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The climate history of the Antarctic continental shelf has formed a diverse benthic

ecosystem over evolutionary time scales. The extent of faunal diversity has only recently

been unveiled especially by using genetic data. In addition to newly reported species,

known species of benthic invertebrates in the Southern Ocean turned out to be in fact

species complexes representing genetically very distinct clades. Previous studies have

shown that the sea spider Pallenopsis patagonica is such a species complex consisting

of several divergent mitochondrial clades. However, genetic analyses of another sea

spider complex, Colossendeis megalonyx, showed that looking at one mitochondrial

gene only can lead to overestimation of species number within a species complex and

revealed mito-nuclear discordances. In this study we expand the current data set of

P. patagonica by adding not only samples from Patagonia, the Subantarctic and the

Eastern Weddell Sea, but also sequence data for the nuclear internal transcribed spacer

(ITS) region to obtain more information about the species complex. In fact, the number

of distinct clades is reduced when looking at nuclear data, but there are no cases

of mito-nuclear discordance and hence no evidence for hybridization and speciation

reversal events between divergent mitochondrial clades as in C. megalonyx. As patterns

of mitochondrial COI diversity and divergence within P. patagonica and C. megalonyx are

very similar and molecular dating analyses of both species complexes suggest a recent

separation of clades during the Pleistocene, different biological processes seem to have

led to fast and stable species boundaries in P. patagonica as opposed to C. megalonyx

where hybridization even across major mitochondrial lineages occured.
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INTRODUCTION

Increased sampling of Southern Ocean habitats and the
application of molecular taxonomy uncovered that Antarctic
biodiversity has been drastically underestimated (Gutt et al.,
2004; De Broyer and Danis, 2011; De Broyer et al., 2014). The
main reason for the significant boost in number of newly found
species is the detection of morphologically cryptic species in
basically all studied taxonomic groups (see Janosik andHalanych,
2010; Kaiser et al., 2013 for reviews). Therefore, paradoxically
the Southern Ocean has emerged from being regarded as a
biodiversity sink to a center of marine biodiversity in the past
two decades. This phenomenon of high in situ species diversity
has been termed the Antarctic diversity pump (sensu Clarke and
Crame, 1989).

Several processes have been discussed as drivers fueling this
diversity pump (Clarke and Crame, 1989). In this context,
molecular data have led to a paradigm shift: Most of the
cryptic species have rendered the distribution ranges of formerly
described species from broad (i.e., circum-Antarctic) to small
and allopatric (Lörz et al., 2009; Held, 2014). As the timing
of many of these divergence events was rather recent in the
Plio- or Pleistocene (see Convey et al., 2009 for a review), an
influence of the recurrent large-scale glaciations in these periods
has been suggested as a main driver fueling the diversity pump,
mainly through random genetic drift and lineage sorting in
independent glacial refugia (Thatje et al., 2005, 2008; Allcock and
Strugnell, 2012). Prominent signatures of population bottlenecks,
in particular for shallow-water organisms, have supported that
view (e.g., Janko et al., 2007; Raupach et al., 2010).

In this context, Pycnogonida or sea spiders have attracted
particular attention, since they show an exceptionally high
species diversity in the Southern Ocean (Clarke and Johnston,
2003; Munilla and Soler Membrives, 2009; Griffiths et al.,
2011). Moreover, many pycnogonids are benthic brooders with
probably limited dispersal capacity. Therefore, lineage sorting
events in glacial refugia driving speciation should have been
stronger than in other, free-spawning taxa (Allcock and Strugnell,
2012).

In agreement with these predictions, several molecular studies
have reported evidence for overlooked diversity in various sea
spider species (Mahon et al., 2008; Krabbe et al., 2010; Dietz
et al., 2015a,b). Furthermore, intraspecific diversity was found
to be significantly partitioned regionally, indicating limited gene
flow (Arango et al., 2011; Dietz et al., 2015b; Dömel et al.,
2015). Two species complexes stand out by far in terms of their
identified numbers of mitochondrial clades revealed by classical
DNA barcoding (amplification of cytochrome c oxidase subunit
I gene, COI): Colossendeis megalonyx (Hoek, 1881) (Krabbe
et al., 2010; Dietz et al., 2015b) and Pallenopsis patagonica
(Hoek, 1881) (Weis et al., 2014; Harder et al., 2016). For
C. megalonyx, Krabbe et al. (2010) reported the presence of
six distinct mitochondrial lineages that likely represent cryptic
species with mostly small and allopatric distribution ranges.
However, extending the sampling range substantially Dietz et al.
(2015b) revealed a much greater number of mitochondrial
clades. These also showed mostly circum-Antarctic distribution

instead of regional partitioning. Similar findings were made for
the crinoid Promachocrinus kerguelensis [Wilson et al. (2007):
restricted distribution range; Hemery et al. (2012): circumpolar
distribution range with extended data set]. Interestingly, analyses
of a nuclear gene of C. megalonyx indicated that several of the
mitochondrial clades do not represent distinct species as they
had identical sequences for the otherwise highly variable nuclear
internal transcribed spacer region (ITS; Dietz et al., 2015b). This
suggests hybridization events between several mitochondrial
clades and subsequently speciation reversal after the completion
of mitochondrial lineage sorting within C. megalonyx.

For P. patagonica, Weis et al. (2014) showed that it is
also a species complex as has been anticipated by Gordon
(1944) and Pushkin (1975, 1993), and described a new
species (P. yepayekae Weis, 2014 in Weis et al., 2014) using
integrative taxonomy combining mitochondrial sequences with
morphological characters. Harder et al. (2016) found evidence
for even more diversity within the complex by adding further
mitochondrial data specifically for Antarctic specimens. As Dietz
et al. (2015b) have shown, only looking at mitochondrial data
can lead to an overestimation of species number. Therefore
nuclear data are needed for P. patagonica to explicitly test
whether the identified mitochondrial clades reported by Weis
et al. (2014) and Harder et al. (2016) are supported by such
independent markers. Thus, in this study we analyzed both
mitochondrial and nuclear data of the P. patagonica complex
for a substantially extended data set as compared to Weis
et al. (2014) and Harder et al. (2016). We hypothesized that
(i) extending the data set for P. patagonica by new samples,
specifically from previously unsampled locations, reveals further
distinct mitochondrial clades, (ii) the number of distinct species
is substantially smaller than the number of mitochondrial
lineages when analyzing an independent nuclear gene marker,
and (iii) the extended data set reveals broader distribution
ranges for previously reported clades. Moreover, we addressed
the significance of our results in the context of currently discussed
evolutionary mechanisms generating Southern Ocean benthic
diversity.

MATERIALS AND METHODS

Specimens and Sampling Sites
For the remainder of this study, we use the term P. patagonica
sensu lato (s.l.) when referring to the whole species complex
including P. yepayekae, because it groups within clades
morphologically originally identified as P. patagonica.
Individuals of P. patagonica s.l. from the shelf of South
America, Subantarctic islands as well as around the Antarctic
continent were analyzed (Table 1, Figure 1). Chilean specimens
were collected by divers during Huinay Fjordos expeditions
(HF16, HF21, HF24, and HF26). Falkland samples (ZDLT1)
were provided by Vladimir Laptikhovsky (Falkland Islands
Fisheries Department, Stanley, Falkland Islands). Samples
from the Southern Ocean were collected using different
bottom trawls during several cruises on board the RRS James
Clark Ross (British Antarctic Survey, Cambridge, UK) and
the RV Polarstern (Alfred Wegener Institute Helmholtz
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TABLE 1 | Specimens list for P. patagonica s.l. and outgroups used during study. Species names are only given for outgroups and P. yepayekae as other

morphological determinations are as yet not possible. Sampling details (location, latitude, longitude, depth) and haplotype information for the specimens

analyzed (molecular clade, sequence availability).

Species Clade Name Lat Lon Depth ZSM-Voucher

Number

COI-GenBank/

BOLD Number

ITS-GenBank/

BOLD Number

ANT_A KT982317 −68.020 −67.671 208 KT982317 KY272398

ANT_A KT982356 −76.479 −165.738 457 KT982356 KY272399

ANT_B FJ969369 −71.621 −170.867 205 FJ969369

ANT_C KT982322 −64.035 −56.728 220 KT982322 KY272414

ANT_C KT982333 −63.686 −56.859 400 KT982333 KY272415

ANT_C KT982334 −63.686 −56.859 400 KT982334 KY272416

ANT_C KT982341 −63.754 −55.684 334 KT982341 KY272417

ANT_C KT982343 −63.754 −55.684 334 KT982343 KY272418

ANT_C PpaA_001 −71.136 −11.527 123 KC794958

ANT_C PS82_121_1 −76.966 −32.945 ZSM-A20160626 KY272315 KY272412

ANT_C PS82_143_2_1 −76.967 −32.866 ZSM-A20160623 KY272311 KY272419

ANT_C PS82_143_2_3 −76.967 −32.866 ZSM-A20160625 KY272319 KY272405

ANT_C PS82_156_2_1 −75.507 −27.486 ZSM-A20160629 KY272313 KY272407

ANT_C PS82_156_2_2 −75.507 −27.486 ZSM-A20160630 KY272309 KY272413

ANT_C PS82_156_2_3 −75.507 −27.486 ZSM-A20160631 KY272310 KY272410

ANT_C PS82_170_1 −74.906 −26.685 ZSM-A20160632 KY272318 KY272411

ANT_C PS82_170_2 −74.906 −26.685 ZSM-A20160633 KY272317 KY272409

ANT_C PS82_174_3 −74.491 −30.977 ZSM-A20160637 KY272312 KY272403

ANT_C PS82_223_1 −75.522 −28.973 ZSM-A20160730 KY272308 KY272408

ANT_C PS82_25_2_1 −74.705 −29.900 ZSM-A20160635 KY272314 KY272404

ANT_C PS82_25_2_2 −74.705 −29.900 ZSM-A20160636 KY272316 KY272406

ANT_D.1 KT982325 −63.576 −54.629 227 KT982325 KY272396

ANT_D.1 KT982326 −62.442 −55.459 245 KT982326

ANT_D.1 KT982330 −63.389 −60.120 310 KT982330

ANT_D.1 KT982331 −63.389 −60.120 310 KT982331

ANT_D.1 KT982346 −63.834 −62.664 256 KT982346 KY272397

ANT_D.2 JR262_1058 −55.144 −36.245 195.21 ZSM-A20160708 KY272301

ANT_D.2 JR262_1319 −55.002 −37.272 148.81 ZSM-A20160709 KY272302

ANT_D.2 JR262_1597_2 −54.396 −37.384 174.98 ZSM-A20160710 KY272305

ANT_D.2 JR262_1903_1 −53.597 −41.214 132.83 ZSM-A20160711 KY272303

ANT_D.2 JR262_48_5_1 −54.284 −36.083 124.08 ZSM-A20160712 KY272297

ANT_D.2 JR262_48_5_2 −54.284 −36.083 124.08 ZSM-A20160713 KY272298

ANT_D.2 JR262_702_1 −55.166 −35.485 126.99 ZSM-A20160714 KY272299

ANT_D.2 JR262_744 −55.167 −35.485 126.84 ZSM-A20160715 KY272304

ANT_D.2 JR262_806_4 −54.984 −35.762 139.38 ZSM-A20160716 KY272300

ANT_D.2 JR287_124_1 −53.764 −36.681 151 ZSM-A20160691 KY272295 KY272393

ANT_D.2 JR287_124_2 −53.764 −36.681 151 ZSM-A20160692 KY272294 KY272391

ANT_D.2 JR287_124_3 −53.764 −36.681 151 ZSM-A20160693 KY272296 KY272394

ANT_D.2 JR287_152 −53.758 −36.690 145 ZSM-A20160694 KY272292

ANT_D.2 JR287_191 −53.751 −36.699 145 ZSM-A20160695 KY272307

ANT_D.2 JR287_59_2 −54.944 −35.979 246 ZSM-A20160687 KY272293 KY272392

ANT_D.2 PpaE_001_HT26 −53.461 −41.261 193 ZSM-A20160717 KC794959

ANT_D.2 PS77_211_6_1_3 −53.402 −42.668 290.2 ZSM-A20160696 KY272306 KY272395

ANT_E KT982297 −72.177 −103.514 341 KT982297 KY272442

ANT_E KT982318 −68.020 −67.671 208 KT982318

ANT_F HM426218 −71.092 −11.508 HM426218

ANT_F KT982324 −63.686 −56.859 400 KT982324 KY272429

ANT_F KT982332 −64.134 −56.860 310 KT982332

ANT_F KT982342 −63.754 −55.684 334 KT982342

(Continued)
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TABLE 1 | Continued

Species Clade Name Lat Lon Depth ZSM-Voucher

Number

COI-GenBank/

BOLD Number

ITS-GenBank/

BOLD Number

ANT_F PS77_226_7_1_1 −64.915 −60.621 226.2 ZSM-A20160648 KY272331 KY272434

ANT_F PS77_226_7_1_2 −64.915 −60.621 226.2 ZSM-A20160649 KY272334 KY272430

ANT_F PS77_248_2_2 −65.955 −60.466 212 ZSM-A20160643 KY272335 KY272433

ANT_F PS77_248_3_2_1 −65.924 −60.332 433 ZSM-A20160644 KY272337 KY272436

ANT_F PS77_248_3_2_2 −65.924 −60.332 433 ZSM-A20160645 KY272336 KY272431

ANT_F PS77_248_3_2_3 −65.924 −60.332 433 ZSM-A20160646 KY272338 KY272435

ANT_F PS77_248_3_2_4 −65.924 −60.332 433 ZSM-A20160647 KY272332

ANT_F PS77_257_2_2_3 −64.913 −60.648 152.5 ZSM-A20160650 KY272330 KY272440

ANT_F PS77_257_2_2_5 −64.913 −60.648 152.5 ZSM-A20160651 KY272329 KY272432

ANT_F PS77_275 −70.940 −10.489 ZSM-A20160728 KY272326 KY272439

ANT_F PS77_291_1_2 −70.842 −10.587 267.5 ZSM-A20160642 KY272333 KY272437

ANT_F PS77_292_2_5 −70.846 −10.593 243.5 ZSM-A20160729 KY272327 KY272441

ANT_F PS82_58_1 −76.322 −28.992 ZSM-A20160627 KY272328 KY272438

ANT_G FJ969367 −71.258 −170.635 466 FJ969367

ANT_G FJ969368 −72.014 −170.775 236 FJ969368

ANT_H KT982338 −63.754 −55.684 334 KT982338 KY272422

ANT_H KT982352 −64.411 −61.963 664 KT982352

ANT_H KT982354 −64.411 −61.963 664 KT982354

ANT_I KT982316 −62.933 −61.479 188 KT982316 KY272423

ANT_J KT982293 −76.998 −175.093 541 KT982293

ANT_J KT982294 −76.904 169.965 764 KT982294 KY272427

ANT_J KT982306 −76.998 −175.093 541 KT982306 KY272426

ANT_J KT982313 −76.998 −175.093 541 KT982313 KY272428

ANT_K PS82_143_2_2 −76.967 −32.866 ZSM-A20160624 KY272325 KY272425

ANT_K PS82_244_4 −72.799 −19.495 ZSM-A20160640 KY272323

ANT_K PS82_246_2 −70.928 −10.475 ZSM-A20160641 KY272324 KY272424

ANT_L PS82_109_2_2 −77.016 −33.695 ZSM-A20160622 KY272339 KY272420

ANT_L PS82_34_2 −76.069 −30.160 ZSM-A20160628 KY272340 KY272421

ANT_M HM426171 −71.317 −13.942 HM426171

ANT_M PS82_183_1_1 −74.250 −37.749 ZSM-A20160638 KY272321 KY272400

ANT_M PS82_183_1_2 −74.250 −37.749 ZSM-A20160639 KY272320 KY272401

ANT_M PS82_240_2 −74.660 −28.763 ZSM-A20160731 KY272322 KY272402

ANT_N PpaE_002_HT25 −54.016 −37.437 78 ZSM-A20160718 KC794960

ANT_N PS77_211_6_1_4 −53.402 −42.668 290.2 ZSM-A20160697 KY272360 KY272458

SUB_1 PS77_208_5_1_1 −56.168 −54.548 292 ZSM-A20160726 KY272289 KY272367

SUB_1 PS77_208_5_1_4 −56.168 −54.548 292 ZSM-A20160689 KY272288

SUB_2 ZSMA20111352_HT27 −51.269 −62.952 171–174 ZSM-A20111352 KF603937/CFAP037-11

SUB_2.1 HF26_254 −53.007 −73.923 31 ZSM-A20160456 KY272290 KY272368

SUB_2.2 PS77_208_3 −56.152 −54.530 285.5 ZSM-A20160725 KY272291 KY272366

SUB_3 ZSMA20111008_HT28 −50.414 −74.559 15–20 ZSM-A20111008 KF603952/CFAP026-11 KY272390

SUB_4 PpaE_004_HT18 −52.574 −60.084 378 ZSM-A20160719 KC794961 KY272443

SUB_4 PpaE_005_HT15 −52.574 −60.084 378 ZSM-A20160720 KC794962

SUB_4 PpaE_006_HT17 −52.574 −60.084 378 ZSM-A20160721 KC794963 KY272457

SUB_4 PpaE_007_HT15 −52.574 −60.084 378 ZSM-A20160722 KC794964

SUB_4 PpaE_008_HT15 −52.574 −60.084 378 ZSM-A20160723 KC794965

SUB_4 PpaE_010_HT15 −52.962 −60.143 378 ZSM-A20160724 KC794966

SUB_4 PS77_208_5_1_2 −56.168 −54.548 292 ZSM-A20160727 KY272356

SUB_4 ZDLT1_889_1 −50.252 −61.567 159 ZSM-A20160698 KY272357 KY272445

SUB_4 ZDLT1_889_2 −50.252 −61.567 159 ZSM-A20160699 KY272358 KY272446

(Continued)
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TABLE 1 | Continued

Species Clade Name Lat Lon Depth ZSM-Voucher

Number

COI-GenBank/

BOLD Number

ITS-GenBank/

BOLD Number

SUB_4 ZDLT1_889_3 −50.252 −61.567 159 ZSM-A20160700 KY272359 KY272444

SUB_4 ZSMA20111348_HT14 −50.434 −62.768 146–148 ZSM-A20111348 KF603953/CFAP027-11

SUB_4 ZSMA20111349_HT13 −51.269 −62.952 171–174 ZSM-A20111349 KF603960/CFAP034-11

SUB_4 ZSMA20111350_HT15 −51.269 −62.952 171–174 ZSM-A20111350 KF603961/CFAP035-11

SUB_4 ZSMA20111351_HT20 −51.269 −62.952 171–174 ZSM-A20111351 KF603962/CFAP036-11

SUB_4 ZSMA20111354_HT17 −51.086 −61.733 174–176 ZSM-A20111354 KF603954/CFAP028-11

SUB_4 ZSMA20111355_HT18 −51.086 −61.733 174–176 ZSM-A20111355 KF603955/CFAP029-11

SUB_4 ZSMA20111357_HT16 −51.086 −61.733 174–176 ZSM-A20111357 KF603956/CFAP030-11

SUB_4 ZSMA20111359_HT18 −51.086 −61.733 174–176 ZSM-A20111359 KF603957/CFAP031-11

SUB_4 ZSMA20111360_HT15 −51.086 −61.733 174–176 ZSM-A20111360 KF603958/CFAP032-11

SUB_4 ZSMA20111361_HT19 −51.086 −61.733 174–176 ZSM-A20111361 KF603959/CFAP033-11

SUB_5 HF26_027 −52.600 −73.640 19 ZSM-A20160452 KY272344

SUB_5 HF26_030 −52.600 −73.640 15–20 ZSM-A20160448 KY272343

SUB_5 HF26_059 −53.007 −73.923 31 ZSM-A20160457 KY272349

SUB_5 HF26_086 −53.357 −73.087 9 ZSM-A20160465 KY272341 KY272448

SUB_5 HF26_120 −53.702 −72.041 22 ZSM-A20160472 KY272355

SUB_5 HF26_367 −53.357 −73.087 20 ZSM-A20160468 KY272351 KY272447

SUB_5 HF26_368 −53.357 −73.087 18 ZSM-A20160467 KY272346 KY272449

SUB_5 HF26_369 −53.357 −73.087 14 ZSM-A20160466 KY272353

SUB_5 HF26_373 −53.379 −73.159 14 ZSM-A20160488 KY272347 KY272453

SUB_5 HF26_392 −53.379 −73.159 17 ZSM-A20160493 KY272345 KY272450

SUB_5 HF26_439 −53.379 −73.159 17 ZSM-A20160483 KY272354 KY272452

SUB_5 HF26_451 −53.379 −173.159 21 ZSM-A20160490 KY272352 KY272451

SUB_5 HF26_458 −53.379 −73.159 14 ZSM-A20160494 KY272350 KY272455

SUB_5 HF26_647 −53.896 −71.311 23 ZSM-A20160476 KY272342

SUB_5 HF26_648 −53.896 −71.311 23 ZSM-A20160477 KY272348

SUB_5 KT982315 −53.270 −66.386 96 KT982315 KY272456

SUB_5 ZSMA20111340_HT12 −55.000 −68.315 24 ZSM-A20111340 KF603948/CFAP018-11

Pallenopsis yepayekae Pye.1 HF16_171 −50.338 −75.381 20 ZSM-A20119982 KY272271

P. yepayekae Pye.1 HF16_187 −50.359 −75.339 15 ZSM-A20119968 KY272266 KY272369

P. yepayekae Pye.1 HF16_309 −50.359 −75.339 20 ZSM-A20119978 KY272252

P. yepayekae Pye.1 HF16_476_1 −50.353 −75.283 20 ZSM-A20119979 KY272287

P. yepayekae Pye.1 HF16_476_2 −50.353 −75.283 20 ZSM-A20160580 KY272283

P. yepayekae Pye.1 HF16_476_3 −50.353 −75.283 20 ZSM-A20160701 KY272256 KY272385

P. yepayekae Pye.1 HF16_519_1 −50.412 −75.345 20 ZSM-A20160702 KY272262 KY272370

P. yepayekae Pye.1 HF16_519_2 −50.412 −75.345 31 ZSM-A20160703 KY272265 KY272371

P. yepayekae Pye.1 HF16_520 −50.412 −75.345 20 ZSM-A20119986 KY272260

P. yepayekae Pye.1 HF16_521_1 −50.412 −75.345 19 ZSM-A20119985 KY272261

P. yepayekae Pye.1 HF16_563 −50.359 −75.339 20 ZSM-A20160704 KY272258

P. yepayekae Pye.1 HF21_212 −45.661 −73.218 ZSM-A20160705 KY272286 KY272374

P. yepayekae Pye.1 HF21_225 −45.921 −73.964 ZSM-A20160579 KY272270

P. yepayekae Pye.1 HF21_387 −45.763 −73.492 15 ZSM-A20160581 KY272251

P. yepayekae Pye.1 HF21_387_2 −45.763 −73.492 15 ZSM-A20160583 KY272285 KY272375

P. yepayekae Pye.1 HF21_426_1 −45.521 −73.554 19 ZSM-A20160584 KY272255

P. yepayekae Pye.1 HF21_426_3 −45.521 −73.554 19 ZSM-A20160706 KY272253 KY272388

P. yepayekae Pye.1 HF21_79 −45.662 −73.849 20 ZSM-A20160707 KY272257 KY272373

P. yepayekae Pye.1 HF24_213 −53.007 −73.923 ZSM-A20160529 KY272268 KY272372

P. yepayekae Pye.1 HF26_029 −52.600 −73.640 17 ZSM-A20160450 KY272281

P. yepayekae Pye.1 HF26_031 −52.600 −73.640 15–20 ZSM-A20160454 KY272274

(Continued)
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TABLE 1 | Continued

Species Clade Name Lat Lon Depth ZSM-Voucher

Number

COI-GenBank/

BOLD Number

ITS-GenBank/

BOLD Number

P. yepayekae Pye.1 HF26_032 −52.600 −73.640 15–20 ZSM-A20160447 KY272279 KY272376

P. yepayekae Pye.1 HF26_090 −53.379 −73.159 14 ZSM-A20160499 KY272254 KY272384

P. yepayekae Pye.1 HF26_264 −52.879 −74.350 20 ZSM-A20160460 KY272275 KY272386

P. yepayekae Pye.1 HF26_265 −52.879 −74.350 20 ZSM-A20160459 KY272278 KY272377

P. yepayekae Pye.1 HF26_306 −52.879 −74.350 25 ZSM-A20160458 KY272282

P. yepayekae Pye.1 HF26_363 −53.007 −73.923 20 ZSM-A20160462 KY272284

P. yepayekae Pye.1 HF26_376 −53.379 −73.159 16 ZSM-A20160527 KY272276

P. yepayekae Pye.1 HF26_378 −53.379 −73.159 29 ZSM-A20160498 KY272277 KY272387

P. yepayekae Pye.1 HF26_394 −53.379 −73.159 17 ZSM-A20160484 KY272264 KY272389

P. yepayekae Pye.1 HF26_396 −53.379 −73.159 17 ZSM-A20160497 KY272259 KY272381

P. yepayekae Pye.1 HF26_397 −53.379 −73.159 17 ZSM-A20160496 KY272272 KY272382

P. yepayekae Pye.1 HF26_555 −53.702 −72.041 21 ZSM-A20160473 KY272263 KY272380

P. yepayekae Pye.1 HF26_562 −53.896 −71.311 23 ZSM-A20160478 KY272267 KY272378

P. yepayekae Pye.1 HF26_563 −53.818 −71.056 23 ZSM-A20160479 KY272280 KY272379

P. yepayekae Pye.1 HF26_566 −53.818 −71.056 7 ZSM-A20160481 KY272269 KY272383

P. yepayekae Pye.1 HF26_601 −53.587 −72.338 16 ZSM-A20160471 KY272273

P. yepayekae Pye.1 ZSMA20111000_HT07 −48.737 −75.415 15 ZSM-A20111000 KF603944/CFAP013-11

P. yepayekae Pye.1 ZSMA20111002_HT06 −50.835 −74.139 25 ZSM-A20111002 KF603947/CFAP017-11

P. yepayekae Pye.1 ZSMA20111005_HT04 −48.737 −75.415 23 ZSM-A20111005 KF603945/CFAP014-11

P. yepayekae Pye.1 ZSMA20111006_HT01 −43.418 −74.081 20 ZSM-A20111006 KF603941/CFAP007-11

P. yepayekae Pye.1 ZSMA20111016_HT09 −48.608 −74.899 32 ZSM-A20111016 KF603943/CFAP012-11

P. yepayekae Pye.1 ZSMA20111339_HT05 −43.775 −73.029 19 ZSM-A20111339 KF603949/CFAP019-11

P. yepayekae Pye.2 ZSMA20111003_HT03 −43.418 −74.081 25 ZSM-A20111003 KF603940/CFAP006-11

P. yepayekae Pye.2 ZSMA20111004_HT01 −43.410 −74.084 9 ZSM-A20111004 KF603939/CFAP005-11

P. yepayekae Pye.2 ZSMA20111009_HT02 −43.393 −74.132 26 ZSM-A20111009 KF603938/CFAP004-11

P. yepayekae Pye.2 ZSMA20111012_HT08 −43.771 −73.044 22 ZSM-A20111012 KF603942/CFAP008-11

P. pilosa OG PxxE_001 −54.350 3.193 ZSM-A20160732 KC794967 KY272459

P. pilosa OG PxxE_002 −54.213 −32.606 200 ZSM-A20160733 KC794968 KY272460

P. pilosa OG PxxE_003 −54.397 3.521 ZSM-A20160734 KY272362

P. pilosa OG PxxE_005 −54.397 3.521 ZSM-A20160735 KY272361

P. macronyx OG PS42_164_2 −62.133 −57.667 ZSM-A20160619 KY272364

P. macronyx OG PS42_164_3 −62.133 −57.667 ZSM-A20160620 KY272363

P. macronyx OG PS42_164_4 −62.133 −57.667 ZSM-A20160621 KY272365

Center for Polar and Marine Research, Bremerhaven,
Germany). After collection, specimens were stored in
ethanol (96%). Specimens were morphologically inspected
and assigned to P. patagonica s.l. before being molecularly
studied.

Molecular Analyses
Muscle tissue was extracted from the tibia using sterile scalpel
and forceps. DNA was isolated from the tissue using a modified
salt precipitation protocol after Sunnucks and Hales (1996; see
Weiss and Leese, 2016). Extracted DNA was eluted in 100µl
TE minimum buffer (1mM Tris BASE, 0.1mM EDTA, pH 8.0).
The amplification of the mitochondrial cytochrome c oxidase
subunit I gene (COI) and a ribosomal gene region covering
the 18S–ITS1–5.8S–ITS2–28S stretch (ITS) was carried out in
25µl reactions containing 1x (2.5µl) PCR buffer (5Prime),

0.2 mM dNTPs, 0.5µM of each primer, 0.025 U/µl (0.125µl)
Hotmaster Taq (5Prime) and 1µl template DNA, topped up
to 25µl with sterile water. A 658 bp long fragment of the
COI was amplified using the common barcoding primer pair
HCO2198 and LCO1490 (Folmer et al., 1994). The optimal
temperature profile for the PCRs with these primers was an
initial denaturation at 94◦C for 2 min, followed by 36 cycles
of denaturation at 94◦C for 20 s, annealing at 46◦C for 30 s,
extension at 65◦C for 60 s, and a final extension at 65◦C for 7
min.

For ITS, an approximately 1000 bp long fragment was
amplified using primers ITSRA2 and ITS2.2 (Arango and
Brenneis, 2013). PCR cycling program was initial denaturation
at 94◦C for 3 min, followed by 35 cycles of denaturation at 94◦C
for 30 s, annealing at 55◦C for 75 s, extension at 65◦C for 1 min,
with a final extension at 65◦C for 5 min.
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FIGURE 1 | Sampling sites (dashes) and distribution of Antarctic, Subantarctic, and Patagonian Pallenopsis patagonica s.l. specimens and their

assignment to molecular clades. Different clades are represented by different symbols/colors. Each symbol below or above the dash represents one specimen.

Picture in lower left corner shows P. patagonica in its natural habitat (photo taken by Roland R. Melzer).

For sequencing, 10U (0.5µl) Exonuclease I (Thermo
Scientific), 1.5 U (1µl) FastAP Thermosensitive Alkaline
Phosphatase (Thermo Scientific) and 9µl PCR product per
reaction were used. The purification mix was incubated for 25
min at 37◦C, followed by a denaturation step at 85◦C for 15
min. For sequencing at GATC Biotech AG (Cologne, Germany)
5µl of purified PCR product was mixed with 5µl of 5 pmol/µl
primer. Forward and reverse primers were used to sequence both
directions of the DNA strands.

For ITS sequences of samples reported by Harder et al. (2016;
herein labeled with GenBank numbers starting with KT98) DNA
extraction was performed as stated in Harder et al. (2016). For
ITS amplification the same primer pair as mentioned above
was used. PCR mixture consisted of 1x PCR buffer, 0.75 U
Taq DNA polymerase (5Prime, Hotmaster Taq), 2.5mM Mg2+,
10 nmol of each dNTP, 1µl of template DNA, 0.5µM of each
primer, and water to 25µl. PCR cycling program was run,
with an initial denaturation at 94◦C for 2 min, followed by
37 cycles of denaturation at 94◦C for 20 s, annealing at 55◦C
for 30 s, extension at 65◦C for 80 s, with a final extension at
65◦C for 10min. Successful amplification was confirmed by
visualizing PCR products on a 1% agarose gel stained with
ethidium bromide. Target PCR product was gel extracted and
purified using a Qiagen QIAquick R© Gel Extraction Kit according
to the manufacturer’s recommendations. Bidirectional Sanger

sequencing of amplicons was performed at High Throughput
Genomics Center (Seattle, WA, USA).

Phylogenetic Analyses
For COI, P. patagonica s.l. sequences from Weis et al. (2014;
n = 34 including five downloaded from NCBI) and Harder et al.
(2016; n = 26) were added to the final data set. ITS sequences
of specimens of both previous studies were generated and also
included in the ITS alignment, too.

For both gene regions, sequences were edited with Geneious v.
8.1.3 (Kearse et al., 2012) and aligned in Geneious using MAFFT
v. 7.017 Multiple Sequence Alignment (Katoh and Standley,
2013) with default parameters as implemented in Geneious, with
a gap opening penalty of 1.53 and offset value of 0.123. For COI,
sequences were translated into amino acids using the invertebrate
mitochondrial genetic code (transl_table=5) to verify that all
codons could be translated without stop codons. For ITS, a
version of the alignment where ambiguously aligned regions were
removed was produced with Gblocks v. 0.91b (Castresana, 2000)
using less stringent parameters (smaller blocks, gaps in final
alignment allowed, less strict flanking positions) as has been done
in Dietz et al. (2015b). For analyses when only unique copies
were needed, sequences were collapsed into unique sequences
(“haplotypes” for COI data) with the online tool FaBox v. 1.41
(Villesen, 2007).
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For both data sets a maximum-likelihood (ML) analysis was
performed with RAxML v. 8.2.4 (Stamatakis, 2014) using the
GTRCAT model of sequence evolution and branch support was
assessed with 10,000 rapid bootstrap replicates. In addition,
for the mitochondrial data set a resolved ultrametric gene tree
was calculated using BEAST v. 1.8.3 (Drummond et al., 2012)
with the model specified by jModelTest v. 2.1.10 (Guindon
and Gascuel, 2003; Darriba et al., 2012). An XML file was
created with BEAUti v. 1.8.3 (Drummond et al., 2012) with
the following settings: HKY+G+I as substitution models and
80 × 106 as length of MCMC chain sampling every 1000th tree.
Convergence of the likelihood and appropriate effective sampling
size (ESS > 200) of parameter estimates were checked using
TRACER v. 1.6 (Rambaut et al., 2014), and a consensus tree
was calculated using TREEANNOTATOR v. 1.8.3 of the BEAST
package. Furthermore, uncorrected pairwise distance matrices
were created using MEGA v. 7 (Tamura et al., 2011).

Species Delimitation Methods
For species delimitation analysis of the COI data set we used
ABGD (Automatic Barcode Gap Discovery; Puillandre et al.,
2012). As no clear barcode gap was found in the pairwise
distance data, ABGD results varied strongly depending on single
sequences and run parameters tested. Results presented here are
mainly from the default settings but using Kimura-2-parameter
(K2P) distance correction. The same settings were applied to
the ITS alignment (including and excluding ambiguously aligned
regions). Due to the smaller data set for the ITS alignment
and the fact that informative alignment gaps cannot easily be
interpreted as additional character in tree-based delimitation
methods, further species delimitation methods were only applied
to the COI data set. The final mitochondrial COI ML tree
was used to perform a Bayesian Poisson Tree Processes (bPTP)
analysis using the web server (http://species.h-its.org/ptp; Zhang
et al., 2013). Furthermore, a Generalized Mixed Yule Coalescent
(GMYC) analysis based on the resolved ultrametric gene tree
was conducted at the web server (http://species.h-its.org/gmyc;
Fujisawa and Barraclough, 2013) using the single-threshold
method only (see Fujisawa and Barraclough, 2013).

Molecular Clock Analysis
A calibrated molecular clock rate for sea spiders has not been
reported in previous studies. However, in order to infer possible
divergence date ranges for the different clades we applied a
widely adopted COI molecular clock rate reported for insects:
1.15% per myr and lineage (Brower, 1994). BEAST v. 1.8.2
was used to estimate divergence times using an HKY+I+G
evolution model as well as an uncorrelated local clock model.
Analyses were run for 10 × 106 generations sampling every
1000th tree. Convergence of parameter estimates and ESS control
and subsequent steps were done as described above.

RESULTS

Number of COI Clades
The data set of P. patagonica s.l. was extended to a total of 173
specimens including 47 sequences from P. yepayekae. For the first

time, we studied individuals from the Strait of Magellan and the
Eastern Weddell Sea. Further sequences from P. pilosa (Hoek,
1881) (n = 3) and P. macronyx (Bouvier, 1911) (n = 3) were
added to the data set as outgroups.

The final COI alignment consisted of 426 bp (GC content
32.9%) with 278 identical and 128 parsimony informative sites.
Neither stop codons nor frame shift mutations were observed
after translation. Both the ML and Bayesian phylogenetic tree
(Figure 2) resolved P. patagonica s.l. as monophyletic and
well-separated from the outgroup. In addition, P. yepayekae
represented a monophyletic group within P. patagonica s.l.
Moreover, all individuals from the Antarctic shelf formed an
“Antarctic super-clade” that also contained one clade with
specimens from South Georgia, i.e., one of the Subantarctic
islands. The two other specimens collected around South Georgia
that did not cluster inside this group represented the basal-most
group (Clade N) in the whole P. patagonica s.l. group (Figure 2).
Analysis of the final COI alignment with ABGD using K2P
substitution model revealed a steady decrease from 21 to 13 in
number of recovered groups between P = 0.002 and P = 0.05
in the recursive partition. No clear barcode gap was visible when
plotting pairwise uncorrected distances between P. patagonica s.l.
specimens (Supporting information Table S1; see upper diagram
in Figure 3 showing distances between members of the Antarctic
clade). When choosing a threshold value of P = 0.05 ABGD
suggested 13 clades, with several formerly reported cladesmerged
(clade E, F, and G from Harder et al., 2016). At P = 0.06 ABGD
merged all sequences into one group. Analysis of the Bayesian
tree with bPTP, suggested the presence of 20 distinct groups,
hence, subdivided five ABGD groupings further resulting in
seven additional clades. With 22 groups, GMYC reported the
highest number of clades for the ML tree. In contrast to bPTP,
GMYC furthermore subdivided P. yepayekae and clade ANT_D
into two subclades each. Here, we named the clades according to
the bPTP results (see SectionDiscussion for further information).
Several “clades” (two for ABGD, four for bPTP and GMYC)
consisted of single specimens only (Figure 2).

Upon reviewing the data set, the following points are of
particular interest to address our hypotheses. Newly collected
specimens from the Strait of Magellan that were morphologically
determined as P. yepayekae clustered with available sequences
of P. yepayekae (Weis et al., 2014; Figure 2). Using the GMYC
delimitation method, this species was split into two subclades.
One subclade (Pye.2, Table 1) included all three haplotypes
reported for four specimens sampled in the Chilean region Los
Lagos, i.e., at the northernmost occurrence of P. yepayekae. Both
other delimitation methods resolved P. yepayekae as a single
clade.

All P. patagonica samples from the Strait of Magellan clustered
together with sequences that in Weis et al. (2014) formed a
sister clade to the Falkland clade (specimens ZSMA20111017 and
ZSMA20111340, see Figure 2 in Weis et al., 2014). Average p-
distance between this clade and the Falkland clade is 2.7%. The 15
new samples collected around South Georgia clustered together
with a specimen from Shag Rocks that was reported as member
of the Antarctic clade of P. patagonica (PpaE_001, see Weis
et al., 2014). All these specimens formed a subclade (ANT_D.2,
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FIGURE 2 | Maximum likelihood tree of COI sequences of Pallenopsis patagonica s.l. combining new (black) and previously (gray) reported samples.

P. pilosa and P. macronyx serve as outgroups. Asterisks (*) indicate availability of ITS sequence data for the respective specimens. Bootstrap/posterior probabilities

values above 50/0.5 are provided next to each node. Letters and numbers stand for mitochondrial clades from Antarctica (ANT) and the Subantarctic (SUB),

respectively. Columns show results of COI-based species delimitation methods (bPTP, GMYC, and ABGD), number in parentheses denote the total number of

predicted species by each method. In addition, results of ABGD when analyzing ITS (see Figure 4) are shown in the rightmost column.
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Table 1) of clade ANT_D that so far consisted of specimens
sampled around the tip of the Antarctic Peninsula (ANT_D.2;
Harder et al., 2016). One sample from Shag Rocks grouped
together with one individual from South Georgia (PpaE_002),
which form the most basal clade (ANT_M) within P. patagonica
s.l. For P. patagonica s.l. from the Antarctic shelf, our data
set, analyzed with bPTP and GMYC, revealed the presence of
three further clades (ANT_K, ANT_L, and ANT_M) in addition
to the 10 clades reported from the Antarctic by Harder et al.
(2016). These three new clades are exclusively found in the
Eastern Weddell Sea (Figure 1). The newly found clade ANT_K
is sister clade to ANT_J, clade ANT_L to ANT_H, and clade
ANT_M to ANT_B (Figure 2). The two sequences HM426171
and HM426218 reported in Weis et al. (2014) as P. buphtalmus
(Pushkin, 1993) and P. latefrontalis (Pushkin, 1993) based on
provisional ID in BOLD by that time, clustered together with
clade ANT_M and clade ANT_F, respectively. Sampling sites of
these are also in the same region.

Nuclear Support for COI Based Species
Delimitation
We tested for congruence between the COI and the nuclear
ITS clades by analyzing 96 sequences from the majority
(bPTP: 18 of 20; GMYC 19 of 22) of reported COI clades
(Figure 2). Very few ambiguities were included in sequences
due to sequence quality issues for some sequences. The ITS
sequence for JR287_124_2 was composed only of two shorter
single read sequences (forward and reverse) but had no overlap
(108 missing data symbols, “?”). The initial alignment was
1071 bp long, but was shortened to 583 bp after filtering for
noisy positions with GBlocks. The final alignment consisted of
sequences of 344–582 bp in length with 126 sites being identical
and 159 parsimony informative. The base composition was
very homogenous with A: 23.2%, C: 27.2%, G: 25.8%, and T:
23.8%. The number of ITS haplotypes was 23 representing 18
of the mitochondrial bPTP clades, i.e., four mitochondrial clades
(ANT_C, ANT_F, SUB_2, and SUB_5) had two corresponding
ITS sequences and P. yepayekae had three. ANT_H and ANT_L
shared the same sequence. No heterozygous individuals were
observed.

The phylogenetic ITS tree is much less resolved than the
COI tree (Figure 4). However, most samples grouped similar
to the COI tree. Separated, albeit poorly supported in the ITS
tree, ANT_E and ANT_F clustered together when analyzed
with ABGD. Pairwise identity between sequences of the clades
was very high (98.9%). Together with ANT_G, for which
no ITS data could be obtained, these clades represented a
monophyletic group in the mitochondrial tree. In few cases
there were minor disagreements in terms of the resolved clades.
For examples ANT_L and ANT_H have identical sequences
for ITS and hence grouped together. In the COI tree, these
two clades represented slightly divergent sister clades. The
other dissimilarity between the two phylogenetic trees was a
well-supported nuclear clade (bootstrap support of 99%) that
included ANT_A and ANT_D as sister groups (no shared
haplotypes, however). ABGD distinguished the groups but in

the mitochondrial tree ANT_A and ANT_D were not sister
groups, yet closely related. In general, ITS showed substantially
less variation than COI, and most mitochondrial clades were
supported by ITS with minor exceptions mentioned above.
However, within the clade SUB_2 we obtained two different ITS
sequences from two individuals (PS77_208_3 and HF26_254)
that showed much greater nucleotide variation within the ITS
than the COI data. Interestingly, in the ITS tree they formed
a paraphylum rather than a monophylum as the sequence of
another clade (SUB_1) was also included. ABGD split these
sequences with low pairwise identity (90.5%) into two separate
groups.

Biogeographic Patterns
The new samples included here prove that P. yepayekae also
occurs in the Strait of Magellan and here even in sympatry with
an other clade of P. patagonica s.l. (SUB_5; see Figure 1). SUB_5
was represented by only two specimens in Weis et al. (2014)
and in contrast to Weis et al. (2014) merged into the “Falkland
clade” in Harder et al. (2016). Here, with the additional data, both
bPTP and GMYC supported that SUB_5 represents a distinct
clade. One formerly reported P. patagonica s.l. clade (termed
HT25 in Weis et al., 2014), represented by a single specimen
found around South Georgia (Ppa_E002), now included one
further specimen from the Shag Rocks (PS77_211_6_1_4). This
clade is herein referred to as ANT_N. Vice versa, another clade
of P. patagonica s.l., formerly represented by a single specimen
from Shag Rocks (Ppa_E001), now clustered together with
newly collected specimens from South Georgia (representing one
subclade of ANT_D). ANT_N formed a cluster basal to the split
between the Antarctic super-clade (i.e., specimens sampled South
of the Polar Front) and the Falkland/Strait of Magellan clade
(Figure 2). South Georgia individuals belonging to ANT_D thus
grouped within the Antarctic clade reported byWeis et al. (2014)
and clade D reported by Harder et al. (2016). Hence, these two
clades (ANT_N and ANT_D) that occur in the same area, are not
sister clades but only distantly related.

The new specimens sampled from the Eastern Weddell Sea
grouped into five clades. Two of these clades, ANT_C and
ANT_F, were already reported from the Antarctic Peninsula
by Harder et al. (2016). Thus, our new data extended the
reported distribution range for these two clades to the Eastern
Weddell Sea. Specimens of the other three clades have not been
reported earlier and were only found in the Eastern Weddell Sea.
Specimens of clade ANT_D, found at the northernmost tip of
the Antarctic Peninsula, grouped together with the individuals
mentioned above from around South Georgia and Shag Rocks
(Figure 2). No clades with individuals from either side of the
Antarctic Polar Front were found in our data set.

Divergence Dating
The divergence from the most recent common ancestor of
P. patagonica s.l. occurred 13.6 myr before present [HPD 95%
interval: 9.8–17.7 myr before present (BP)]. Also, the divergence
of the Antarctic vs. the Falkland/Magellan clade took place in
the mid Miocene (9.5 myr BP), 7.2–12.9 myr BP). Divergence
of the distinct mitochondrial clades occurred (independently
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FIGURE 3 | Barcode gap analysis for Antarctic super-clade of Pallenopsis patagonica s.l. (upper) and Colossendeis megalonyx (lower) in comparison.

For both data sets, the uncorrected pairwise COI distances between the haplotypes were used. Horizontal bars indicate pairwise distance limits used by delimitation

methods to distinguish clades. Dashed line indicates the range of pairwise COI distances across which hybridization was revealed by ITS analyses in C. megalonyx

(Dietz et al., 2015b).

on whether choosing ABGD, bPTP or GMYC as a delimitating
criterion) in the Plio- and Pleistocene, mostly before the last 2
myr BP (Supplementary Figure S1).

DISCUSSION

Number of Mitochondrial Clades
As predicted by the first hypothesis, we found additional
mitochondrial clades within P. patagonica s.l. when analyzing the
extended COI data set with bPTP and GMYC. The groupings
of bPTP and GMYC were congruent for most clades with
the exception that GMYC further subdivided P. yepayekae
and ANT_D into two geographically separated subclades
each. However, when using ABGD with default settings, the

number of mitochondrial clades inferred was actually smaller
than the number reported by Harder et al. (2016) (Figure 2,
Supplementary Table S2).

Which Mitochondrial Clades Can Be
Considered As Species?
When trying to find an objective value that best describes
the number of species (defined as independently evolving
units) with the classical COI barcoding alone, the original
approachwas to quantify intra- vs. inter-specific genetic distances
through a barcoding gap analysis that defines the maximum
threshold distance found within a species. For animal taxa,
this value has often been found at 2% pairwise distances (e.g.,
Hebert et al., 2003). Other approaches expect distinct species
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FIGURE 4 | Maximum likelihood tree of ITS sequences of Pallenopsis patagonica s.l. Bootstrap values above 50 are provided next to each node. Letters on

the right correspond to the labels used in the mitochondrial tree (see Figure 2). Letters and numbers stand for mitochondrial clades from Antarctica (ANT) and the

Subantarctic (SUB), respectively. Bars represent results of the ABGD analysis that was based on the full alignment.
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to show a 10x greater divergence than found within species
(Hebert et al., 2004). Barcode gap analyses within sea spiders
have reported intraspecific threshold distances of up to 5%
(Mahon et al., 2008). Here, we could not detect a distinct
barcoding gap for the P. patagonica species complex but rather
a gradient of pairwise distances, though many at low frequency
(Supporting Information Table S1). This is similar to results
observed within the sea spider complex C. megalonyx (Dietz
et al., 2015b). Consequently, species delimitation based on
COI is not straightforward and we followed several lines of
argumentation summarized in Kekkonen and Hebert (2014) in
order to discuss whether mitochondrial clades resemble species
or not. According to the ideas presented in Kekkonen and Hebert
(2014), species status can be assigned to clades with a full match
of all different species delimitation methods. This is the case
for the following six clades: SUB_3, ANT_C, ANT_H, ANT_I,
ANT_L, and ANT_N. For all other clades, only a partial match
between the different methods was observed. In such cases,
Kekkonen and Hebert (2014) suggest to test whether (a) the
resolved clades are monophyletic, (b) individuals are supported
by diagnostic characters (nucleotide substitutions, insertions or
deletions, see also Jörger and Schrödl, 2013), or (c) specimens
of different clades occur in sympatry. All three criteria are based
on species concepts. Both, monophyletic entities and diagnostic
characters missing in sister taxa matter for the phylogenetic
species concept. The biological species concept requires groups
that are reproductively isolated, which in nature can only be
detected when groups occur in sympatry. Due to a limited
sample size and geographical range and hence the potential
for unsampled haplotypes leading to ascertainment biases, the
criterion of diagnostic characters is not considered here and
only the two remaining criteria, monophyly and occurrence in
sympatry, are applied to the evaluation of the mitochondrial data
set.

The GMYC-subclades for P. yepayekae are the only example of
the data set where the monophylum criterium cannot be applied,
because although the individuals from Los Lagos themselves
form a monophylum, the remaining specimens, which represent
the majority, would be rendered as paraphyletic. Furthermore,
specimens of both subclades do not occur in sympatry. As the
Los Lagos specimens represent the northernmost occurrence
of P. yepayekae known to date, a straightforward explanation
of this pattern is isolation-by-distance. In particular because
genetic differences between specimens from these two clades
(max. uncorrected p-distances observed 0.9%) lie well within
the range typically reported as intraspecific for other sea spider
species (Mahon et al., 2008; Krabbe et al., 2010; Arango and
Brenneis, 2013; Dietz et al., 2015a,b) as well as other arthropods
(see Supporting Information Table S1 in Smith et al., 2005) we
refrain from assigning species-level status to these two subclades
and rather accept the grouping based on bPTP and ABGD.

For clade ANT_D, the found divergence of 1.6% between
the two GMYC-subclades (ANT_D.1 vs. ANT_D.2, Antarctic
Peninsula vs. South Georgia, respectively) is larger than between
the GMYC-subclades of P. yepayekae. But because this value is
still within the range reported as intraspecific and the subclades
occur in different regions it cannot be ruled out that they

represent two geographically separated populations. Hence, we
refer to these subclades as one clade. ANT_D represents the
only reported P. patagonica s.l. clade that crossed the deep sea
between the continental shelf and the Subantarctic islands, but
stayed within the Polar Front. Gene flow between the Antarctic
continental shelf and South Georgia has already been reported
in a few studies on other benthic invertebrates (Thornhill et al.,
2008; Wilson et al., 2009; Dietz et al., 2015a,b).

ABGD merged five of the bPTP/GMYC-clades. All single
bPTP/GMYC-clades are reciprocally monophyletic, but only
SUB_1 and SUB_2 occur in sympatry. Following the protocol
of Kekkonen and Hebert (2014), SUB_1 and SUB_2 would
represent two distinct species as revealed by bPTP and GMYC.
All other clades merged by ABGD do not occur in sympatry
and therefore species assignments are not possible based on the
limited data set. ANT_A, ANT_B, and ANT_M were sampled
from Ross Sea and Eastern Weddell Sea with not exceedingly
high uncorrected pairwise distances ranging from 2.1 to 3.5%.
Thus, the grouping suggested by ABGD seems adequate. ANT_E,
ANT_F, and ANT_G were sampled from the Western side of
the Antarctic Peninsula, on both sides of the Weddell Sea and
the Ross Sea. This pattern could be the result of isolation by
distance, too. Harder et al. (2016) also found clade G as a
distinct clade using bPTP, GMYC, and ABGD as delimitation
methods. Clades E and F were separated by bPTP and GMYC,
but merged with ABGD. Although Harder et al. (2016) decided
to keep all three distinct, we suggest to be more careful here in
particular in view of the few specimens available (only two for
each of clade E and G) and the shallow divergences. Similar as
above, ANT_J and ANT_K from the Ross Sea and Weddell Sea,
respectively, have a moderate uncorrected pairwise distance of
2.1%. Hence, they are also not treated as different units here.
This is also true for groupings of SUB_4 and SUB_5. Specimens
of both again do not occur in sympatry (Strait of Magellan vs.
Falkland Plateau), and divergence falls well in the range of values
reported as intraspecific (average uncorrected pairwise distance
1.93%). In the reported cases of (partial) mismatch between the
three delimitation methods it is difficult to apply a general rule,
because no clear barcoding gap is known that allows for a clear
cut between intra- and inter-specific genetic distances. The fact
that we find clades, e.g., ANT_A and ANT_C, with very low
intra-clade divergences (<1%) despite a broad distribution range
would suppose that intraspecific genetic distances are small also
for species with a broad distribution range (i.e., argument against
isolation-by-distance). However, limited sampling size does not
allow for further conclusions.

We suggest that for partial matches between delimitation
methods every case should be evaluated on its own. Combining
all these arguments in a conservative way, we suggest 14 distinct
evolutionary units in P. patagonica s.l. based on the COI data
(Table 2, Supporting information Table S2).

Nuclear Support for COI Based Species
Delimitation
As shown in Dietz et al. (2015b) for pycnogonids only
looking at mitochondrial data can lead to overestimation and
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TABLE 2 | Comparison of results from species delimitation analyses using

mitochondrial (COI) and nuclear (ITS) data of Pallenopsis patagonica and

a final recommendation for groupings.

Clade COI (14/22) ITS (16/19) Final grouping (15)

ANT_A

ANT_B NA ANT_ABM

ANT_M

ANT_C ANT_C

ANT_D1
ANT_D

ANT_D2

ANT_E

ANT_F ANT_EFG

ANT_G NA

ANT_H
ANT_HL

ANT_L

ANT_I ANT_I

ANT_J ANT_J

ANT_K ANT_K

ANT_N ANT_N

SUB_1 SUB_1

SUB_2
SUB_2.1

SUB_2.2

SUB_3 SUB_3

SUB_4
SUB_4 + 5 (Falkland)

SUB_5

Pye.1
P. yepayekae

Pye.2 NA

Supporting Information Table S2 for a detailed list.

misinterpretation of the actual species number (see Toews
and Brelsford, 2012 for a review). Dietz et al. (2015b) also
showed that ITS is a suitable marker for sea spiders as unlike
the situation reported for other organisms (e.g., Weitemier
et al., 2015) no multiple intragenomic variants for this gene
could be detected when using high-throughput sequencing data
(Leese et al., 2012). Comparing ITS and COI data we first
see that contrary to C. megalonyx (Dietz et al., 2015b) no
mito-nuclear discordances are observed in P. patagonica s.l.
(Figures 2, 4) This indicates that different processes acted after
initial mitochondrial lineage sorting on both sea spider species
complexes and will be discussed below. Most importantly, ITS
sequences are not shared between different COI clades in P.
patagonica, with the exception of the mitochondrial sister clades
ANT_H and ANT_L (both with a full match when comparing
delimitation methods) that show the same ITS sequence. Even
though ANT_E and ANT_F do not share one haplotype, ITS
sequences are very similar and species delimitation analysis
clusters them together. However, the groupings ANT_H and
ANT_L as well as ANT_E and ANT_F (including ANT_G)
represent a monophylum within the mitochondrial tree each.
Whereas, ANT_H and ANT_L both had a full match when
comparing mitochondrial data across delimitation methods,
ANT_E and ANT_F were grouped together with ANT_G by

ABGD. Unfortunately, we were not able to obtain ITS sequences
of an individual from ANT_G to analyse whether ANT_G also
groups with ANT_E and ANT_F when analyzing ITS. However,
ANT_E and ANT_F clustered into one ABGD group in the
mitochondrial tree similar to the ITS tree. Given the lack of
resolution, we here suggest not proposing species status for
clades ANT_H, ANT_L, ANT_E, ANT_F and ANT_G based
on mitochondrial results but suggest to refer to the two groups
containing ANT_H and ANT_L as well as ANT_E, ANT_F
and ANT_G as one clade each. We are aware of the fact that
speciation could be recent and thus has not been picked up with
ITS (Table 2).

Mitochondrial clades considered as one evolutionary unit
sometimes comprise up to three different but genetically very
similar ITS sequences. These sequences, however, cluster together
when using ABGD on the ITS data set. For example, based
on COI data clades ANT_J and ANT_K that were both
distinguished as separate clades by bPTP and GMYC were
treated as one hyper-clade as there was a lack of characters
distinguishing them and ABGD clustered them together when
analyzing mitochondrial data. But ITS data within this hyper-
clade can be assigned to the two different bPTP/GMYC clades.
The same holds true for further combinations that are also
congruent between ITS and the bPTP/GMYC delimitation of
the COI gene (SUB_1 and SUB_2, SUB_4, and SUB_5 as
well as ANT_A and ANT_M). In the case of ANT_D, ITS
sequences of all available representatives are identical. Thus, the
assignment of all individuals to one clade by ABGD and bPTP
is congruent with the ITS result. The more resolved delimitation
into subclades suggested by the GMYC analysis of the COI data
is not supported by the ITS data (Supporting Information Table
S2). As above, we here also suggest a conservative approach
to not treat these clades as distinct species prior to further
evidence.

In view of the evidence from the COI data set and the protocol
by Kekkonen and Hebert (2014) as well as the nuclear gene
marker results we propose 15 putative evolutionary units for
the current data set of P. patagonica s.l. (Table 2). The number
is likely to change should further data become available as
major regions of the Southern Ocean, especially East Antarctica,
still remain unexplored. More important though, is to add
further evidence that helps defining a clear boundary between
intra- and interspecific characters of the species complex. COI
combined for the first time with ITS data of P. patagonica s.l.
is a major step forward. However, data are not sufficient for a
final delimitation across all clades and additional independent
characters (morphology, further genes) are needed to make clear
statements. Still, the finding of mito-nuclear agreement supports
that in contrast to C. megalonyx we can describe the distinct
groups contained within P. patagonica s.l. reasonably well with
the current data available.

Distribution Ranges
Our data supports a strong barrier effect of the Antarctic
Polar Front as we did neither observe sister clades nor clades
containing individuals from either side of the Polar Front of
P. patagonica s.l. Such a pattern has also been observed for many
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other benthic invertebrates (e.g., Page and Linse, 2002; Thornhill
et al., 2008; Krabbe et al., 2010). The fact that individuals
from South Georgia, i.e., a Subantarctic island south of the
Polar Front, form one clade with individuals reported from
the northernmost tip of the Antarctic Peninsula (ANT_D) and
cluster within the Antarctic super-clade of P. patagonica s.l. hints
at a colonization event of South Georgia from the Antarctic.
This direction of gene flow makes sense as it is consistent
with a pattern of colonization with the Antarctic Circumpolar
Current from West to East (Leese et al., 2010). However, for
C. megalonyx also shared haplotypes between South Georgia
and the Antarctic Peninsula were found for one clade (Clade A;
Dietz et al., 2015b). Interestingly, here genetic diversity patterns
clearly indicated the opposite pattern, i.e., gene flow from South
Georgia to the tip of the Antarctic Peninsula. Dietz et al. (2015b)
considered South Georgia as the likely refugium for members of
this clade given the exceptionally greater diversity. Colossendeis
has been reported from bathypelagic samples (Staples, 2007 and
references therein) and a distribution with deep-sea currents
and not the Antarctic Circumpolar Current are conceivable.
It should be noted that whereas haplotypes were shared at
least partly for C. megalonyx clade A between the two distant
regions, no haplotype sharing was observed for P. patagonica
clade ANT_D here. This indicates that, if at all, gene flow is
extremely limited or represented a singular colonization event in
P. patagonica.

Our enlarged sampling has extended the previously reported
distribution ranges of some clades. P. yepayekae was found in
the Strait of Magellan, which extends the occurrence of this
species southwards (Weis et al., 2014). With the first records
of specimens of clades ANT_F and ANT_C in the Eastern
Weddell Sea, we could extend the distribution range of clades
previously only reported from the Antarctic Peninsula (Harder
et al., 2016). This is also the case for clade ANT_D where
individuals from South Georgia were added to a clade previously
only reported from the Antarctic Peninsula. It has been stated
that narrow rather than broad distribution ranges might be the
rule rather than the exception for sea spiders. Krabbe et al.
(2010) postulated that most C. megalonyx clades have a narrow
and allopatric distribution. However, analyzing more samples
lead to the result of clades with a circumpolar distribution with
isolation by distance (Dietz et al., 2015b). Thus, for P. patagonica
s.l. we may also expect much broader distribution ranges when
further material especially from unsampled locations is going to
be included.

Furthermore, geographic separation between populations
within clades (regional pattern) seems likely as we find subclades
in several clades that are geographically separated. GMYC
analyses revealed a subclade within P. yepayekae consisting
of four individuals from the same area. A stronger effect of
geographic separation can be seen for the second reported
subdivision of the bPTP/ABGD clade by GMYC. For ANT_D
there is a separation between an island population (South
Georgia) and one from the Antarctic shelf (i.e., Antarctic
Peninsula). Although supported by nuclear data, SUB_4 and
SUB_5 clustered together in the ABGD analysis. Here, SUB_4
is represented by individuals from the Falkland Islands only.

Isolation of Falkland Island populations from those found on
the rest of the South American continental shelf has also been
reported for the isopod Serolis paradoxa (Leese et al., 2008).

We also found three new clades in the Eastern Weddell Sea
only. It thus might be that different clades have different dispersal
capabilities, however, as many habitats around the Antarctic shelf
(e.g., Davis Sea and Dumont d’Urville Sea) and Subantarctic
islands (e.g., Kerguelen Plateau) have been scarcely sampled, we
cannot exclude that distribution ranges are generally broader
than currently reported.

Which Clade Represents P. patagonica
Sensu Stricto
The type specimen of P. patagonica (Hoek, 1881) has been
collected from the Atlantic opening of the Strait of Magellan. In
the absence of material from the Strait of Magellan, Weis et al.
(2014) already proposed the Falkland clade as P. patagonica sensu
stricto. Adding new samples, the Falkland clade also included
samples from the Strait of Magellan, however it should be
mentioned that this clade can geographically and genetically be
subdivided into two sub clades. Both, GMYC and bPTP divided
the Falkland clade into SUB_4 and SUB_5 that respectively
included either samples from the Falkland Islands or the Strait
of Magellan. Likely, specimens here assigned to clade SUB_5
represent the closest relatives of P. patagonica sensu stricto.
However, ABGD results for the mitochondrial data combined
SUB_4 and SUB_5 into a single clade. This was also supported
by ITS data. Further information about the sub clades and
the assignment of the type specimen might be obtained by a
morphological reinvestigation of the type material in comparison
with the new material from the Strait of Magellan.

Divergence Dates
In the absence of calibrated rates, molecular clock estimates using
rates from other taxa can only be regarded as a rough proxy.
For cold environments it might be assumed that mutation rate
is lower as compared to temperate and tropic regions (“slow-rate
hypothesis”; Bargelloni et al., 1994). However, evidence for this
is still ambivalent (Held, 2001). Specifically, as we are addressing
very recent divergence times it can be assumed that divergence
times may be systematically higher than the rates inferred from
rather deep calibration points (see Ho et al., 2005). The rate used
and the error bars should thus be regarded as a rough orientation
helping to interpret the radiation of P. patagonica. Even when
considering the huge error bars, it is obvious that the divergence
of the Subantarctic and the Antarctic super-clades took likely
place in the Miocene after the opening of the Drake Passage. This
indicates a single colonization event after the onset of the Polar
Front and the Antarctic Circumpolar Current. The direction of
the colonization (out of or into the Antarctic) remains unsolved
in view of the limited number of outgroups. Also, the radiation of
the many Antarctic P. patagonica species very likely started in the
late Pliocene and increased during the Pleistocene (last 2.5 myr).
Such patterns have been reported before (e.g., Held, 2000; Page
and Linse, 2002; Thornhill et al., 2008; Krabbe et al., 2010; Leese
et al., 2010; Hemery et al., 2012; Dietz et al., 2015a,b) suggesting
that over evolutionary time scales the Polar Front has not been
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an impermeable barrier to gene flow in general, though we did
not observe across Drake Passage exchange in more recent clades
of P. patagonica s.l. However, in view of the above-mentioned
limitations of molecular clock calculations, we advise to use the
divergence estimates made here with caution.

Comparing Species Complexes of
P. patagonica and C. megalonyx
It becomes obvious that total divergence contained in
P. patagonica s.l. exceeds the genetic divergence found within
C. megalonyx (17 vs. 11% maximum pairwise distances,
respectively). This suggests that species delimitation using
morphological characters is more advanced in Colossendeis
as compared to Pallenopsis. The description of P. yepayekae
within P. patagonica s.l. shows that morphologically clearly
distinguishable species exist, but no similarly detailed
morphological inspections as within Colossendeis have been
performed yet (Hodgson, 1907, 1908; Fry and Hedgpeth, 1969;
Pushkin, 1993; Child, 1995; Dietz et al., 2013, 2015a). Thus, when
comparing the complexes of C. megalonyx and P. patagonica
side by side a similar proportion of the tree should be taken
into consideration. When comparing pairwise COI sequence
divergence between C. megalonyx (Krabbe et al., 2010; Dietz
et al., 2015b) with all representatives of the Antarctic clade within
P. patagonica s.l. a striking result is that barcode gap patterns
look almost identical (Figure 3). Also, neither of the two species
complexes shows a distinct barcode gap, pairwise sequence
distances in the range of 2–5% are found at low frequencies. This
is the reason for the more ambiguous ABGD results. However,
the majority of inter-clade comparisons for both complexes are
in the range of 6.5–9.5% (see Figure 3). These are values typically
reported as interspecific.

Still, there is a substantial difference between this study and
the study on C. megalonyx by Dietz et al. (2015b) in that all
mitochondrial clades in P. patagonica s.l. (with the exception of
ANT_L and ANT_H that are identical for ITS) are also supported
by diagnostic ITS substitutions (Supporting Information Table
S2), whereas in C. megalonyx there is strong evidence for
hybridization across several clades that have even more than 7%
COI divergence. The results for P. patagonica thus are similar
to most other studies on Southern Ocean biota finding mito-
nuclear agreement (e.g., Leese and Held, 2008; Dietz et al., 2015a)
and thus support of distinct species. It thus remains subject
to discussion whether hybridization among C. megalonyx clade
members as opposed to P. patagonica is possible due to the slower
build-up of pre- or post-zygotic reproductive barriers.

One result of the direct comparison of both species
complexes with the same molecular markers made here is
that similar processes may have led to the divergence of
distinct mitochondrial lineages. Assuming similar molecular
clock rates, both have likely taken place in the same period (Plio-
/Pleistocene) characterized by drastic environmental changes
between glacial and interglacial periods (see Thatje et al., 2005;
Allcock and Strugnell, 2012). Yet, whereas for C. megalonyx
hybridization of many of the species has been detected, this is not
the case for P. patagonica s.l. Given the limited information on

the biology of the species reasons for this difference are difficult
to estimate. One reason might be differences in the reproductive
mode, another one differences in dispersal capabilities. Due to
a lack of knowledge about reproduction within different sea
spider species a direct comparison is not possible. However,
larval stages and egg carrying males have never been reported
for the genus Colossendeis possibly indicating low reproduction
rate, whereas for Pallenopsis, males carry the eggs until hatching
(benthic brooding) indicating a higher reproduction rate than
in Colossendeis. Therefore, a low dispersal capability is assumed
for Pallenopsis (except for occasional dispersal of adults, see
below) while the situation in Colossendeis is unclear. The data for
C. megalonyx Clade A (shared haplotypes between South Georgia
and the Antarctic Peninsula) as well as most of the circumpolar
clades in comparison to the many clades in P. patagonica that
show rather narrow distribution ranges add further support
for this difference in mobility. A lack of dispersal between
isolated habitats can in principle promote the rise of reproductive
barriers. Other possibilities include e.g., much stronger patterns
of sexual selection and thus pre-zygotic mechanisms leading
to faster complete lineage sorting. Also, C. megalonyx might
show generally greater effective population sizes that counteract
speciation. In view of similar divergence and diversity patterns
for the COI data this seems, however, implausible. Perhaps
the Antarctic Peninsula was colonized by active (i.e., walking)
migration of C. megalonyx Clade A individuals from South
Georgia through the deep sea after the end of the last glacial
period. Pallenopsis has only been reported for the meso-pelagial
but also in upper water plankton samples and drifting on jellyfish
(Pages et al., 2007 and references therein). However, most likely
the Antarctic Circumpolar Current prevents a drift across of the
Antarctic Polar Front.

While for C. megalonyx we see strong evidence for an
in situ evolution in Antarctica and migration to the Subantarctic
(Clade B, M), this can neither be proved nor rejected for
P. patagonica yet.

CONCLUSIONS

The results of our study on the sea spider P. patagonica support
some, but not all of our initial hypotheses: (1) We find an
increase of mitochondrial clades and an extension of distribution
ranges with additional sampling. (2) Adding for the first time
nuclear ITS data to verify the detected mitochondrial lineages
in general found good agreement between both marker systems,
i.e., no mito-nuclear discordances. This is in disagreement to
a recent report in C. megalonyx where strong evidence for
hybridization and introgression was reported. Therefore, we
suggest that the number of mitochondrial clades likely resembles
the number of distinct species. However, application of state
of the art species delimitation methods and analysis of both
mitochondrial and nuclear genes does not lead to an unequivocal
species delineation. Hence, future work needs to include more
sets of characters for integrative taxonomy. The application of a
molecular clock approach suggests that drivers of the biodiversity
pump (speciation drivers) have acted at the same time scales
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producing mainly young divergences in both P. patagonica s.l.
and C. megalonyx but led to the formation of new species more
efficiently in P. patagonica s.l.
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