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Soil bulk density (BD), degree of compactness (DC), maximum bulk density (MBD),

and critical water content (CWC) at which MBD is reached are commonly used to

characterize soil compaction, and can be predicted from soil texture and organic

matter content, omitting other components such as sand sub-classes and soil

cementing agents and potential biases such as data redundancy and sub-compositional

incoherence. Compositional data analysis is needed to account for interactions among

soil components and to avoid biases. The aim of this study was to relate soil compaction

indexes to the basic components of coarse-textured soils using unbiased numerical

techniques. Soil samples collected in horizons A and B at 49 sites in Quebec, Canada,

were analyzed for gravimetric water content, BD, particle-size distribution, MBD, CWC,

organic C, total N, Si, Fe, Al, Mn, Mg, and Ca. DC was calculated as the ratio of BD to

MBD. The 14 physical-chemical soil properties were expressed as isometric log-ratios

balances. We conducted principal component analysis to identify the components most

correlated with compaction indexes. We used regression analysis to predict MBD and

CWC, and used linear mixed-effects models to predict BD and DC. The regression

models accounted for up to 83% of total variation in MBD and CWC, and the linear

mixed-effects models explained 58–64% of total variation in BD and DC. BD and

DC were found to decrease with clay content, and increase with larger proportion of

coarser particles. Organic matter content tended to reduce BD and DC, and showed

little effects on MBD. Increasing evenness of sand fractions resulted in a higher MBD

value. Relationships between CWC and soil texture, and between CWC and organic

C were not significant. Mineral cementing agents were the major contributors to soil

compaction indexes. Si, Al, Fe, and Ca oxides increased BD, DC, and CWC, but reduced

MBD. The sensitivity of coarse-textured soils to compaction could be predicted to

support decisions on soil resilience after ripping and on the need to implement corrective

chemical, biological and physical methods such as soil amendments, structure-building

crops or textural mixtures to rebalance soil compositions.

Keywords: cementing agents, compositional data analysis, soil compaction, soil texture, prediction models,
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INTRODUCTION

Soil quality is defined by the chemical, physical and biological
attributes of the top 15 cm (Doran and Parkin, 1996; Boiteau
et al., 2014) down to rooting depth (Spoor et al., 2003). Loss of
soil quality affects crop productivity and thus is a major issue in
intensive production systems. Soil compaction caused by natural
processes (Sanborn et al., 2011) and heavy machines (Alakukku
et al., 2003) is one of the major soil degradation problems
worldwide. Crop yields may drop by average rates ranging from
15% in maize across soil textural groups (Duiker and Curran,
2004; Wolkowski and Lowery, 2008) to 34% in potato grown
in coarse-textured soils (Stalham et al., 2005; Wolkowski and
Lowery, 2008). Potato and maize crops grown sequentially in
coarse-textured soils may therefore suffer considerably from soil
compaction.

Naturally compacted layers are classified as fragipan, placic
horizons, duripan, petrocalcic, petrogypsic, continuous ortstein
(Soil Survey Staff, 2014). Anthropic compaction results in soil
air space reduced to <10% by heavy machines and in increased
cohesive forces between particles (Hamza and Anderson, 2005).
An agric or plow pan may form in the arable layer; a “no-till pan”
of high bulk density, low porosity, and highmechanical resistance
may underlie a reduced compaction layer, and overlie a plow pan
(Reichert et al., 2003; Håkansson, 2005). Water storage capacity
increases with depth to pan (Frye et al., 1985). Compacted layers
within 50 cm of the soil surface limit rooting depth (Grossman
and Carlisle, 1969). Rootability is hampered where soil resistance
exceeds 1 MPa for potato and 2–3 MPa for most other crops
(Håkansson and Lipiec, 2000; Stalham et al., 2005).

Several approaches have been developed to measure soil
compaction (Lipiec and Hatano, 2003). Soil bulk density (BD)
is commonly used to characterize the state of soil compaction
(Gupta and Allmaras, 1987). The degree of compactness (DC)
(Håkansson, 1990) is defined as the ratio of (BD) to a reference
(BD) obtained by uniaxial compression at a static pressure of 200
kPa. The Proctor test is a widely accepted procedure applied to
disturbed soils to determine the resistance of agricultural soils to
compaction (Ekwue and Stone, 1995; Thomas et al., 1996; Zhang
et al., 1997) over a broad range of soil water contents under a
standardized dynamic load (Hillel, 2013). Common indexes are
maximum Bulk Density (MBD) under the Proctor test and the
critical water content (CWC) at which MBD is reached (Zhao
et al., 2007). Despite the importance of compaction indexes
for guiding soil management, they are not reported in soil
surveys. Direct measurement of BD requires the collection of
undisturbed soil cores, a procedure considered to be labor-
intensive, time-consuming, and tedious (Suuster et al., 2011).
Measuring MBD and CWC to derive DC is even more difficult
and time-consuming than measuring BD.

Pedotransfer regression functions have been developed to
predict soil BD from soil physical and chemical properties such
as texture, organic matter, total N and pH (Tranter et al., 2007;
Martin et al., 2009; Jalabert et al., 2010), water content (Benites
et al., 2007; Suuster et al., 2011; Brahim et al., 2012), moisture
and packing density (Quiroga et al., 1999; Jones et al., 2003).
However, the variation in MBD has been attributed to changes

in particle-size distribution (Nhantumbo and Cambule, 2006;
Zhao et al., 2008), especially clay and silt contents (Bennie and
Burger, 1988). The CWC was predicted from soil texture and
organic matter content (Aragón et al., 2000). However, particle-
size distribution and soil organic matter can only partially explain
the state of soil compaction.

Cementing agents play an important role in soil compaction
and pore clogging. Cementing agents can enhance aggregate
stability, leading to higher soil shear strength (Yee and Harr,
1977). Dissolved salts, organic acids, hydroxides, and oxides
from secondary minerals (Duiker et al., 2003; Sanborn et al.,
2011), lime, humic substances, hydroxyl-Al polymers, Al and
Ca phosphates and Si3+, Fe3+, Al3+, and Ca2+ compounds
act as cementing agents, whereas K promotes soil dispersion
(Pagé and Berrier, 1983; Haynes and Naidu, 1998). Polyvalent
cations Mn2+, Ca2+, and Mg2+ form cationic bridges with clay
particles and soil organic matter (Lal and Shukla, 2004; Bronick
and Lal, 2005). Hydrophilic oxy-hydroxides, Si-hydroxides,
and amphiphilic humic substances interact in coarse-textured
soils, whose capacity to retain water is low compared to finer
textures (Tschapek, 1984). However, cementing agents are rarely
considered in compaction models.

Furthermore, little attention has been paid to the nature of soil
compositional data and to full compositions. Soil components
are subject to methodological bias if they are not handled as
compositional data (Parent et al., 2012). Compositional data
are proportions of a total such as 100% (Aitchison, 1982),
therefore, components are intrinsically multivariate and related
to each other in a compositional space constrained between
0 and 100%: any change in one proportion must affect the
other proportions. Van Den Boogaart and Tolosana-Delgado
(2006) warned that statistical analyses of compositional data can
be misleading or inapplicable due to systematic negative bias
(one covariance is forced to be negative), sub-compositional
incoherence, redundancy of information (one component can
be deduced by subtracting the sum of the others from 100%),
and non-normal distributions (data and their associated statistics
or predicted values should not range below 0 or beyond 100%).
Soil and plant compositions have been handled statistically
using log ratio transformations (Parent et al., 2012; Parent
L. E. et al., 2013; Parent S. E. et al., 2013). Current soil
compaction research (e.g., Benites et al., 2007; Suuster et al.,
2011; Brahim et al., 2012) does not avoid methodological bias
due to closure and spurious correlations among soil components.
Data transformation using isometric log ratios or orthonormal
balances is the most appropriate to conduct multivariate analysis
on compositional data (Filzmoser et al., 2009).

The objectives of this study were to: (i) express physical-
chemical soil properties using unbiased compositional data
analysis tools; (ii) relate soil compaction indexes (BD, DC,
MBD, and CWC) to the isometric log ratio-transformed basic
components of coarse-textured soils using principle components
analysis and correlation analysis; (iii) predict BD, DC, MBD and,
CWC from orthonormal balances using linear-mixed model and
regression analysis. We hypothesized that combinations of soil
texture, organic matter content, and mineral cementing agents
impact differentially on soil resistance to compaction.
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MATERIALS AND METHODS

Materials
The research area located in the Province of Quebec, Canada
(37◦09′–36◦42′ N; 38◦48′–39◦12′ E). We selected 49 potato farm
sites where crop sequences included potato (Solanum tuberosum
L.), maize (Zea mays L.), soybean [Glycine max (L.) Merr.],
wheat (Triticum aestivum L.), alfalfa (Medicago sativa L.), barley
(Hordeum vulgare L.), and canola (Brassica napus L.). Soils are
classified as Aquents (Entisols), Orthods (Spodosols) and Udepts
(Inceptisols) in the USDA soil classification system (Soil Survey
Staff, 2014). In June and July 2014, 97 large (>20 kg) samples
were collected from 49 horizon A and 48 horizon B to conduct
Proctor tests (ASTM D1557, 2009). Sampling depth varied from
site to site with the development of genetic horizons A and B.
Average sampling depth for horizonAwas 10.5 cm in the range of
4–18 cm. Sampling depth for horizon B was 17–48 cm, averaging
33.4 cm. Soil samples were air dried and then stored at room
temperature. Smaller samples were collected in the center of each
horizon using the cylinder method (Blake and Hartge, 1986).

Soil physical properties included gravimetric water content
(Topp et al., 2007), BD (Blake and Hartge, 1986), particle-
size distribution, MBD (ASTM D1557, 2009), CWC (ASTM
D1557, 2009) expressed on an oven-dried (105◦C) basis, and
DC calculated as the ratio of BD to MBD. Proportions of
coarse sand (0.50–2.00 mm), medium sand (0.25–0.50 mm),
and fine sand (0.05–0.25 mm) were determined by dry sieving;
the proportions of silt (0.002–0.05 mm) and clay (<0.002
mm) were determined using a modified hydrometer method
(Kroetsch and Wang, 2007). Soil chemical analyses were
conducted using <2.00 mm sieved samples. C and N were
quantified by dry combustion (Leco-CNS). Si, Al, Fe, Mn,
Mg, and Ca were extracted using the acid ammonium oxalate
method (Courchesne and Turmel, 2007) and then quantified
by the inductively coupled plasma (ICP) technique. Descriptive
statistics of soil data are presented as raw data in Supplementary
Table 1.

Log Ratio Transformation
Isometric log ratios are orthogonal projections of compositional
data arranged in binary subsets of components displayed in a
sequential binary partition (SBP) (Egozcue et al., 2003). As there
are D-1 degrees of freedom in compositional vectors (Aitchison
and Greenacre, 2002), log ratio transformation techniques
consist of D-1 ILR (Egozcue et al., 2003).

For the 14 soil components, there are 13 ILR variables
designed to represent the BD and DC field (F) files, on the one
hand, and the MBD and CWC Proctor (P) files on the other
(Figures 1, 2). Given that soil gravimetric water content relates
to BD and CWC relates to MBD, F1 was set as the balance
between soil water content and solid components, while P1 was
the balance between CWC for the Proctor test and the solid
components. The F2 and P2 balances contrasted soil organic
matter with mineral components, showing the functional role
of organic matter in soil aggregation. Balances were further
elaborated by associating other groups of particles. The F4 and P4

balances contrastedmineral soil particles withmineral cementing
agents.

ILR is a normalized ratio between geometric means of two
subsets of functional components (tagged “+” for parts in the
numerator and “−” for parts in the denominator), calculated as
follows (Egozcue and Pawlowsky-Glahn, 2006):

ILRi =

√

n+i n
−

i

n+i + n−i
ln
g
(

c+i
)

g
(

c−i
) (1)

where i= 1 toD-1, ILRi is the ith isometric log ratio in the ith row
of the SBP between g

(

c+i
)

and g
(

c−i
)

, geometric means across
components, and n+i and n−i are numbers of components labeled
“+1” and “−1.”

Statistical Analysis and Model
Development
Numerical analyses were performed in the R statistical
computing environment using the compositions package (van
den Boogaart et al., 2014) to transform compositional data
into isometric log ratios, the dplyr package (Wickham and
Francois, 2015) for general data manipulation, the nlme package
(Filzmoser and Gschwandtner, 2015) to develop the linear
mixed model, and the pls package (Revelle, 2014) for principal
component analysis (PCA). We conducted PCA across (1)
sampling depths and the 13 F balances to synthesize factors
affecting BD and DC, and (2) the 13 P balances and 12 P balances
to identify the components most closely related to MBD and
CWC. Correlation analyses were conducted between the selected
principal components (PCs) and compaction indexes (BD, DC,
MBD, and CWC) using site scores (49 sites for the horizon A and
48 sites for the horizon B) of selected PCs.

Both horizons provided a gradient of soil properties to model
BD and DC. The 13 F balances, along with sampling depth in
both horizons, were used to predict BD and DC using the linear
mixed-effects (LME) model as follows:

Y = Xβ + Zb+ ε (2)

where Y is the soil compaction index (BD or DC), X is the
fixed effects including 13 ILR balances, and sampling depth, β is
the fixed-effects vector, Z is the random-effects matrix, b is the
random-effects vector, and ε is the observational error vector.
The site was considered as random effect. To model MBD and
CWC, horizons A and B were separated as different entities
requiring specific diagnoses for planning farm operations using
regression analysis for each horizon. Prediction performance
was evaluated using the Akaike information criterion (AIC)
and the coefficient of determination (R2). The AIC value is
used to compare and classify multiple competing models and to
estimate which is the closest to the “real” process underlying the
biological phenomenon under study (Burnham and Anderson,
2003; Burnham et al., 2011; Symonds and Moussalli, 2011). The
coefficient of determination is the proportion of the variation
that can be explained by the set of predictor variables. Mean
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FIGURE 1 | Sequential binary partition (SBP) of soil components to compute isometric log ratios for bulk density and degree of compactness. SWC, soil water

content; Fs, fine sand; Ms, medium sand; Cs, coarse sand.

FIGURE 2 | Sequential binary partition (SBP) of soil components to compute isometric log ratios for maximum bulk density and critical water content. CWC, critical

water content; Fs, fine sand; Ms, medium sand; Cs, coarse sand.

prediction error (MPE) and root mean squared error (RMSE)
were used to measure the reliability of the models, as follows:

MPE =
1

n

∑n

i=1
(σi − ρi) (3)

RMSE =

√

1

n

∑n

i=1
(σi − ρi)

2 (4)

where σi and ρi are the observed and predicted dependent
variables for the ith measurement, respectively, and n is
the number of observations. The MPE indicates an average

underestimation (positive bias) or overestimation (negative bias)
of dependent variables. For a good prediction, R2 should be as
large as possible, and the AIC value, MPE, RMSE should be as
small as possible (Benites et al., 2007).

RESULTS

Variables Related to Soil BD and DC
The first four PCs explained 71.3% of the total variation in the
variables included in PCA (Table 1). All PCs showed significantly
negative correlations with BD, whereas PC1, PC3, and PC4 were
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significantly and negatively correlated with DC. However, DC is a
more useful compaction index than BD because DC corrects BD
forMBD, an intrinsic soil property reflecting the maximum effect
of machines on the degradation of soil physical quality.

The value and sign of the loadings and correlation coefficients
are a measure of the relationships between the original variables
and soil compaction indexes. The interpretation of loadings in
Table 1 is straightforward. If loadings and correlation coefficients
have the same sign, the relationship between ILR and compaction
index is positive; otherwise, it is negative. ILRs are noted as

[ +1 or numerator group
−1 or denominator group ], hence, larger values in the denominator

lead to more negative numbers in the log scale, and vice versa.
For example, if Al loads more on F12 = [AlFe ], the [AlFe ] balance

increases. If Fe loads more, the [AlFe ] balance decreases, reversing

the relationship between the [AlFe ] balance and compaction
indexes.

The effects of PC1 and PC3 on DC were highly significant
(P < 0.01). The largest loadings in PC1 were F3, F9, F11, F12,
and F13, indicating that DC was positively related to the mineral
cementing agents, especially Si, Fe, Al, and Ca, and positively
related to F3, hence DC was larger where the C/N ratio was
higher. PC3 was primarily influenced by sampling depth, F2 and
F8. DC was significantly higher in horizon B (Supplementary
Table 1). F2, representing the balance between organic and
mineral components, was negatively related to DC. F8, the ratio
between coarse and medium-size sand particles, was negatively
related to DC. The effects of PC4 on DC were also significant
(P < 0.05), being mainly driven by F5, the [CS,MS,FS,silt

clay ] balance,

where larger particles tended to increase DC compared to clay.
In contrast with DC, BD was significantly (P < 0.01) related

to PC2. PC2 was largely influenced by F1, F4, F6, and F7.
F1 was negatively related to BD. F4, reflecting the balance
between mineral soil particles andmineral cementing agents, was
positively related to BD.Where mineral cementing agents loaded
more, BD was lower. F6 and F7 represented coarser particles in
the soil. The higher the proportion of coarser particles, the higher
BD was. BD was influenced significantly, but to a lesser extent, by
PC1 and PC4. Consistent with DC, BD was also positively related
to F5, F9, F11, F12, F13, and sampling depth.

Factors Affecting Soil MBD and CWC
The first four components and their loadings for MBD are
presented in Table 2. The first four PCs explained 77.5 and 72.7%
of total variation in all variables in horizons A and B respectively.
However, the fourth PC was not significantly related to MBD
in either horizon. Mineral cementing agents loaded most on
PC1. The MBD was related negatively to P9, P11, P12, and P13
balances in both horizons. In PC2, the higher proportion of
soil water (P1) and soil organic matter (P2) tended to reduce
MBD in horizon A, whereas the higher proportion of coarser
particles (P5–P7) tended to increase MBD in both horizons. In
PC3, the higher proportion of coarser particles than of medium-
size particles (P8) tended to reduce MBD in horizon A, whereas
the higher proportion of clay than of coarser particles (P5) tended
to increase MBD in horizon B.

The first four components and their loadings for CWC are
presented in Table 3. The first four PCs explained 78.0 and
76.4% of total variation in all variables in horizons A and B
respectively. The four PCs were significantly related to CWC
in horizon A, and only the third PC was significantly related
in horizon B. The CWC was related positively to P9, P11, P12,
and P13 balances involving mineral cementing agents that loaded
most on PC1 of horizon A. PC2 in horizon A revealed that
increasing the proportion of organic matter compared to mineral
solids (P2) increased CWC, whereas coarser particles (P6 and
P7) tended to reduce CWC. PC3 in horizon A displayed a
relatively higher content of coarse sand than of medium sand
(P8), leading to a larger CWC, whereas a higher proportion
of clay than of coarser particles (P5) tended to increase CWC
in horizon B. Since P10 contributed most to PC4 of horizon
A, a higher proportion of sesquioxides (Al, Fe, Mn) than of
divalent cations (Ca, Mg) was positively related to CWC in
horizon A.

Predictive Models for Compaction Indexes

BD and DC
Model coefficients and their significance are presented in
Table 4. The F2, F4, F6, F7, F9, and F12 balances, meaning
organic matter content, particle-size distribution and mineral
cementing agents, significantly influenced BD prediction.
The F1, F4, F5, F9, F10, and F12 balances, meaning soil
gravimetric water content, particle-size distribution and mineral
cementing agents, significantly influenced DC prediction. The
MPE was 0.008 and 0.002 for BD and DC, respectively,
indicating some underestimation of both BD and DC
(Figure 3).

MBD and CWC

Results of the regression model for predicting MBD are as follow:
Horizon A,

MBD = 1.602∗ − 0.102× P1− 0.074× P2− 0.124× P3

+ 0.068∗ × P4+ 0.025× P5+ 0.023× P6− 0.001

× P7+ 0.019× P8− 0.124∗ × P9+ 0.017× P10

+ 0.052× P11+ 0.04× P12+ 0.051× P13

(R2 = 0.826;MPE = −2.72E− 17;RMSE = 0.054), (5)

Horizon B,

MBD = 1.458∗ + 0.001× P1− 0.013× P2+ 0.001× P3

+ 0.028∗ × P4− 0.017× P5− 0.015× P6

+ 0.011× P7+ 0.013× P8− 0.024∗ × P9+ 0.038

× P10− 0.002× P11+ 0.005× P12− 0.034∗ × P13

(R2 = 0.731;MPE = −4.16E− 17;RMSE = 0.040), (6)

Regression models for predicting CWC resulted in the following
equations:
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TABLE 1 | Results of principal component analysis and loadings of component for soil bulk density and the degree of compaction.

Variable PC1 PC2 PC3 PC4

Cumulative proportions

0.270 0.491 0.618 0.713

Component loading

Log(depth) −0.5125 −0.3427 −1.1312 0.5064

F1 = [ soil water content
organic matter, mineral soil particle, mineral cementing agent ] −0.2183 1.1450 −0.6124 0.0363

F2 = [ organic matter
mineral soil particle, mineral cementing agent ] 0.3366 0.5840 0.9889 −0.7084

F3 = [CN ] −0.9907 −0.5542 −0.1475 0.3778

F4 = [ mineral soil particle
mineral cementing agent ] 0.5317 −1.0054 −0.4899 −0.2353

F5 = [CS,MS,FS,silt
clay ] −0.7687 −0.6782 −0.1785 −1.1079

F6 = [CS,MS,FS
silt ] −0.2457 −1.3695 −0.0910 −0.6194

F7 = [CS,MS
FS

] 0.3331 −1.3708 0.4749 0.2847

F8 = [ CS
MS

] 0.4528 −0.5912 0.8395 0.7639

F9 = [ Si
Al,Fe,Mn,Mg,Ca

] −1.4581 0.0846 0.3768 0.2132

F10 = [ Al,Fe,Mn
Mg,Ca

] −0.6257 −0.4927 −0.0349 0.3826

F11 = [ Al,FeMn ] −1.2314 0.4333 0.3024 −0.0619

F12 = [ AlFe ] −1.1530 −0.1505 0.7356 0.1918

F13 = [ CaMg ] −1.3640 0.0698 −0.0868 −0.1876

BD correlation coefficient −0.208* −0.313** −0.536** −0.256*

DC correlation coefficient −0.328** −0.116ns −0.450** −0.350*

Cs, coarse sand; Ms, medium sand; Fs, fine sand; BD, bulk density; DC, degree of compactness.
*, ** Significant at 5 and 1%, respectively.
Ns, not significant (p ≤ 0.05).

TABLE 2 | Results of principal component analysis and loadings for soil properties related to the maximum bulk density.

Variable Horizon A Horizon B

PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4

Cumulative proportions

0.305 0.536 0.666 0.775 0.265 0.496 0.623 0.727

Loadings

P1 [ crtitical water content
organic matter,mineral soil particle, mineral cementing agent ] −0.465 1.004 −0.547 0.158 −0.014 −0.498 −0.843 0.148

P2 [ organic matter
mineral soil particle, mineral cementing agent ] −0.568 0.856 0.071 0.492 0.266 −0.200 −0.090 −1.207

P3 [CN ] −0.580 −0.769 −0.023 0.570 0.729 0.407 −0.058 0.683

P4 [ mineral soil particle
mineral cementing agent ] 0.775 −0.350 −0.682 0.325 −0.589 0.945 −0.311 −0.277

P5 [CS,MS,FS,silt
clay ] −0.572 −0.812 −0.688 0.151 0.483 0.529 −1.061 −0.144

P6 [CS,MS,FS
silt ] −0.061 −1.216 −0.512 0.005 −0.047 1.151 −0.574 −0.109

P7 [CS,MS
FS

] 0.649 −0.966 0.533 −0.027 −0.188 1.289 0.245 −0.106

P8 [ CS
MS

] 0.497 −0.211 0.992 0.539 −0.106 0.763 0.698 −0.147

P9 [ Si
Al,Fe,Mn,Mg,Ca

] −1.227 −0.232 0.351 −0.279 1.245 0.091 0.249 −0.135

P10 [ Al,Fe,Mn
Mg,Ca

] 0.023 −0.088 0.000 −1.200 0.640 0.545 0.179 0.421

P11 [ Al,FeMn ] −1.130 −0.199 0.297 0.334 1.054 −0.307 0.012 −0.425

P12 [ AlFe ] −1.015 −0.268 0.460 −0.293 1.034 0.330 0.369 −0.214

P13 [ CaMg ] −1.151 −0.167 −0.236 −0.029 1.087 −0.049 −0.314 0.238

Correlation coefficient 0.569** −0.513** −0.361* 0.137ns −0.595** 0.384** 0.362* 0.088ns

Cs, coarse sand; Ms, medium sand; Fs, fine sand.
*, ** Significant at 5 and 1%, respectively.
Ns, not significant (p ≤ 0.05).
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TABLE 3 | Principal component analysis and loadings for soil properties related to the critical water content.

Variable Horizon A Horizon B

PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4

Cumulative Proportion

0.325 0.539 0.665 0.780 0.287 0.530 0.653 0.764

Loading

P2 [ organic matter
mineral soil particle, mineral cementing agent ] −0.437 0.915 −0.065 −0.583 0.272 −0.217 −0.435 1.145

P3 [CN ] −0.699 −0.707 −0.347 −0.445 0.743 0.454 0.305 −0.587

P4 [ mineral soil particle
mineral cementing agent ] 0.757 −0.678 0.310 −0.442 −0.605 1.001 −0.180 0.291

P5 [CS,MS,FS,silt
clay ] −0.682 −0.882 0.439 −0.334 0.492 0.637 −1.041 −0.073

P6 [CS,MS,FS
silt ] −0.234 −1.314 0.209 −0.024 −0.052 1.217 −0.521 0.003

P7 [CS,MS
FS

] 0.484 −0.903 −0.708 0.421 −0.198 1.274 0.294 0.180

P8 [ CS
MS

] 0.443 −0.074 −1.224 −0.017 −0.112 0.744 0.945 0.431

P9 [ Si
Al,Fe,Mn,Mg,Ca

] −1.285 0.045 −0.185 0.392 1.269 0.083 0.261 0.205

P10 [ Al,Fe,Mn
Mg,Ca

] −0.001 −0.022 0.497 1.122 0.650 0.511 0.073 −0.494

P11 [ Al,FeMn ] −1.182 0.052 −0.349 −0.243 1.077 −0.303 −0.009 0.472

P12 [ AlFe ] −1.074 −0.027 −0.345 0.509 1.053 0.303 0.340 0.295

P13 [ CaMg ] −1.177 −0.061 0.249 −0.086 1.109 −0.016 −0.265 −0.305

Correlation coefficient −0.370** 0.640** −0.309* 0.303* 0.240ns −0.248ns 0.357* 0.140ns

Cs, coarse sand; Ms, medium sand; Fs, fine sand.
*, ** Significant at 5 and 1%, respectively.
Ns, not significant (p ≤ 0.05).

Horizon A,

CWC = 285.317∗ + 13.026× P2+ 20.038× P3− 11.287∗

× P4− 24.891∗ × P5− 7.596× P6+ 0.776× P7

− 3.150× P8+ 30.057∗ × P9− 8.447× P10

− 14.453× P11+ 8.038× P12− 4.334× P13

(R2 = 0.806;MPE = −1.11E− 15;RMSE = 1.570), (7)

Horizon B,

CWC = 142.044+ 5.236× P2+ 19.934× P3− 3.554

× P4− 3.477× P5− 5.064× P6+ 1.432× P7

+ 0.872× P8+ 13.345× P9− 5.229× P10− 2.772

× P11− 0.455× P12− 8.437× P13

(R2 = 0.306;MPE = 1.48E− 16;RMSE = 2.180), (8)

The R2 values were larger for MBD and CWC in horizon A
and were much lower in the horizon B. The MBD was attained
at specific CWC values depending on soil properties. The MPE
was small. Asterisk (∗) in the equations indicates the significant
variables at P < 0.05. The results suggested a small number
of balances significantly (P < 0.05) affected the prediction of
MBD and CWC. The MBD prediction primarily involved the P4
and P9 balances, which are related to particle-size distribution
and mineral cementing agents. The CWC prediction primarily
involved the P4, P5, and P9 balances. In both cases, mineral
cementing agents proved to be significant components.

The MBD and CWC were closely related to each other in
horizon A only (Figure 4). Therefore, MBD varied widely in

horizon A but did not change significantly with CWC in horizon
B. For a median coarse-textured soil in our dataset, the estimated
MBD was 1.59 g cm−3 for the horizon A and 1.54 g cm−3 for
the horizon B, and the estimated CWC was 205 g kg−1 for the
horizon A and 144 g kg−1 for the horizon B, due to major
differences in composition.

DISCUSSION

Effects of Sampling Depth and Soil
Components on BD and DC
As shown by significant differences in BD and DC between
horizons A and B, the sub-layers were more compacted than
the arable layer for the pressure generated by loading the soil
increases BD values deeper in the soil (Tranter et al., 2007).
Studies have concluded that a small part of the variability in BD
can be ascribed to sampling depth (Calhoun et al., 2001; De Vos
et al., 2005; Heuscher et al., 2005). In the present study, sampling
depth was not an independent variable as it is in most BD andDC
prediction models (Reichert et al., 2009), because sampling depth
is confounded with soil compositions.

Previous research reported that the degree of compaction
mainly depends on soil moisture, texture and organic matter
content (Jones et al., 2003; Hamza and Anderson, 2005;
Dexter et al., 2008). BD has been found to decrease with
higher clay and clay-plus-silt contents which is in agreement
with our result (Kaur et al., 2002; Benites et al., 2007;
Reichert et al., 2009), whereas the effect of medium and
coarse sand on BD varied among soils, regions and horizons
(Calhoun et al., 2001; Kaur et al., 2002; De Vos et al.,
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TABLE 4 | Linear mixed effects models for soil bulk density and degree of compactness.

Effects Bulk density Degree of compactness

Random effect

Site (Z) 2.24E-06 1.18E-06

Residual (ε) 0.0538 0.04945

Fixed effects Value (β) P-value Value(β) P-value

Intercept −0.0861 0.5392 −0.2735 0.0454**

Log(depth) 0.0018 0.9475 −0.0849 0.1932

F1 = [ soil water content
organic matter, mineral soil particle, mineral cementing agent ] −0.0049 0.8129 0.0204 0.0328**

F2 = [ organic matter
mineral soil particle, mineral cementing agent ] −0.0266 0.0369** −0.0001 0.9939

F3 = [CN ] 0.0168 0.6455 0.0182 0.1748

F4 = [ mineral soil particle
mineral cementing agent ] 0.0238 0.0206** 0.0214 0.0134**

F5 = [CS,MS,FS,silt
clay ] 0.0185 0.2003 −0.0201 0.0131**

F6 = [CS,MS,FS
silt ] 0.0203 0.0281** −0.0039 0.6856

F7 = [CS,MS
FS

] −0.0177 0.0464** −0.0074 0.4937

F8 = [ CS
MS

] −0.0019 0.8545 0.0345 0.3048

F9 = [ Si
Al,Fe,Mn,Mg,Ca

] 0.0421 0.0806* 0.0592 0.0096**

F10 = [ Al,Fe,Mn
Mg,Ca

] −0.0254 0.1117 −0.0323 0.0314**

F11 = [ Al,FeMn ] −0.0106 0.5729 −0.0223 0.2026

F12 = [ AlFe ] −0.0572 0.0262** −0.0604 0.0117**

F13 = [ CaMg ] 0.0043 0.7526 0.0019 0.8841

Cs, coarse sand; Ms, medium sand; Fs, fine sand.
*, ** Significant at P < 0.10 and 0.05 respectively.

FIGURE 3 | Model prediction of (A) BD and (B) DC. BD, bulk density; DC, degree of compactness; AIC, akaike information criterion; MPE, mean prediction error;

RMSE, root mean squared error.

2005). Medium sand appeared to increase BD compared to
coarse sand in our coarse-textured soils, in agreement with
previous studies (Suuster et al., 2011). The effect of clay on
DC was found to be negatively related to clay content but
must also depend on organic matter content (da Silva et al.,
1997).

It has been frequently reported that the BD of high-C soils
can be explained by the variation in C content, whereas soil
texture has a major effect on the BD of low-C soils (Manrique
and Jones, 1991; Kaur et al., 2002). Total N showed a negative
relationship with BD and DC (Benites et al., 2007). In the present
study, organic matter content also tended to decrease the BD and
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FIGURE 4 | Relationship between maximum bulk density (MBD, g cm−3) and

critical water content (CWC, 100 kg kg−1). Open and closed symbols refer to

horizon A and horizon B, respectively.

DC of coarse-textured soils, whereas the [ CN ] balance was related

positively to BD and DC. The [ CN ] balance decreases from lighter
particulate organicmatter to heavier fractions associated with soil
mineral particles in agricultural soils (Yang et al., 2012). Total
C thus provided partial information on the real contribution of
organic matter to soil resistance to compaction.

Manrique and Jones (1991) suggested that texture and soil
properties other than organic C play a more significant role in
controlling BD deeper in the soil profile. A large contribution
of water content to subsoil compaction is expected primarily
on coarse- and medium-textured soils and heavy-textured
soils with high shrink-swell potential (Suuster et al., 2011).
The [ soil water content

organic matter, mineral soil particle, mineral cementing agent ] balance

increased DC, facilitating particle rearrangement, whereas soil
gravimetric water content reduced MBD as the soil liquid phase
is of low density and is incompressible.

Conversely, although it represents just a small part of total C,
dissolved organic carbon (DOC)may contribute to the formation
of naturally compacted layers (Sanborn et al., 2011). The main
sources of organic C in subsoils are DOC, plant roots and root
exudates, and organic particulates transported from soil surface
(Rumpel and Kögel-Knabner, 2011). Organic C is a complex key
soil quality index characterized by two major biochemical pools
(Andrén and Kätterer, 1997) and several size fractions (Six et al.,
2002; Stewart et al., 2008; Tong et al., 2014). Hence, total C should
be further split into several C fractions (i.e., light fraction organic
carbon, dissolved organic carbon and particulate organic carbon)
to determine their respective significance in BD and DC models.

Effects of Soil Components on MBD and
CWC
Felton and Ali (1992) found that the addition of organic matter
increased soil porosity and water retention and reduced MBD

as determined by the Proctor test. The effectiveness of organic
matter depended on soil texture and organic matter quality
(Zhang et al., 1997). Organic matter may increase in significance
in cases where living and dead roots provide a more filamentous
network across the soil profile (Soane, 1990). In the present
study, the balance that included organic matter content showed
negligible effect, probably because the range of soil organicmatter
contents was relatively narrow.

Clay content may lead to lower MBD (Smith et al., 1997)
or show little effect (Aragón et al., 2000; Ball et al., 2000). The
relationship between MBD and clay-plus-silt is quadratic for
specific ranges of soil texture (Nhantumbo and Cambule, 2006;
Mujtaba et al., 2014). Moolman and Weber (1978) reported that
increasing evenness of particle-size distribution resulted in a
higher MBD value, indicating the need to include particle-size
balances such as P5 and P6 in MBDmodels. In contrast, Van Der
Watt (1969) analyzed soils where MBD could be well-predicted
from coarse sand (0.5–2.0 mm) only. Well-graded sands have a
higher MBD or lower CWC compared to poorly graded sands
(Guerrero, 2004; Mujtaba et al., 2014).

There is usually a close relationship between CWC and soil
texture or organic C (Wagner et al., 1994; Aragón et al., 2000),
but no such relationship was observed in the present study,
apparently due to the narrow range of organic C contents.
However, clay content was found to be linearly and positively
related to CWC. The CWC was poorly predictable in horizon
B. Mujtaba et al. (2014) and Guerrero (2004) found that MBD
and CWC were poorly related in sandy soils. When water is
added to dry soil, particles absorb a film of water. A certain
amount of added water thickens the water film, allowing the
soil particles to slide over each other in a process known as
lubrication, which is triggered by fine-grain particles (Ishibashi
andHazarika, 2010). Bruand et al. (2005) concluded that particle-
size distribution and the mineralogy of silt and clay particles
associated with sand can lead to variations in physical properties,
e.g., water retention, resistance to penetration and permeability
of sandy soil. Zhao et al. (2008) reported that CWC was closely
related to the liquid and plastic limits that integrate several
soil properties such as particle-size distribution, organic matter
content, and clay mineralogy. Hence, CWC could be predicted
more accurately using liquid and plastic limits (Soane et al.,
1972).

Effects of Mineral Cementing Agents on
Compaction Indexes
Mineral binding agents must have positive effect on maintaining
soil structure and resisting to soil compaction (Lal and Shukla,
2004; Bronick and Lal, 2005). Where the average content of
Al, Fe, Mn, Mg and Ca loaded more, BD and DC values
were less. The positive relationship between F11, F12 with BD
and DC appeared to reflect the effect of Al, Fe, and Mn on
soil mass rather than on soil strength, as soil particle density
increased with content of soil oxides, agreeing with McKeague
and Sprout (1975). BD and DC were positively related to F13
([ CaMg ]). Increasing soil aggregation and structural stability can be

observed in soil with high Ca compared to Mg attributed to the
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thinner hydration radius of Ca and its effect on clay flocculation
(Favaretto et al., 2006).

In general, only soil texture and organic C are used to predict
MBD (Aragón et al., 2000; Nhantumbo and Cambule, 2006).
We showed the importance of mineral cementing agents in
predicting MBD of agricultural soils, as found by Zhao et al.
(2008) for forest soils in British Columbia, Canada. The Si, Al,
Fe and Ca oxides increased CWC but reduced MBD. Zhao et al.
(2008) found that Al and Fe oxides were positively related to
CWC, but were negatively related to MBD. Concentrations of Si,
Mn, Al, Fe, Ca and Mg oxides are positively related to CWC as
such compounds are hydrophilic (Tschapek, 1984). The negative
relationship between MBD and mineral cementing agents in our
study reflected the enhanced soil strength due to the presence of
soil oxides.

Remediation Techniques Supported by the
Predictive Models
Mechanical, biological and chemical means can be implemented
alone or in combination to enhance soil resilience to compaction.
The moisture content of coarse-textured soils should be
<50 g kg−1, well below the median CWC of 205 g kg−1 in
horizon A and 144 g kg−1 in horizon B, to achieve fracturing
and shattering of the subsoil while avoiding damage to the soil
due to compaction and problems with excessive draft or dust
(Bannan and Wrigley, 2013). It has been reported (Goldsmith
et al., 2001) that plant growth is not hampered during beneficial
slope stabilization for engineering works where the degree of
compaction is 0.80–0.85. For the median MBD values of 1.59 g
cm−3 and 1.54 g cm−3 obtained through our prediction model
for the horizon A and horizon B, it means BD of 1.27–1.35
and 1.23–1.31 for the horizon A and horizon B for the median
conditions of our coarse-textured soil.

Rippers can be designed to suit specific soil conditions
(Godwin, 2007) and combined with cropping systems and
tillage practices to avoid coalescence (Lampurlanés and Cantero-
Martinez, 2003; Reintam et al., 2008). Cover crops such as
ryegrass can enhance soil quality through root channeling and
organicmatter additions (Darby et al., 2014;McNally et al., 2015).
The LME models can assess the requirement for amendments
to rebalance soil compositions to increase soil resilience to
compaction. Soil amendments are commonly applied in the form
of animal manure, gypsum (SO4.2H2O), lime, and municipal
waste from waste water treatment plants providing Al and Fe.

Gypsum can reduce (1) the harmful effect of Mg on the
soil structure of fine-textured soils resulting from the higher
ion hydration radius of Mg compared to Ca (Favaretto et al.,
2006) and (2) the subsoil Al toxicity in acid coarse-textured soils
resulting from Al neutralization by the sulfate ion (Noble et al.,
1988; Sumner, 1993). Gypsum increased maize yield by 29–50%
on sandy loams (Toma et al., 1999), not only modifying the soil
[ CaMg ] balance but also improving plant rootability. The beneficial

effects of gypsum combined with ripping may last up to 16 years
(Toma et al., 1999).

There are also ways to alter the texture of surface soils,
such as partially mixing upper and lower layers if other soil

quality attributes, such as organic matter content, are not unduly
affected. Soil texture can also be modified to increase the water
storage capacity of coarse-textured soils by applying to deficient
soils the residual fine soil materials adhering to potato tubers,
collected in the fall before tuber storage.

CONCLUSIONS

Soil resistance to compaction and resilience can be diagnosed
from soil components such as particle-size distribution, organic
C fractions, cementing agents, and water content. However,
current diagnostic guidelines do not integrate cementing agents
that may influence coalescence, hence the frequency of corrective
measures. In this paper, compaction indexes for coarse-textured
agricultural soils were predicted from soil gravimetric water
content, soil organic matter, mineral soil particles and mineral
cementing agents. BD and DC were found to decrease with
higher clay content, and to increase with higher proportions of
coarser particles. Organic matter content tended to decrease the
BD and DC of the coarse-textured soils. The balance involving
organic matter showed little effects on MBD, whereas increasing
evenness of sands fractions resulted in a higher MBD value.
The relationships between CWC and soil texture and organic C
were not close in the present study. Mineral cementing agents
were major contributors to soil compaction indexes. The Si, Al
and Fe oxides and Ca increased BD, DC and CWC but reduced
MBD. The effect of soil organic matter depended on soil texture,
and both organic matter and mineral cementing agents showed
similar effects in soil compaction. Balances among components
accounted for interactions among soil components.

The LME models explained 58–64% of total variation in BD
and DC, and the regression models accounted for up to 83%
of total variation in MBD and CWC. The most reliable models
related soil composition toMBD and CWC. For a median coarse-
textured soil of our soil samples, the estimated CWC obtained
from our regression models was 205 g kg−1 for horizon A and
144 g kg−1 for horizon B. To minimize subsoil compaction in
coarse-textured soils, soil gravimetric water content should be
well below the CWC level at MBD estimated from the models.

Furthermore, the compositional balances discussed in this
paper raise the question of how to rebuild soil structure by
rebalancing the components. The diagnosis of compaction in
coarse-textured soils could support decisions on implementing
not only mechanical corrective means but also chemical,
biological and physical methods to rebalance soil compositions
using mineral and organic amendments, structure-building
crops, and textural mixtures. The predictive models could be
expanded to include soil C fractions and biological soil quality
indexes to fully address the balance systems controlling soil
resilience to compaction.
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