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A commentary on

Plant pathogen-induced volatiles attract parasitoids to increase parasitism of an insect vector

by Martini, X., Pelz-Stelinski, K. S., and Stelinski, L. L. (2014). Front. Ecol. Evol. 2:8. doi:
10.3389/fevo.2014.00008

INTRODUCTION

Evolutionary adaptations in plant, microorganism and arthropod interactions are primarily studied
in systems involving only two of these groups: plants and microbes, plants and arthropods, or
arthropods and microbes (Biere and Tack, 2013). Beside this, it was stated recently that there is
emerging evidence that three-way interactions between plants, arthropods andmicroorganisms can
play a major role in shaping ecological communities (Tack and Dicke, 2013). Moreover, the study
of three-way interactions should not only include the mediation of plant-arthropod interactions
by arthropod associated microorganisms or mutualistic plant associated microbes as proposed
by Biere and Tack (2013), but should also include plant pathogens and arthropod antagonists
(predators and parasitoids). Unfortunately, to date little is known about the influence of plant
pathogens on the third trophic level. Thus, in this commentary the importance of a multitrophic
research approach covering more than three-way interactions, as it was studied recently by Martini
et al. (2014), is highlighted.

PLANT-PHYTOPATHOGEN-VECTOR INTERACTIONS

Most phloem-dwelling plant pathogens like viruses and bacteria (e.g., Candidatus Phytoplasma,
Ca. Liberibacter) are dependent on insect vectors for plant-to-plant transmission (Orlovskis et al.,
2015). Although a number of taxa are vectors of different plant viruses (Ng and Falk, 2006), species
belonging to phloem-feeding order Hemiptera are the most important vectors of plant viruses,
phytoplasmas (Ca. Phytoplasma) and proteobacteria (Ca. Liberibacter) (Weintraub and Beanland,
2006; Hogenhout et al., 2008). Besides visual (Farnier et al., 2014, 2015) and tactile signals,
these vector insects use information provided by plant odors (kairomones) for the identification
of appropriate hosts for feeding and oviposition (Orlovskis et al., 2015). These volatile organic
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compounds (VOCs) may be produced constitutively (Soroker
et al., 2004) or can be induced by plant pathogens (Mayer et al.,
2008a,b; Rid et al., 2016).

Many Ca. Phytoplasma and Ca. Liberibacter vectors use
chemical cues for the identification of their host plants (Mayer
et al., 2008a,b; Mann et al., 2012). It has been shown in recent
years that some phytopathogens manipulate the behavior of
their vectors by altering the attractiveness of the vector’s host
plants by increasing the amount or changing the composition
of VOCs emitted by infected plants. This has been shown
for pathogenic bacteria (Mayer et al., 2008a,b; Davis et al.,
2012; Mann et al., 2012; Shapiro et al., 2012; Mas et al.,
2014) and viruses (Eigenbrode et al., 2002; Mauck et al., 2010).
Recently it was shown that the apple proliferation phytoplasma
Ca. Phytoplasma mali influenced the pattern of plant volatiles
emitted by its host plant depending on the pathogen virulence
(Rid et al., 2016). The analysis of the complex, chemically
mediated three-way interactions between Ca. P. mali, its vector
Cacopsylla picta (Hemiptera: Psyllidae) and their host plants
(both the reproduction and overwintering hosts), showed that
this phytoplasma changed the odor of the reproduction host
plant to attract the highly adapted vector to infected apple
plants (Mayer et al., 2008a,b). Phytoplasma infection induces
apple trees to produce more β-caryophyllene which preferentially
attracts newly eclosed C. picta just before they emigrate to
their overwintering host. By feeding on infected plants, the
probability of acquisition of the phytoplasma increases. After
overwintering on conifers, the psyllids return to apple plants
but now prefer to lay their eggs on uninfected plants due
to deleterious effects of the phytopathogen on the developing
offspring, thereby increasing the opportunity to transmit the
phytoplasma (Mayer et al., 2011). Similarly, the cucumbermosaic
virus reduced the quality but increased the attractiveness of
its host plant Cucurbita pepo for two aphid vectors, namely
Myzus persicae andAphis gossypii, due to virus-induced increased
emissions of a VOC blend similar to that emitted by healthy
plants (Mauck et al., 2010). Because the vectors performed
poorly on infected plants, they rapidly emigrated from them,
a pattern highly conducive to the nonpersistent transmission
mechanism employed by this virus (Mauck et al., 2010). Ingwell
et al. (2012) showed that the aphid Rhopalosiphum padi, after
acquiring Barley yellow dwarf virus (BYDV) during in vitro
feeding, preferred uninfected wheat plants, while uninfective
aphids also fed in vitro preferred BYDV-infected plants. This
behavioral change should promote pathogen spread since
uninfective vector preference for infected plants will promote
acquisition, while infective vector preference for uninfected hosts
will promote transmission. In conclusion, as shown for both
bacterial and virus phytopathogens, behavioral changes of the
vectors promote both pathogen acquisition and transmission.
Both plant pathogenic bacteria and viruses can either increase,
decrease, or have a neutral effect on their vector’s fitness
(lifespan, fecundity, and survival) (Madden and Nault, 1983;
Ebbert and Nault, 1994, 2001; Beanland et al., 2000; Pelz-
Stelinski and Killiny, 2016). Beneficial effects of phytopathogens
on vector fitness may indicate that the pathogen has an
evolutionarily older relationship with its insect host while

detrimental effects may indicate an evolutionarily younger
relationship.

EAVESDROPPING OF
PLANT-PHYTOPATHOGEN-VECTOR
INTERACTIONS BY NATURAL ENEMIES

Many plants attacked by herbivores emit leaf VOCs that
attract their natural enemies, such as parasitoids and predators
(Dicke et al., 1990; Turlings and Wäckers, 2004). But to
date, little is known about the effect of phytopathogens on
organisms of the third trophic level. Indeed, this problem is
especially interesting in cases where phytopathogens manipulate
their host plants by eliciting increased VOC emission (either
qualitatively or quantitatively) to increase their attractiveness
to herbivorous vectors (Mayer et al., 2008a,b; Mauck et al.,
2010; Mann et al., 2012). Thus, besides chemical signals emitted
by herbivore infested host plants (“cry for help”: synomones)
and vector odors (host or prey kairomones), eavesdropping on
plant volatiles induced by phytopathogen infection to attract its
vector (allomones) may additionally increase the host seeking
effectiveness of the natural enemy (Figure 1). As shown by
Martini et al. (2014), a parasitoid may take advantage of an
altered extended phenotype to increase its foraging performance.
They also investigated the bacterial phytopathogen Las, which
elicits the release of methyl salicylate by its host plant (Citrus
spp.) to attract its vector, the psyllid Diaphorina citri (Mann
et al., 2012). Martini et al. (2014) found that the specialist
parasitoid of D. citri, the ectoparasitoid wasp Tamarixia radiata
(Hymenoptera: Eulophidae), was attracted more toward Las-
infected and uninfected plants baited with methyl salicylate
than to uninfected plants. Parasitization of D. citri nymphs
on Las-infected plants was higher than on uninfected controls.
This remarkable study is the first report of a parasitoid
“eavesdropping” on VOCs induced by a phytopathogen which
has apparently evolved to increase the effectiveness of the host
seeking behavior of its herbivorous vector. Recently, (Mauck
et al., 2015) observed higher rates of aphid parasitism by the
parasitoid Aphidius colemani (Hymenoptera: Braconidae) on
virus infected cucumber compared to healthy plants. This was
due to a decreased fitness of aphids feeding on infected plants
with reduced nutritional quality.

Insect vectors and their natural enemies might not be
the only trophic levels influenced by phytopathogens. Sun
et al. (2016) recently demonstrated that infection of rice
by the pathogenic bacterium Xanthomonas oryzae pv. oryzae
significantly influenced the interactions of rice plants with a non-
vectoring herbivore, the brown rice planthopper Nilaparvata
lugens (Hemiptera: Delphacidae), and its major predator,
Cyrtorhinus lividipennis (Hemiptera: Miridae). The numbers of
this phloem feeder on infected rice plants at 15 d post-inoculation
were two to four times higher than on healthy rice plants.
After the rice plants had been fed on by planthoppers, adult
C. lividipennis showed a higher preference for infected plants
10 d post-inoculation, which was attributed to higher emission
rates of herbivore induced volatiles from infected plants. Thus,
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FIGURE 1 | Chemically mediated multitrophic interactions between plants, phytopathogens, and vector organisms eavesdropped by insect natural

enemies (parasitoid, predator). The influence of a phytopathogen (e.g., virus, Ca. Phytoplasma, Ca. Liberibacter or fungus) on plant physiology elicits the emission

of new VOC or increase the production of higher amounts of VOC by host plant what may influence vector behavior by increasing its attraction. Thus, besides

chemical signals directly emitted by insect infested host plants (synomones) and vector odors (kairomones), eavesdropping on plant volatiles induced by

phytopathogen infection to attract its vector (allomones) may additionally increase the host seeking effectiveness of the natural enemy.

quantitatively increased VOC emission by the plant as a result of
the pathogen at a specific time period was used by the predator to
locate its prey.

Of particular interest is time dependent eavesdropping of
plant-phytopathogen-vector interactions by natural enemies.
Since the vector is attracted to infected plants for feeding at
specific stages in its life cycle, eavesdropping parasitoids could
associate perception of the induced odor with host availability.
Interestingly, the parasitoid was also attracted to infected plants
without vectors (Martini et al., 2014). However, in another plant-
phytopathogen-vector system, infected plants were nutritionally
sub-optimal to the psyllid D. citri when compared to uninfected
plants (Mann et al., 2012). The same was found earlier for the
psyllid C. picta which exhibited increased mortality and reduced
body size after developing on phytoplasma-infected apple plants,
the result of which was greater attraction to healthy plants by
ovipositing females (Mayer et al., 2011). In yet another example,
the psyllid Bactericera cockerelli also preferred to oviposit on
uninfected potato plants compared to potatoes infected with
Candidatus Liberibacter solanacearum (Davis et al., 2012). As
a consequence, during periods of oviposition, the number of
vectors should be reduced on infected plants. Thus, pathogen-
induced volatiles not only deceive the vector but can do so as well
with their associated parasitoids, resulting in a better spread of
the pathogen (Martini et al., 2014).

While multitrophic interactions involve more than three
trophic levels in a food web (e.g., plants, plant pathogens,

vectoring herbivorous insects, and their antagonists), the main
focus of research on these complex interactions is to identify
the different driving forces regulating population dynamics of
the involved species. Plant morphology, as well as primary
and secondary plant compounds (including VOC), are major
traits determining interactions between green plants and higher
trophic levels (Schoonhoven et al., 1998; de Boer et al., 2008).
Most plant viruses do not appear to cause diseases in wild plants
but virus infected plants maybe benefited by virus infection
(Roossinck, 2015). The interactions between viruses and plants
vary frommutualism to antagonism, or pathogenesis (Roossinck,
2015), and may be influenced by changing environments (Davis
et al., 2015). The ability of species from higher trophic levels
to respond differentially to variations in these factors may
drive natural selection (Futuyma, 2000). The potential for
natural enemies of vector insects to act as selective forces
in the evolution on plant—phytopathogen interactions is not
well studied as yet. As shown in many examples of plants
infected with pathogenic bacteria and viruses, the manipulation
of plant odors by phytopathogens can increase the plants’
attractiveness for vectors. As a consequence, the attraction of
natural enemies eavesdropping the same signal may similarly
reduce the numbers of vectors transmitting the phytopathogen,
appearing a new mechanism of indirect defense of infected
plants against manipulating phytopathogens and their vectors,
respectively. Thus, the eavesdropping behavior of the natural
enemy could be a mutualistic plant relationship but counteract
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the pathogen—vector interaction. For a deeper understanding of
the evolutionary context of these interactions we need to know
more examples than the one recently reported by Martini et al.
(2014).

In conclusion, the research presented by (Martini et al., 2014)
contributes significantly to our understanding of chemically
mediated multitrophic interactions involving more than three
trophic levels in a food web. By investigating natural enemies

eavesdropping plant-phytopathogen-vector interactions they
have opened an interesting new research avenue in chemical
ecology.
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