) in Berlin during an epidemic in July 2013. The pixel color indicates the

predicted seroprevalence based on landscape structures (bluish = low probability; yellowish = high probability; gray = forest areas, where no data was available). Dots

represent fox carcass locations (red = seropositive, white = seronegative). Blue areas indicate water bodies. The black line is the administrative boundary of Berlin.

could have reduced contacts among foxes and between foxes
and other species in our study area, and therefore impaired
CDV transmission. Such an effect of a landscape barrier, e.g., a
river, separating not only populations but also impairing disease
transmission, was shown for rabies in raccoons (Rees et al., 2008).
This is a pattern well-grounded in the literature, as contact rate is
a major driver of disease spread in directly transmitted diseases
of mammals (Brearley et al., 2013). In addition, urban areas are
resource-rich habitats supporting generalist mammals such as
foxes (Cavallini, 1996; Contesse et al., 2004; Börner, 2014). In
other terms, in resource rich urban areas an increasing degree of
isolation might create refuge habitats preventing disease spillover
from other individuals or other species for generalist species
such as foxes. In the future, intra- and inter-specific disease
transmission within these habitats needs to be addressed in detail
to identify mechanistic relationships.

Rentería-Solís et al. (2014) showed that foxes and raccoons are
infected by closely related CDV strains. Interestingly, raccoons
use predominantly close-to-nature habitats such as forests
(Frantz et al., 2005). A major CDV epidemic of Berlin’s raccoon
population occurred between December 2012 and May 2013
(Rentería-Solís et al., 2014), simultaneously with the second
epidemic of Berlin’s foxes (December 2012–May 2013). We
did not investigate interspecies transmission, but these findings
raise concerns about the risks of interspecific transmission
of CDV, and whether or not raccoons and foxes can infect
each other. Interspecific transmission is possible, because it is

known that CDV infects a wide and increasing range of host
species (Appel and Summers, 1995; Roelke-Parker et al., 1996;
Harder and Osterhaus, 1997; Deem et al., 2000; Frölich et al.,
2000; Pomeroy et al., 2008; Beineke et al., 2015; Martinez-
Gutierrez and Ruiz-Saenz, 2016) and spontaneous transmission
to novel host species is known to occur (Harder and Osterhaus,
1997; Martinez-Gutierrez and Ruiz-Saenz, 2016). Spontaneous
interspecific transmission between foxes and raccoons during the
second infection period would explain the areal distribution of
seropositive foxes compared to the patchy pattern during the
first CDV spreading period in Berlin’s foxes in 2008. Agonistic
interactions among dogs (Canis familiaris) and indian foxes
(Vulpes bengalensis) are assumed to be a major driver of
transmission of virulent diseases such as CDV, as both species
can host the same viruses and viral strains (Belsare et al., 2014).
Moreover, CDV can persist for several days without a host in cold
environments (Deem et al., 2000). Whether consecutive visits of
foxes and/or raccoons in the same area lead to additional inter- or
intra-specific infections is yet unknown and hard to prove in the
field. However, surveillance and disease control actions targeting
CDV in urban landscapes must include at least foxes, raccoons,
and pet dogs, if not many more unknown host species, and such
actions should be tailored to the home range of all hosts.

The observed effects of the covariate “age” is in line with
our expectation. Whereas seropositive adults are most likely
individuals that got infected as juveniles, a large share of
seropositive juveniles may represent locally seroconverted and
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newly infected individuals. This applied especially well to the
second infection period (2012 to 2013), as we did not record
any incidence of CDV in foxes between mid-2010 and mid-
2012. Most juveniles disperse in their second year (Harris and
Trewhella, 1988); a gap of 2 years should be sufficient to underpin
the assumption that seropositive juveniles recorded between late
2012 and mid 2013 were infected locally.

Finding the optimal spatial resolution to study patterns on
the ecosystem level is challenging but important to understand
and interpret emerging patterns, as there is not one spatial
resolution suiting all ecological phenomena (Levin, 1992).
However, few studies (13 out of 98) assessed the impact of
multiple spatial resolutions on disease spread within the same
study (Meentemeyer et al., 2012). We showed that landscape
variables derived in a circle covering 28 ha (radius 300m)
around the carcass finding places provided the highest predictive
power compared with coarser spatial resolutions (78 ha or
314 ha). Home ranges of foxes vary between 25 ha and 78
ha in urban areas (Harris, 1980; Gloor, 2002; Janko et al.,
2012). Rural foxes (Henry et al., 2005) and preliminary results
of a telemetry study on movement of urban foxes in Berlin
point on larger home ranges of up to 310 ha (Sophia Kimmig,
personal communication). Thus, the selected resolutions 28 ha
(300m radius), 78 ha (500m radius), and 314 ha (1,000m
radius) covered the known variation of home ranges in foxes.
Finding the highest resolution as most informative is in line with
the literature as environmental data at high spatial resolution
(very precise) is most effective to capture the occurring spatial
heterogeneity and therefore predicts animal distribution well
(Rocchini et al., 2015). Linking the home range size and disease
distribution does come naturally, as the home range limits the
physical presence and thus the spatial distribution in which an
individual may distribute any sort of disease (Pleydell et al.,
2004). Here, using previous knowledge about the home range
size to determine the studied spatial scale improved the predictive
power. Consequently, we demonstrated that linking home range
size and spatial resolution of environmental parameters is an
effective method to improve the power of a predictive model.

The significant interaction of study day and close-to-nature
areas for juvenile foxes indicates that the landscape effect is not
persistent per se. The magnitude of this effect was stronger when
disease incidence and host density were highest. Indeed, the
strongest effects of the landscape were recorded in 2009 and 2013,
when most individuals as well as the highest CDV seroprevalence
were recorded. This result is in line with theory, as high wildlife
densities increase intra- and inter-specific disease transmission
(Cleaveland et al., 2000; Ditchkoff et al., 2006; Almberg et al.,
2009). Thus, if a host carries a disease into an area with high
population density—as we expect in our study region in 2009 —
the disease might spread quickly in the areas with the highest
individual densities. On the other hand, if population density
and contact rates are low disease transmission may not occur
by direct transmissions, but indirectly through traces in the
landscape as individuals with adjacent home ranges visit the
same places occasionally. This seems applicable to territorial
urban foxes as home ranges overlap slightly (Harris, 1980; Adkins
and Stott, 1998) and determine the individual occurrence and

the spatial distribution (Pleydell et al., 2004). However, such
a theory is speculative until disease transmission, population
density and landscape structure are all analyzed simultaneously
at a high temporal resolution in one area. We could not conduct
such an analysis as we lack data on population density and a
high spatiotemporal resolution. Such studies are very difficult
to conduct but important to identify causal relationships to
understand how disease outbreaks shape the spatial distribution
of urban mammals, as mentioned in the literature (Baker et al.,
2004). Understanding disease spread is increasingly important
as the number of zoonotic diseases from wild animals tend to
increase (Bengis et al., 2004). Moreover, proximity of wildlife and
humans make zoonoses or exchange of diseases among pets and
wildlife more likely, particularly in urban areas (Adkins and Stott,
1998; Ditchkoff et al., 2006). To understand and manage disease
spread, environmental effects cannot be neglected. Especially,
as diseases such as CDV can persist for several hours/days
without a host in the environment (Deem et al., 2000). In
urban environments, close-to-nature areas in direct proximity to
water bodies are typical animal dispersal corridors and human
recreation areas. Predictive models, as the one presented here,
help to identify specific places having a high infection risk
independent of a current epidemic. We created a prediction map
based on landscape structure indicating areas of high probability
of finding a seropositive fox. Such areas were situated close
to water bodies and large continuous close-to-nature habitats,
the common dispersal corridors of urban mammals (Beninde
et al., 2015). Hence, surveillance and disease control actions
such as vaccination should be focused on individuals inhabiting
these areas. Predictive models as the one presented here are of
paramount importance to guide landscape management and to
identify areas supporting a high CDV risk. Preventive actions
may be necessary, as rapidly spreading diseases such as CDV are
hardly manageable when locally spreading (Stubbe, 1980; Appel
and Summers, 1995; Harder and Osterhaus, 1997; Bradley and
Altizer, 2007; Williams and Barker, 2008; Rentería-Solís et al.,
2014).

The importance of the urban structural landscape variables
for assessing the risk of finding seropositive juvenile animals,
i.e., the potential disease spreaders, needs to be validated by
application to fully independent data of another study region
to prove transferability, as responses of host-pathogen systems
to landscape effects are very diverse and not consistent across
species and regions (Brearley et al., 2013). Moreover, predictive
power and accuracy may be further increased by incorporating
data about population density, resource distribution and
individual fitness. While the latter seems to be very difficult
to assess, incorporating the first two may be possible in due
time as high-throughput DNA sequencing, camera trapping
and remote sensing rapidly becomes increasingly affordable
and highly precise (Bush et al., 2017; Pettorelli et al., 2017;
Wegmann, 2017). Despite lacking these potential methodological
improvements, we could still demonstrate here that an increase of
built-up areas by 40%may reduce the probability of juvenile foxes
to experience CDV within their first year of age by 66%, a result
suggesting a lower CDV infection risk in strongly urbanized
areas.
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