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Resting heart rate (variability)
and cognition relationships reveal
cognitively healthy individuals
with pathological amyloid/tau
ratio
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Medicine, Keck School of Medicine at University of Southern California, Los Angeles, CA, United States

Introduction: Resting heart rate (HR) and heart rate variability (HRV) have been linked
with cognition in the general population and in older individuals. The knowledge of
this aspect of heart-brain relationship is relatively absent in older individuals with
early Alzheimer’s disease (AD) pathology. This study explores relationships of the
HR, HRV, and cognition in cognitively healthy individuals with pathological amyloid/
tau ratio (CH-PATs) in cerebral spinal fluid (CSF) compared to those with normal
ratio (CH-NATs).
Methods:Weexamined the relationshipsbetween1) restingHRandMini‐Mental State
Examination (MMSE); 2) resting HR and brain processing during Stroop interference;
and 3) resting vagally mediated HRV (vmHRV) and task switching performance.
Results:Our studies showed that compared toCH-NATs, thoseCH-PATswith higher
resting HR presented with lower MMSE, and less brain activation during interference
processing. In addition, resting vmHRV was significantly correlated with task
switching accuracy in CH-NATs, but not in CH-PATs.
Discussion:These threedifferent tests indicatedysfunctional heart-brainconnections
in CH-PATs, suggesting a potential cardio-cerebral dysfunctional integration.
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AD, Alzheimer’s disease; alpha ERD, alpha event-related desynchronization; CH-NATs, cognitively healthy
with normal amyloid/tau ratio; CH-PATs, cognitively healthy with pathological amyloid/tau ratio; CN,
cognitively normal; CSF, cerebral spinal fluid; DLB, dementia with Lewy bodies; ECG, electrocardiogram;
EEG, electroencephalogram; HF, high frequency; HR, heart rate; HRV, heart rate variability; LF, low
frequency; MCI, mild cognitive impairment; aMCI, amnestic MCI; naMCI, non-amnestic MCI; MMSE,
Mini-Mental State Examination; PFC, prefrontal cortex; PSD, power spectrum analysis; RMSSD, root mean
square of the successive differences; SDNN, standard deviation of the normal RR-interval; vmHRV, vagally
mediated HRV.
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Introduction

Heart rate and heart rate variability

Heart rate (HR) measures the number of beats per minute (bpm).

Heart rate variability (HRV) measures the variation of the inter-beat

intervals of successive heartbeats and allows non-invasive evaluation

of the autonomic nervous system (1). HRV is usually analyzed in the

time domain as the standard deviation of the normal RR-interval

(SDNN) and root mean square of the successive differences

(RMSSD), as well as in the frequency domain as low frequency

(LF), high frequency (HF), and LF/HF ratio. As RMSSD reflects

parasympathetic activity, it is also used as vagally mediated HRV

(vmHRV) that reflects a psychophysiological index of inhibitory

control (2). HRV and HR reflect the balance between acceleratory

sympathetic and inhibitory parasympathetic nerve activities and are

regulated by the neural structures [e.g., amygdala, hippocampus,

prefrontal cortex (PFC)] that are also involved in cognitive and

emotional regulation. Therefore, HR or HRV and cognitive

performance are related (1, 3–5). The resting HR has been related

to cognitive decline in a large cohort study, such that a higher

resting HR was related to worse cognitive decline (6). Interestingly,

a decelerating HR has been linked with both the selective and

global inhibition of motor responses where prefrontal cortical

structures are involved, shown in the processing of three variations

of a GO-NOGO task (7). In addition, in a study of 104 healthy

young participants, resting vmHRV was associated with

intraindividual reaction time variability on an attentional task, such

that lower resting vmHRV predicted higher variability during the

task and better cognitive control (8).
Risk of early Alzheimer’s disease and HR/
HRV

Alzheimer’s disease (AD) remains a considerable challenge for

the United States and worldwide. Current treatments for AD are

suboptimal and there is an urgent need to identify the risk of early

AD before symptoms appear in late-onset AD (9). The

pathological changes of AD (amyloid plaques, neurofibrillary

tangles as aggregates of tau protein) and synaptic dysfunction

precede cognitive impairment in AD by decades (10, 11). This

provides a window of opportunity for early detection and

intervention when therapies are potentially more effective. Our

previous studies have reported that cerebrospinal fluid (CSF)

amyloid/tau ratio (2.71) provided 85% sensitivity in identifying AD

from cognitively healthy (CH) individuals (12). We use this Aβ42/

hyperphosphorylated tau ratio cutoff to assign CH participants into

two different groups: those with normal (≥2.71: CH-NATs) or

pathological (<2.71: CH-PATs) ratio (12). We have reported that

compared to CH-NATs, CH-PATs were at higher risk for cognitive

decline to mild cognitive impairment (MCI) or AD (12–14).

Additionally, CH-PATs presented subtly impaired executive

function that implemented in the PFC (12, 15–17). The PFC also

regulates HR and HRV (1, 18). However, it is not known if resting
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HR or HRV are associated with cognition in CH-PATs, such as in

a general cognition Mini-Mental State Examination (MMSE), task

performance-task switching, or cognitive processing involving

inhibition reflected by alpha event-related desynchronization (ERD)

(15, 16, 19). Based on the relationships between resting HR, HRV,

and these cognitive activities, translational biomarkers, such as

non-invasive electroencephalogram (EEG) and electrocardiogram

(ECG), can detect synaptic dysfunction and help detect the early

risk for cognitive decline. For example, besides the knowledge of

the relationships between resting HR or HRV and cognition in

young individuals (7, 8), little is known about such relationships in

CH-NATS versus CH-PATS. We would like to determine if resting

HR or HRV changes might be useful as an early functional

biomarker related to subtle cognitive changes of early AD.

Therefore, we explored the relationship between resting HR

and MMSE (general cognition) in CH-PATs and compared the

findings with CH-NATs or MCI-AD. Further, we considered that

CH-NATs, but not CH-PATs, might present heart–brain

connections similar to those of the young healthy participants,

where a decelerating HR has been linked with both selective and

global inhibition of motor responses (GO-NOGO tasks involving

the PFC) (7), and lower resting vmHRV has been associated with

better executive function and cognitive control (8). Therefore, we

hypothesized that in CH-NATs, but not CH-PATs, an

accelerating HR is linked with more negative alpha ERD (more

brain activation) during an inhibitory control task (Stroop

testing) and that greater resting vmHRV is linked with better

behavioral performance in task switching.
Methods

Participants

The study protocol was approved by the Institutional Review

Board (IRB) (HMRI #33797), with signed consent provided by

all participants. Participants aged 60 years and above were

recruited from advertisements placed in local newspapers and

newsletters, the Pasadena Huntington Hospital Senior Health

Network, visits to the senior center and assisted living facilities,

and word of mouth. The inclusion and exclusion criteria were

the same as previously reported (12, 15–17). Briefly, data were

collected in line with the Uniform Data Set (20), including

demographic data, physical exam, medical history,

neuropsychological batteries, and MRI. Neuropsychiatric testing

as well as reviews of the clinical data at a consensus conference

classified participants as CH, with MCI, or with AD, which are

consistent with reported criteria (21–24).

Body fluids, including cerebrospinal fluid (CSF), were collected,

with Aß42 and total tau measured as reported (12, 15). Briefly, the

CSF Aß42/t-tau ratio discriminated AD from CH participants with

a sensitivity of at least 85% (12). We applied this regression to

assign CH participants into two groups: those with a normal CSF

Aβ/tau ratio (≥2.7132, CH-NATs) and those with a pathological

Aβ42/tau ratio (<2.7132, CH-PATs) (12). CH-PATs presented a
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higher risk for cognitive decline in a longitudinal observation (13).

Supplementary Table S1 shows participant characteristics by

analysis.
MMSE and resting HR

The MMSE scores were measured using a standard

questionnaire (12). For the resting heart rate, the researcher

asked participants to maintain a relaxed sitting position and

measured the heart rate using a sphygmomanometer (HEM-

790IT; Omeron Healthcare, Inc.) (25, 26). The resting HR before

Stroop testing was measured using an ECG during the resting state.
Stroop, alpha ERD, and resting HR

As a pilot study, the CH individuals went through Stroop or

task-switching testing. Cognitive challenge procedures were

performed as previously described (15, 17). Briefly, participants

were asked to rest with their eyes opened and then their eyes

closed for 5 min each while EEG and ECG recordings were

taken, followed by cognitive testing. Participants were required to

perform one cognitive task per visit to avoid fatigue. For the

Stroop, we challenged participants’ interference control by color–

word interference testing (i.e., identify the ink color in a colored

word), with low load (e.g., the word “Red” printed in red ink, or

congruent) and high load (e.g., the word “Red” printed in blue

ink, or incongruent) trials (15).

Alpha ERD, a proxy of brain activation during the cognitive

task, was analyzed as previously reported (15). Briefly, alpha

ERD is the numerical alpha power values that normalized by

decibels to the baseline power (before stimulus appear on the

screen) (15). The resting HR in this analysis was assessed from a

5 min resting ECG recorded before the Stroop testing.
Task switching, behavioral performance,
and RMSSD

The task-switching paradigm is designed based on a color–

word Stroop paradigm. Participants responded to two sequential

stimuli (incongruent colored words) in a trial: either a repeat

trial (color–color or word–word) or a switch trial (color–word or

word–color). ECGs were recorded for 5 min with eyes open

before (resting) and during the task switching (17). For this

study, only resting ECGs were used for the HRV analysis.

Behavioral performance was assessed using response time (RT)

and accuracy (ACC) as previously reported (17). Briefly, response

time refers to the time from stimulus onset to correct responses

and accuracy refers to the percentage of correctly responded

trials over all trials. The resting RMSSD was assessed from a

5 min resting ECG recording (15, 17). Briefly, ECGs were

screened and ectopic beats removed, followed by identifying

normal RR-intervals (NN) using the AcqKnowledge software

(BIOPAC Systems, Inc), and linear interpolation (Kubios HRV
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software version 3.2.0), with a subsequent analysis for RMSSD in

the time domain.
Statistical analysis

We used Pearson correlation analysis to estimate the strength

of the unadjusted linear relationship between resting HR and

MMSE scores in CH individuals (n = 57) with CSF amyloid/tau

ratios either normal (CH-NATs, n = 29) or pathological (CH-

PATs, n = 28), in participants with MCI (n = 35), and in those

with AD (n = 30). A one-way ANOVA was performed to

compare the HR between the four groups (CH-NATs, CH-PATs,

MCI, and AD).

We used Spearman correlation analysis to estimate the strength

of the rank correlation between HR and alpha ERD, in CH-NATs

(n = 13) and in CH-PATs (n = 9). We also calculated the Spearman

correlation coefficient for resting RMSSD and task-switching

accuracy, within CH-NATs (n = 18) and within CH-PATs (n = 26).

Additional statistical information is described in the

Supplementary Materials.

In summary, three relationships were explored using a

correlation analysis and compared between different cognitive

status groups: (1) the relationship between resting HR and

general cognition (MMSE); (2) between resting HR and alpha

ERD during Stroop processing with low load (congruent) and

high load (incongruent) trials; and (3) between resting RMSSD

and task-switching performance during low load repeat trials

(color–color or word–word) and high load switch trials (color–

word or word–color).
Results

Resting HR estimated to be moderately
related to MMSE in CH-PATs

A one-way ANOVA revealed that there was no statistically

significant difference in mean HR between CH-NATs, CH-PATs,

MCI, and AD (F(3,118) = [0.1869], p = 0.91). There was a

significant negative correlation between resting HR and MMSE

among CH-PATs (r =−0.57, p = 0.002). There was no significant

correlation between the same variables in CH-NATs (r = 0.07,

p = 0.71), MCI (r =−0.14, p = 0.41), or AD (r =−0.11, p = 0.59)

(Figure 1).
Resting HR estimated to be positively
related to alpha ERD in CH-PATs, but
negatively related to alpha ERD in CH-NATs

For the Stroop task during high load trials, the resting HR was

moderately and negatively correlated with alpha ERD in CH-NATs

(frontal: r =−0.60, p = 0.034; central: r =−0.62, p = 0.027), but

highly and positively correlated with alpha ERD in CH-PATs

(frontal: r = 0.75, p = 0.026; central: r = 0.85, p = 0.006) (Figure 2).
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FIGURE 1

MMSE and resting HR. (A) MMSE negatively correlated with resting heart rate in CH-PATs (r=−0.57, p=0.002, red cross), but not in CH-NATs (r=0.07, p=
0.71, green circle). (B) Correlation was not significant in all CH (r=−0.09, p=0.57, green circle), MCI (r=−0.14, p=0.41, red cross), or AD individuals (−0.11, p
=0.59, blue star). AD, Alzheimer’s disease; CH, cognitively health; CH-NAT, cognitively healthy individuals with a normal amyloid/tau ratio; CH-PAT,
cognitively healthy individuals with a pathological amyloid/tau ratio; HR, heart rate; MCI, mild cognitive impairment; MMSE, mini-mental state exam.
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Resting HRV significantly related to task-
switching performance in CH-NATs, but not
in CH-PATs

For the task-switching paradigm, the resting RMSSD was

moderately and positively correlated with accuracy during

switch trials (r = 0.64, p = 0.004) in CH-NATs, but there was no

statistically significant correlation in CH-PATs (r =−0.27,
p = 0.183) (Figure 3).
FIGURE 2

Resting HR and alpha power during Stroop testing incongruent trials. In CH-NA
the frontal region (Fi, A) and at the central region (Ci, B). In CH-PATs, but po
correlated with alpha ERD at the frontal region (Fi, C) and at the central regio
tau ratio; CH-PAT, cognitively healthy individuals with a pathological amyloid/

Frontiers in Epidemiology 04
Additional statistical analyses are described in Supplementary

Tables S1, S2.
Discussion

These results showed that CH-PATs presented unique links

between resting HR or HRV and cognitive functions: (1) the

resting HR was significantly negatively correlated with MMSE, a
Ts, resting HR (before the Stroop) negatively correlated with alpha ERD at
sitively correlated with alpha ERD (Ci) in CH-PATs, resting HR positively
n (Ci, D). CH-NAT, cognitively healthy individuals with a normal amyloid/
tau ratio; ERD, event-related desynchronization; HR, heart rate.

frontiersin.org

https://doi.org/10.3389/fepid.2023.1168847
https://www.frontiersin.org/journals/epidemiology
https://www.frontiersin.org/


FIGURE 3

Resting HRV associated with task-switching performance. Resting RMSSD positively correlated with accuracy during switch trials in CH-NATs (A), but not
in CH-PATs (B). ACCsw, accuracy during switch trials; CH-NAT, cognitively healthy individuals with a normal amyloid/tau ratio; CH-PAT, cognitively
healthy individuals with a pathological amyloid/tau ratio; HRV, heart rate variability; RMSSD, root mean squared of successive differences.

Molloy et al. 10.3389/fepid.2023.1168847
finding not observed in the other categories of CH-NATs, MCI, or

AD. Specifically, CH-PATs showed a faster HR with worse

cognition, while the other groups did not present such a

relationship. (2) The resting HR was highly positively and

significantly correlated with alpha ERD during Stroop inhibitory

control in CH-PATs, while CH-NATs presented sizable negative

correlations between resting HR and alpha ERD. In other words,

CH-NATs presented an accelerated HR that coincided with greater

brain activation (measured as more negative alpha ERD). That is,

these individuals were able to speed up the heartbeat to support

greater brain activity. However, CH-PATs presented an accelerated

HR with less brain activation (less negative alpha ERD). (3) Resting

vmHRV was not significantly correlated with the task-switching

performance among CH-PATs; while resting vmHRV was

significantly correlated with the performance in CH-NATs: more

specifically, higher resting vmHRV was moderately but significantly

correlated with a higher accuracy when performing the switch trials

among CH-NATs. Overall, the heart–brain relationships (between

resting HR or HRV and cognitive functions) might help to

differentiate CH-PATs from CH-NATs (or MCI-AD), suggesting

different potential cerebral–cardiovascular integrations in these two

populations. Previous studies have reported associations between

resting HR, HRV, and cognition in general populations or older

individuals (6, 27); no such relationships were shown in CH-PATs

specifically. This analysis helps provide much-needed information

that could eventually contribute to non-invasively detecting the risk

of early AD using non-invasive, systemic, and translational

biomarkers at the CH stage.
Resting HR and MMSE

We did not observe significant resting HR differences between

CH-NATs and CH-PATs, possibly due to their similar age as well

as both groups being CH. The sizable and inverse estimated HR-

MMSE relationship in CH-PATs may indicate that the cardio-
Frontiers in Epidemiology 05
cerebral regulation differed from CH-NATs such that the higher

resting HR related to lower MMSE scores (worse cognition).

Such a relationship was not observed in CH-NATs, possibly

supporting the heart–brain reserve. The observed correlation in

CH-PATs is consistent with a study showing that a higher heart

rate reserve, or less heart rate acceleration with exercises, was

related to less cardiovascular disease and lower all cause

mortality (28), where a higher risk of cardiovascular disease was

associated with worse cognition (29). The statistically significant

HR–MMSE relationship observed in CH-PATs was also not

observed in MCI or AD, possibly suggesting individuals with

MCI or AD may present worse heart–brain dysregulation than

CH-PATs. For example, patients with MCI presented greater

sympathetic responses compared to normal cognitive participants

(30, 31). Further studies are needed to confirm this relationship,

between resting HR and MMSE in CH-PATs, with a larger

cohort. This result is in line with a previous large-scale

population study from over 20,000 elderly participants using a

longitudinal MMSE (approximately 4 years apart). Their resting

HR positively related to cognitive decline (MMSE decreased ≥3
points), with an odds ratio of approximately 1.01–1.08 (6). It is

possible that their population included both CH-NATs and CH-

PATs, which might have blunted the relationship between resting

HR and MMSE that was observed in our CH-PAT cohort.

The connection of resting HR and HRV to general health is

intriguing. Resting HR has been negatively linked with lifespan

across species, such that a lower resting HR is usually associated

with a longer lifespan (whales with fewer than 20 bpm and a

lifespan over 30 years), and a faster resting HR with a shorter

lifespan (rats and mice with over 300 bpm and a lifespan below 5

years) (32, 33). An average heart beats/lifetime of approximately

109 is relatively constant across species, which suggests the heart

rate is a marker for metabolic rate (32, 33). A lower heart rate

has the benefit of saving metabolic energy and increasing

survival. However, a lower heart rate could result in higher

central aortic pressure (34). Central aortic pressure, compared to
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cuff brachial blood pressure, can better predict cardiovascular

prognosis and has been associated with end-organ damage

(35, 36). Higher central aortic pressure is associated with worse

cardiovascular prognosis (37). Higher central blood pressure was

related to cognitive decline in participants aged over 50 years

(38, 39). Therefore, having a controlled low heart rate without

higher central aortic pressure may be beneficial. For example,

exercise can help with decreasing HR without compromising

central aortic pressure (40, 41).

In humans, a lower resting heart rate has been shown to

increase survival in healthy individuals (42), as well as in

individuals with coronary artery disease (43). Further, decreasing

the heart rate by using pharmaceutical therapy (e.g., beta-

blockers) may also increase survival (32). There are increasing

interests in the interactions between resting HR or HRV and

cognition during pathological conditions because of its easily

accessible data. For example, the heart rate increases with

cognitive challenge, reflecting brain–heart responses to cognitive

load (44). Interestingly, a higher resting HR has resulted in a

shortened diastolic phase, more so when the heart rate was <75

bpm (45). This disproportionally decreased diastolic time was

related to decreased myocardial oxygen supply and worse

survival in healthy individuals and patients with cardiovascular

diseases (34). With the confirmative effect on myocardial oxygen

supply, the effect of reduced HR on cerebral blood flow is more

complicated, depending on physiological and pathological

conditions (46, 47). A few mechanisms were proposed, including

an association between elevated resting HR and higher shear

stress of the vascular wall, adaptive vascular dilation, and

increased endothelial reactive oxygen species, followed by greater

endothelial damage and increased arterial stiffening—all factors

resulting in cardiovascular disease risk and reduced lifespan

(34, 48). For example, HR reduction by ivabradine (heart failure

treatment) prevented cerebral and renal endothelial dysfunctions

in mice with dyslipidemia (34, 49). Dysregulation of perivascular

space CSF dynamics from hypertension may also occur with

increased HR from angiotensin through actions in the central

nervous system (50). Reduced perivascular CSF flow can result in

decreased amyloid removal and amyloid burden, especially at the

branch points of cerebral blood vessels (51). Our data may reflect

an accelerated HR-induced endothelial dysfunction in CH-PATs

with lower MMSE scores, or in dysregulation of perivascular

space CSF dynamics, which can both result in decreased amyloid

removal. Whether those CH-PATs with a higher resting HR will

also present a higher risk of cognitive decline or an increased

AD pathology burden remains to be determined.

Multiple studies have also supported the connection between

lower HRV and reduced cognition in CH populations, including

parameters of global cognition, executive functions, and

processing speed among others (52). Like cognition, HRV

changes with age and gender. HRV analysis via ECG from over

1,500 participants (aged >40 years) has demonstrated lower

SDNN with age and BMI, and lower RMSSD with age until 60–

69 years, after which RMSSD trended higher (53). Interestingly,

women displayed lower SNDD and higher RMSSD than men,

and diabetes has been associated with lower HRV in both
Frontiers in Epidemiology 06
genders (53). Most participants in this study were female and

there were no sizable female–male ratio differences between

groups. Our analyses have not looked into male and female

comparisons because of the limited sample size. Studies with

larger sample sizes are needed in the future to address potential

confounding or effect modification by gender.
Resting HR and alpha ERD during Stroop
testing are significantly correlated in CH-
PATs

Inhibitory control, or the ability to resist default or dominant

responses, is considered to be the common factor of executive

functions (54). HR has also been shown to be sensitive to tasks

with inhibitory control mechanisms (7). Therefore, we studied

the relationship between resting HR and Stroop processing,

proxied by alpha ERD (16).

In our study, alpha ERD was estimated to be positively

correlated with HR in the CH-PAT group, in response to

interference challenges, but not in the CH-NAT group. This

significant and positive correlation in CH-PATs in comparison

with CH-NATs (negative correlation) might reflect the reduced

influence of the PFC on the neurovisceral network, as the

parasympathetic activities are regulated by the PFC (1). This

finding is also consistent with the frontal dysfunction reported in

pre-symptomatic AD (16). The decreased influence of the PFC

on CH-PATs may be related to autonomic strain, or to

compromised connections between the PFC and amygdala or

hypothalamus (1, 3–5). However, the direct link between the

frontal cortex and HR regulation in pre-symptomatic AD needs

further investigation.

Furthermore, CH-NAT individuals with more negative alpha

ERD (increased oxygen demand of the brain) were estimated to

be associated with a higher HR (increased effort of the heart),

while CH-PAT individuals with more negative alpha ERD

(increased oxygen demand of the brain) were associated with a

lower HR (decreased effort of the heart). Specifically, CH-NAT

individuals who had a higher resting HR presented with more

negative alpha ERD, suggesting the HR is increased due to an

increased oxygen demand; that is, balanced oxygen demand and

oxygen supply from the heart. On the other hand, CH-PATs

show the opposite—a lower HR in the setting of more negative

alpha ERD (increased oxygen demand), suggesting an autonomic

imbalance. For reasons to be determined, CH-PATs might

experience an imbalance of oxygen supply and oxygen demand.

The two opposite relationships (between resting HR and alpha

ERD during Stroop testing) are worthy of further study.
Resting HR variability significantly
associated with task-switching
performance in CH-NATs

Resting HRV associated with intraindividual response time

variability was studied in a previously published report of 104
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healthy young participants. Higher resting vmHRV was associated

with lower variability, where lower response time variability was

linked with better executive function (8). To our knowledge,

there were no similar reports from older individuals. We chose

task switching here, as it includes two other core executive

function components: working memory and cognitive control

(55). Using different age groups (older participants) and

paradigms (Stroop-based task-switching paradigm), our study

supported a similar relationship in the CH-NAT cohort:

specifically, resting RMSSD was significantly associated with the

task-switching performance (accuracy). Another slight difference

is that the behavioral performance associated with resting

RMSSD is accuracy instead of response time. This could be that

young individuals differ more in response time, while older

individuals differ in accuracy (56). This difference could be

attributed to structural and functional changes of an aging-

related speed-accuracy trade-off, most likely from aging-related

changes in processing and preparing behavioral responses (57).
TABLE 1 Sample studies of ECG/HRV and Alzheimer’s disease and related de

Population (age, sample size) Methods
32 participants were MCI-AD, 23 MCI-DLB, and
36 controls were also included. All groups were
matched by age (average age = 68–70 years), sex,
and education levels

Retrospective design from an existin
diagnosis was based on a battery of
neuropsychiatric testing, and MCI pa
part in a follow-up appointment in
unit. ECG recordings were also don

80 participants (30 DLB patients, 30 AD patients,
and 20 CH controls) were recruited for this study
(mean age 79.9 ± 4.7, 79.6 ± 5.6, and 77.2 ± 4.8
years, respectively

5 min recordings were done in a su
DLB patients underwent cardiac 123

scintigraphy in which an injection w
MMSE and UPDRS were also admi
evaluate cognitive function

173 participants (62 aMCI, 73 naMCI, 38 CN)
Cross-sectional, age ≥65 years. “Community-
dwelling” older adults who had at least one
geriatric visit to the Geriatric Outpatient Unit of
the local hospital

15 min supine and 10 min upright E
CT scan completed to further assess
burden along with a 3T-weighted M
genotyping used to test for the pres

82 patients with MCI (n = 82), white matter
lesions (WML) and no WML (mean age 67.8 + 7.6
and 72.5 + 8.8 years, respectively)

24-hour ECG recordings, MRI, MM
BSI

12 patients with probable AD were recruited as the
experimental group (5 men, 7 women; age range
55–73 years). Ten cognitively normal participants
(4 men, 6 women, age range 55–70 years) were
used for the control

Two 15 min ECG recordings—one a
another during a “tilt test.” AD pati
oral administration of a cholinestera
(eptastigmine)

20 patients with probable AD (mean age 71 ± 8.2
years) and 7 participants for the control group
(mean age 65 ± 2.4 years) were included in this
study. No indication of depressive episodes

MMSE was used to indicate severity
Two 5–10 min ECG recordings—su
upright. Consecutive R-R intervals a
spectrum analysis were gathered

38 participants (20 HC, 18 aMCI). Participants
were recruited from a memory clinic with or
without a clinical diagnosis of MCI, and were aged
≥60 years, community-dwelling, and spoke
English

Two visits—first a health screening
administration of MoCA and Rey’s A
Learning Test. Second, a 10 min EC
followed by a 30 min fMRI and ano
ECG recording during a Stroop colo
dual 1-back task

AD, Alzheimer’s disease; CH, cognitively healthy; CN, cognitively normal; DLB, demen

HRV, heart rate variability; LF, low frequency; MCI, mild cognitive impairment; aMCI,

RMSSD, root mean square of the successive differences; SDNN, standard deviation of
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HR, HRV, and AD

Both resting HRV and resting HR are regulated by the central

autonomic network linking the PFC with cardiac regulation (58).

Executive function that implemented in the PFC has been shown

to present dysfunction before memory impairment. It has been

reported that systemic physiological measures, such as HR or

HRV, will be affected by underlying neurodegeneration (27). A

summary from the recent literature is shown in Table 1.

Briefly, in participants with an early stage of AD including CH

and aMCI when resting HRV (e.g., HF) was lower, a compensatory

increase of cortical thickness (in AD signature regions) was

reported (65). With further progression, patients with AD

presented decreased HRV; however, the HRV change depended

on postures (63, 64). Further, HRV-proxied autonomic

dysfunction was linked with additional neurodegenerative

pathologies, such as white matter lesions (WML) and

cerebrovascular burden (61, 62), or the presence of dementia
mentia (ADRD).

Results References
g registry. MCI

rticipants took
an outpatient
e and analyzed

The MCI-DLB group had lower levels on SDNN,
RMSSD, LF, and HF compared to the MCI-AD
group. The MCI-AD group showed no significant
differences in HRV compared to the control. LF
was shown to be the best diagnostic marker

(59)

pine position.
I-MIBG
as given. An
nistered to

Autonomic dysfunction was greater in the DLB
group compared to the AD group. The DLB group
had significant decreases in all HRV parameters
(except LF/HF ratio) compared to both the AD
and control groups, with HF values showing the
greatest sensitivity compared to just the AD group

(60)

CG recordings.
vascular
RI. ApoE
ence of ApoE4

Hippocampal atrophy in the aMCI group was
higher while WMLs were greater in the naMCI
group, both which significantly correlated with
cerebrovascular burden. The autonomic response
to orthostatic changes (sitting to standing) was
distinct between aMCI and naMCI groups

(61)

SE, Depression Vascular diseases and autonomic dysfunction
(indexed as RMSSD and LF) were seen more in
MCI with WML than without WML

(62)

t rest and
ents received
se inhibitor

Power spectrum components were lower in AD
patients compared to controls at rest. During the
tilt test, there were no changes in the LF or HF
components in AD patients while controls
experienced an increase in the LF components and
a decrease in the HF component. This was only
seen in patients who underwent the cholinesterase
inhibitor treatment during the tilt test

(63)

of dementia.
pine and
nd a power

AD patients exhibited higher values in the LF
parameter compared to controls. The LF/HF ratio
showed high specificity in labeling AD patients
from controls when upright although the
difference in the supine position was not
significant

(64)

interview and
uditory Verbal
G recording
ther 10 min
r task and a

Higher resting HF-HRV or strong HF suppression
was related to lower cortical thickness in AD
signature regions, supporting a compensatory
mechanism in early stage

(65)

tia with Lewy bodies; ECG, electrocardiogram; HF, high frequency; HR, heart rate;

amnestic MCI; naMCI, non-amnestic MCI; MMSE, Mini-Mental State Examination;

the normal RR-interval.
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with Lewy bodies (59, 60). Our results added the study of resting

HR and HRV association with cognitive functions in the CH

individuals who had a pathology of early AD. Therefore, our

findings add to the existing knowledge base of the early stage of

CH, as well as the relationships between resting HRV, HR, and

subtle cognition changes.
Limitations and strengths

This study has a few limitations, as follows: (1) the sample size

is relatively small: the results are exploratory. Conclusions need to

be made carefully before results are confirmed in a larger

population study. Further female and male differences need to be

tested. (2) This is a cross-sectional study. Longitudinal studies

are needed to investigate the associations between resting HR,

HRV, and cognitive decline. The magnitude and sign of within-

person correlations can differ from those of group-level

correlations (66). A longitudinal study could help with

developing a predictive model based on observed correlations

within individuals. (3) Hypothetical reasons were raised to

explain the unique HR, HRV, and cognition relationships in CH-

PATs; but these explanations remain hypothetical and further

research is needed to either prove or disprove them. Further

studies are needed to elucidate the brain oxygen level, heartbeat

diastolic time, and molecular and genetic pathways. (4) Analyses

were descriptive; the statistical analysis done was essentially

bivariate, with fairly simple models and a small sample. We were

intrigued by the possible heart–brain connections and are at the

exploratory stage for this analysis. We plan to do a longitudinal

study, with a larger sample and more complex statistical models,

that can support drawing inferences about a population or

predicting early correlates of AD in the preclinical phase.

A major strength of the study is that the resting HR, HRV–

cognition relationships in CH-PATs versus CH-NATs were

replicated in multiple measures (MMSE, Stroop, tasks switching),

and findings were in line with previous reports, in a unique

population of CH-PATs. This provides strong albeit limited

evidence of potential heart–brain dysfunction in this early AD

stage.
Summary

We have reported that in CH-PATs: (1) a higher resting HR

was significantly correlated with lower MMSE, which was not

observed in CH-NATs, MCI, or AD; (2) a higher resting HR was

significantly correlated with less negative alpha ERD (less brain

processing) during Stroop, with opposite findings in CH-NATs;

and (3) resting RMSSD was not significantly associated with the

task-switching performance, unlike in CH-NATs. These bivariate

results support further investigation into whether CH-PATs can

be characterized by heart–brain dysfunction. The fact that

different tests revealed possible similar heart–brain dysfunction

suggests a robust heart–brain dysfunctional phenomenon.
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