
TYPE Original Research

PUBLISHED 05 October 2022

DOI 10.3389/fepid.2022.961593

OPEN ACCESS

EDITED BY

Alyssa E. Barry,

Deakin University, Australia

REVIEWED BY

Ana Cláudia Coelho,

University of Trás-os-Montes and Alto

Douro, Portugal

Ian Hastings,

University of Liverpool,

United Kingdom

*CORRESPONDENCE

Kristan Alexander Schneider

kristan.schneider@hs-mittweida.de

SPECIALTY SECTION

This article was submitted to

Infectious Disease Epidemiology,

a section of the journal

Frontiers in Epidemiology

RECEIVED 04 June 2022

ACCEPTED 06 September 2022

PUBLISHED 05 October 2022

CITATION

Schneider KA, Tsoungui Obama HCJ,

Kamanga G, Kayanula L and Adil

Mahmoud Yousif N (2022) The many

definitions of multiplicity of infection.

Front. Epidemiol. 2:961593.

doi: 10.3389/fepid.2022.961593

COPYRIGHT

© 2022 Schneider, Tsoungui Obama,

Kamanga, Kayanula and Adil Mahmoud

Yousif. This is an open-access article

distributed under the terms of the

Creative Commons Attribution License

(CC BY). The use, distribution or

reproduction in other forums is

permitted, provided the original

author(s) and the copyright owner(s)

are credited and that the original

publication in this journal is cited, in

accordance with accepted academic

practice. No use, distribution or

reproduction is permitted which does

not comply with these terms.

The many definitions of
multiplicity of infection

Kristan Alexander Schneider*,

Henri Christian Junior Tsoungui Obama, George Kamanga,

Loyce Kayanula and Nessma Adil Mahmoud Yousif
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The presence of multiple genetically di�erent pathogenic variants within

the same individual host is common in infectious diseases. Although this is

neglected in some diseases, it is well recognized in others like malaria, where

it is typically referred to as multiplicity of infection (MOI) or complexity of

infection (COI). In malaria, with the advent of molecular surveillance, data

is increasingly being available with enough resolution to capture MOI and

integrate it into molecular surveillance strategies. The distribution of MOI

on the population level scales with transmission intensities, while MOI on

the individual level is a confounding factor when monitoring haplotypes of

particular interests, e.g., those associated with drug-resistance. Particularly, in

high-transmission areas, MOI leads to a discrepancy between the likelihood

of a haplotype being observed in an infection (prevalence) and its abundance

in the pathogen population (frequency). Despite its importance, MOI is not

universally defined. Competing definitions vary from verbal ones to those

based on concise statistical frameworks. Heuristic approaches to MOI are

popular, although they do not mine the full potential of available data and

are typically biased, potentially leading to misinferences. We introduce a

formal statistical framework and suggest a concise definition of MOI and its

distribution on the host-population level. We show how it relates to alternative

definitions such as the number of distinct haplotypes within an infection or

the maximum number of alleles detectable across a set of genetic markers.

It is shown how alternatives can be derived from the general framework.

Di�erent statisticalmethods to estimate the distribution ofMOI and pathogenic

variants at the population level are discussed. The estimates can be used as

plug-ins to reconstruct the most probable MOI of an infection and set of

infecting haplotypes in individual infections. Furthermore, the relation between

prevalence of pathogenic variants and their frequency (relative abundance)

in the pathogen population in the context of MOI is clarified, with particular

regard to seasonality in transmission intensities. The framework introduced

here helps to guide the correct interpretation of results emerging fromdi�erent

definitions of MOI. Especially, it excels comparisons between studies based on

di�erent analytical methods.
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complexity of infection (COI), haplotype phasing, prevalence, transmission intensities,
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1. Introduction

Molecular surveillance increasingly complements classical

epidemiological data, whose collection is notoriously difficult,

for manifold reasons (1, 2). Diagnostics based on symptoms

rather than on proper diagnostic tests, the occurrence

of asymptomatic infections, self-treatment, and proper

maintenance of healthcare records are some of the obstacles

to collecting reliable epidemiological data (3, 4). This might

be particularly true for poverty-related diseases due to the

lack of medical infrastructure (5). Moreover, in areas of

high disease prevalence/incidence many infections might be

undetected due to widespread host-acquired immunity, as

is the case of malaria (6, 7). Moreover, identifying routes

of transmission by epidemiological data is hardly possible

for diseases for which contact tracing is impractical, such

as vector-borne diseases (8). Molecular surveillance can

provide a more fine-grained picture that allows us to identify

routes of transmission and new pathogenic variants from

population samples (9). Identifying pathogenic variants is

essential in the context of disease severity, immune escapes,

transmission intensities, sustained diagnostics, or drug

resistance (10). Molecular surveillance is not just important

on the population level to identify, e.g., the prevalence of

drug-resistant pathogenic variants, routes of transmission,

or transmission intensities, but also at the individual level

(11). Namely, the co-occurrence of several pathogens or

pathogenic variants might influence the clinical pathogenesis

and is well recognized in some diseases such as malaria

(12). In the context of malaria, the presence of multiple

pathogenic variants within an infection is often referred

to as multiplicity of infection (MOI) or complexity of

infection (COI).

The term MOI is ambiguous in the literature. In the case of

viruses, MOI was introduced by (13) to describe the distribution

of virions infecting a host cell. On first sight, this interpretation

seems quite different from the one outlined above, but formally

(mathematically) it is very similar. Note however, that the scale

here is on the cellular level, not on an epidemiological level.

In malaria, MOI is assumed to (i) scale with transmission

intensities (14), (ii) mediate the amount of recombination in

the parasite population, and (iii) affect the clinical manifestation

of the disease (11). In fact, the relationship between prevalence

of specific haplotypes, e.g., drug-resistant variants, and MOI

is particularly important in the case of seasonal transmission

(15, 16). Higher transmission intensity implies a higher

prevalence of drug-resistant haplotypes. Hence, from a clinical

point of view drug treatment is more likely to fail as

mentioned in Jaki et al. (17). While MOI in individual

infections and its distribution in the host population are

widespread in malaria, it is ambiguously defined in the

literature and often relies on verbal rather than concise formal

definitions. Importantly, the concept of MOI is not limited

to malaria.

Initially, the concept of MOI was defined in the context

of more or less identical statistical models (12, 18–22).

However, the verbal definition did not always match the formal

definitions. Formally, MOI appears in the statistical models

as the number of independent infective events (assuming

that exactly one pathogenic variant is transmitted at every

infective event) during one disease episode, counting multiple

infective events with the same variant multiple times (12).

However, it was described simplistically as the “number of

distinct parasite lineages” or “the average number of distinct

parasites” in an infection to make the complicated statistical

models more accessible to a broader audience (12, 14). The

latter definition coincides more with the empirical literature,

which often makes use of heuristic approximations for MOI (23,

24). Importantly, these approaches estimate different aspects

of MOI than the formal statistical methods. One of the main

differences is whether one is interested in the distribution of

MOI within the pathogen population, which is the basis of

statistical models, or MOI of a given infection. The latter can

also be estimated from statistical models based on population-

level estimates. Popular methods for estimation of MOI and

the distribution of pathogenic variants are based on maximum-

likelihood or Bayesian methods (12, 18–20). Although these

approaches are often regarded as competing, common to

both is that they involve the likelihood function. Hence,

they should yield consistent results. In any case, molecular

surveillance depends on the (i) sample design, (ii) molecular

assays being employed, and (iii) the statistical methods to

analyze data.

Here, we introduce a formal statistical framework that

unifies the different approaches to estimate MOI and the

frequency distribution of pathogenic variants. It is shown how

various approaches to estimate the parameters of interest are

related. Particularly, the relationship between theoretical and

empirical definitions of MOI are explained. This includes

estimation of the distribution of MOI within the pathogen

population and of the actual MOI of a given infection.

In methods, the statistical framework is derived and

described verbally. In the results, we show how quantities of

interest, which are typically estimated in empirical studies relate

to and are derived from estimates of statistical framework. Some

of these relationships are combinatorially involved and appear

complex. However, they can be implemented straightforwardly

in statistical software packages. Readers less interested in the

mathematical details are advised to follow the verbal explanation

and illustrations in the figures and skip the more involved

formulae, particularly in the Section Mathematical Appendix

in Appendix.
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2. Methods

A concise description of the underlying assumptions of the

model alongside their mathematical implications is presented

here. The model extends the method from Hill and Babiker

(18), further developed by Schneider and Escalante (12) for

the estimation of the average number of malaria clones (in a

blood sample) and their relative frequencies in the mosquito

population assuming a single-marker locus. Here, we extend

the model to an arbitrary number of markers (loci) each with

arbitrarily many alleles segregating.

2.1. Model background

We define multiplicity of infection (MOI) by a statistical

framework, which is applicable to a number of infectious

diseases (including malaria) in which infections with multiple

pathogen variants during one disease episode are important

and mutations within the host can be neglected, e.g.,

tuberculosis, chlamydia, Cryptococcus neoformans, toxoplasma,

human adenovirus (25), but not all infectious diseases, e.g.,

HIV, which is chronic. We consider MOI on an epidemiological

level, however, it can be interpreted on the cellular level

too, e.g., corresponding to the classical definition of MOI in

viruses. We first introduce the general framework, then discuss

(i) the applicability of the statistical model, (ii) alternative

interpretations, (iii) possible distributions ofMOI, (iv) howMOI

mediates empirical observations in clinical specimens. Finally,

we show how a number of empirical measures of MOI used in

the literature are connected to the framework here.

2.2. Definition of MOI

Haploid pathogens are assumed, e.g., bacteria, various

protozoa (including malaria). Although ploidy does not

apply, for simplicity, viruses are also subsumed as haploid

pathogens here.

Consider different variants in a pathogen population. These

variants correspond to different haplotypes. Regarding their

genetic architecture, haplotypes are determined by their allelic

configuration at an arbitrary number L of loci, with nk alleles

segregating at locus k. Hence, a total of H = n1 · n2 · . . . ·

nL different haplotypes are possible. Each haplotype can be

represented by a vector hhh of length L indicating the allelic

configuration at each locus. An allele might be a SNP, a number

of SNPs in a short non-recombining region, a microsatellite

variant etc. The set of possible haplotypes is denoted by H. Let

the haplotypes be labeled by 1, . . . ,H. In the following, we will

denote haplotypes as hhh if we refer to their allelic configuration

and by h if we refer to their label. Haplotypes are equivalent to

their label.

The (relative) frequency of haplotype h (h = 1, . . . ,H) in the

pathogen population is denoted by ph, or equivalently forhhh ∈ H

by phhh. The frequency distribution of all haplotypes is represented

by the vector ppp = (p1, . . . , pH), or equivalently ppp = (phhh)hhh∈H.

The following model of acquiring infections is assumed. A

host is infected with M haplotypes, which are drawn randomly

with replacement from the pathogen population. Let Mh be the

number of times the host is infected with haplotype h, subject

to the constraint M = M1 + . . . + MH . Therefore, these

numbers form a random vector MMM = (M1, . . . ,MH), which is

multinomially distributed with parameters M and ppp. In other

words, a particular realization mmm = (m1, . . . ,mH) (with m =

m1 + . . .+mH) of the random vectorMMM has probability

P[(M1, . . . ,MH) = (m1, . . . ,mH)|M = m]

=
m!

m1! · . . . ·mH !
p
m1
1 · . . . · p

mH
H . (1a)

In a more compact notation we write

P[MMM =mmm|M = m] = P[mmm|m] =

(

m

mmm

)

pppmmm. (1b)

Note the above is a conditional distribution given the total

number of haplotypes infecting the host. Since sampling with

replacement is assumed, the same haplotype might be counted

several times, i.e., M is not the number of distinct haplotypes

in an infection. The number of infecting haplotypes, M, is a

random variable, which we define as multiplicity of infection

(MOI). Its probability distribution is denoted by

P[M = m] := κm. (1c)

Importantly, MOI is defined here as a random quantity in a

statistical model. The conceptual advantage of this approach is

that it provides a formal and hence unambiguous definition.

This definition is meaningful for all infectious diseases, which

can be approximated by this model.

2.2.1. Quantities of interest

Given the above underlyingmodel, one is typically interested

in the following quantities: (i) the distribution of MOI in the

population, (κm), which is a measure of disease exposure; (ii)

the frequency distribution of the pathogenic variants, ppp; (iii)

the number of distinct pathogenic variants being present in an

infection, i.e., signm1+signm2+. . .+signmH (here, signmk =

0 if mk = 0 and signmk = 1 if mk ≥ 1); (iv) the prevalence

of the pathogenic variants in the population, i.e., the probability

to observe a certain variant in an infection (see below); (v) the

realization of MOI,m, in a particular infection.
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2.3. Applicability of the model

MOI is considered an important quantity in diseases

like malaria. However, the framework introduced here is not

limited to this particular disease. In fact, the model has

several interpretations.

The first interpretation arises from considering genetically

distinct variants (haplotypes) of one malaria species, e.g.,

P. falciparum. Here, MOI corresponds to the number of

independent infectious events within the course of an infection

(super-infection). This interpretation is the same as in Hill

and Babiker (18), Schneider and Escalante (12), Schneider (16,

26), and Hashemi and Schneider (27) and corresponds to the

illustration in Figures 1A, 2. The quantities of interest are the

distribution of MOI in the host population and the frequency

distribution of parasite haplotypes etc. (see above).

This interpretation assumes that at each infectious event

exactly one pathogenic variant is transmitted. However, this

interpretation is not so strict. Namely, the model also

approximately applies to the case in which several parasite

haplotypes are transmitted at one infective event, referred here

as co-infections (Figure 1B). This second interpretation is only

approximate, because the distribution of parasite haplotypes co-

occurring in the mosquitoes has to be known. In the strict sense,

a model for the vector dynamics would be necessary. Moreover,

the model is approximately applicable to any combination of

super- and co-infections.

A third interpretation would be that pathogenic variants

correspond to different pathogen species (see Figure 1C), e.g.,

two or more malaria species or malaria and other diseases. This

is of particular interest if one seeks to investigate comorbidities.

In the case of malaria, the occurrence of co-infections with

different malaria species are of particular interest, especially

since infections with P. ovale, P. malariae, P. knowlesi and in

some malaria endemic regions even P. vivax are considered

neglected diseases. More precisely, the host population is

exposed to different malaria species, and their frequencies

indicate their relative importance. Hence, the relative species

frequencies and MOI are informative on the relative exposure

of the population to the different species.

Pathogens are not limited tomalaria. Themodel is applicable

to pathogens (including viruses and bacteria) that have similar

properties as malaria. In particular, the pathogens must not

chronically remain in the host, and several infective contacts

must be possible during the course of an infection. Furthermore,

mutations of the pathogen within an infectionmust be negligible

and the frequency distribution of pathogenic variants must

not change too rapidly. For instance, the model would not be

applicable to HIV, which remains chronic in the host, besides the

fact that genetic variation is created by de novomutations within

the host.

All the above motivations were applicable to infectious

diseases on an epidemiological level. However, this is not

necessary. Historically, the concept of MOI was introduced for

viruses on the cellular level, i.e., to describe the average number

of phages infecting cells simultaneously. When considering

different pathogens, the concept of MOI corresponds to the

number of pathogens of each type infecting the same cell (28). In

viruses, MOI was often referred to as the “population average,”

rather than to the realization as here.

2.4. Distributions of MOI

Different assumptions on the distribution (κm) of MOI

have to be made, depending on the application. Disease free

individuals have MOIm = 0, while disease positive individuals

have MOIm ≥ 1. If one wants to include disease free

individuals, the support of MOI is m = 0, 1, 2, . . .. If only

disease positive individuals are considered, MOI ranges over all

positive integers.

A standardmodel assuming rare and independent infections

would yield the Poisson distribution, i.e.,

κm = e−λ
λm

m!
, for m = 0, 1, . . . , (2)

where λ > 0 is the Poisson parameter, completely characterizing

this distribution. Note that the mean and variance of the Poisson

distribution are both given by λ. When considering only disease

positive individuals, this has to be replaced by a conditional (or

positive) Poisson distribution, i.e.,

κm =
1

eλ − 1

λm

m!
, for m = 1, 2, . . . . (3)

The Poisson assumption might be too simplistic in practice,

especially if different strata in the population have different

disease exposure. For instance, assume the host population

consists of S different strata, in each of which MOI follows a

different Poisson distribution. If αs is the relative size and λs the

Poisson parameter of the sth stratum, the resulting distribution

of MOI is a mixture of Poisson distributions, i.e.,

κm =

S
∑

s=1

αs

eλs

λms

m!
, for m = 0, 1, . . . . (4)

The mean of this distribution is the average Poisson parameter

S
∑

s=1

αsλs, (5)

while the variance is given by

S
∑

s=1

αsλs +

S
∑

s=1

αsλ
2
s −

(

S
∑

s=1

αsλs

)2

. (6)

This distribution is overdispersed, i.e., unlike for the Poisson

distribution, the variance is larger than themean. (This is seen by
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FIGURE 1

Super- and co-infections: Illustrated is the di�erence between super- and co-infections in the case of vector-borne diseases. (A) Shows 4

super-infections (MOI = 4) with pathogenic variants, i.e., four independent infective events. At each infective event one pathogenic variant is

transmitted. Pathogenic variants are characterized genetically by their allelic expressions (colors) at three positions (shapes) in the genome,

which is illustrated by the horizontal lines. Note that MOI = 4 although only three distinct haplotypes are transmitted, because two vectors

transmit the same pathogenic variant. (B) Illustrates a co-infection with three pathogenic variants, i.e., a single infective event at which three

pathogenic variants are transmitted. (C) Illustrates a super-infection with two di�erent pathogens, illustrated by di�erent shapes, transmitted by

di�erent vector species.

FIGURE 2

MOI, maximum, and average numbers of alleles: Illustrated are the alternative definitions of MOI for three hypothetical infections with

pathogenic variants. (A) Shows four super-infections (cf. Figure 1A), i.e., MOI = 4, with three di�erent haplotypes, i.e., C = 3. At each locus, two

di�erent alleles are observed, hence the maximum number of alleles per locus equals two, i.e., K = 2, and the average number of alleles also

equals two, i.e., K = 6/3 = 2. (B) Shows three super-infections (MOI = 3) with three di�erent haplotypes (C = 3). At the first and second locus,

two di�erent alleles are observed, while three di�erent alleles are observed at the third locus, hence the maximum number of alleles equals

three (K = 3), while the average number of alleles equals K = 7/3 = 2.33. (C) Illustrates two super-infections (MOI = 2) with two di�erent

pathogenic variants (C = 2). The two variants di�er at the first and third locus but not at the second locus. Hence, the maximum number of

di�erent alleles is K = 2, while the average number is K = 5/3 = 1.67.

applying Jensen’s inequality.) A similar expression would hold in

the conditional case (see Table 1).

In the limit case of infinitely many strata, where the

αs approximate a gamma distribution, one arrives at a

Poisson-Gamma mixture, which yields the negative binomial

distribution. It is given by

κm =
Ŵ(m+ ν)

m!Ŵ(ν)
pν (1− p)m, for m = 0, 1, . . . , (7)
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TABLE 1 Mean, variance, and PGF of MOI distributions: Presented are

the mean, variance, and the PGF for di�erent MOI distributions as

described in the text.

Distribution Mean Variance PGF

Poisson λ λ eλ(x−1)

Positive poisson λ

1−e−λ
λ+λ2

1−e−λ
−
(

λ

1−e−λ

)2
eλx−1
eλ−1

Mixture of

poisson

S
∑

s=1

αsλs

S
∑

s=1

αs(λs + λ
2
s )−

( S
∑

s=1

αsλs

)2 S
∑

s=1

αse
λs(x−1)

Mixture of

positive poisson

S
∑

s=1

αsλs
1−e−λs

S
∑

s=1

αs(λs+λ
2
s )

1−e−λs
−
( S
∑

s=1

αsλs
1−e−λs

)2 S
∑

s=1

αs(e
λs x−1)

eλs−1

Negative

binomial

ν(1−p)
p

ν(1−p)

p2
pν

(1−(1−p)x)ν

Positive negative

binomial

ν(1−p)
p(1−pν )

ν(1−p)

p2(1−pν )2
pν

(1−(1−p)x)ν (1−pν )

where 0 < p < 1 and ν > 0 are the parameters characterizing

this distribution. This distribution is also overdispersed but

more flexible than the Poisson distribution. When considering

only disease positive individuals, this distribution has to be

replaced by its conditional version, given by

κm =
Ŵ(m+ ν)

m!Ŵ(ν)

pν (1− p)m

1− pν
, for m = 1, 2, . . . . (8)

Notably, any other distribution can also be specified, or no

particular distribution needs to be imposed. The latter would be

a non-parametric assumption.

The generating function is important in the following.

Denoting the random variable by MOI and its realizations bym,

the probability generating function (PGF) of MOI is defined as

E[zMOI] =

∞
∑

m=0

κmz
m. (9)

For the purpose here, to accommodate the case in which only

disease-positive samples are considered (κ0 = 0) and that in

which disease-negative samples are considered (κ0 > 0), we

define the generating function as a slight modification of the

PGF, namely as

G(z) := E[zMOI]− κ0. (10)

In the case κ0 = 0, G(z) coincides with the PGF, for κ0 > 0,

G(z) is not the PGF, but rather a definition that will simplify the

notation in what follows.

FIGURE 3

From infections to observations: Illustrated are three infections

with a mosquito-borne disease and the corresponding

observations assuming that pathogenic variants are

characterized by a single marker. Infections correspond to

sampling pathogenic variants with replacement according to

their frequency distribution in the pathogen population

(mosquito pool). Infections are shown in the middle row, while

their corresponding observations are shown in the bottom row.

The first infection has MOI = 2 and contains two di�erent

pathogenic variants. In this case both variants are detectable in a

clinical sample. The second infection has MOI = 3, but only two

di�erent pathogenic variants are transmitted, because one

variant is transmitted twice. The number of times each variant is

infecting cannot be reconstructed from a clinical sample, i.e.,

infections are in general unobservable. Only the

absence/presence of variants is observable. The third sample

has MOI = 4 and contains three di�erent pathogenic variants.

2.5. Observations

Information about the infection is obtained from molecular

assays performed on clinical specimens, e.g., blood samples.

In the simplest case haplotypes are determined by a single

locus (see Figure 3), i.e., the H haplotypes correspond to n1 =

H alleles. Typically, even with a “perfect” molecular assay, the

vector mmm, indicating which haplotype (allele) was transmitted

howmany times is unobservable. Only the absence and presence

of haplotypes (alleles) is observed (Figure 3). (This assumes

that the molecular assay detects all infecting haplotypes, and

haplotypes are not incorrectly identified.) The absence/presence

of haplotypes corresponds to a 0-1 vector xxx = (x1, . . . , xH) of

length H, where xk = 1 if mk ≥ 1 and xk = 0 if mk = 0. (In

mathematical terms xk = signmk or xxx = signmmm.) In particular,

MOIm = |mmm| = m1+m2+ . . .+mH is in general unobservable

(Figure 3).

More realistically, haplotypes are determined by several

loci. If the molecular assay provides phased information, i.e.,

full haplotype information, haplotypes are formally equivalent

to alleles at a single locus, and will be treated as such here.

Moreover, each set of loci for which phased information is

available in general will be treated as a single locus.
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Often, molecular assays do not provide phased information

(see Figure 4). Hence, within each infection, not just the

information about how many times haplotype h is infecting

(mh) is lost (see “distinct haplotypes” in Figure 4), but also

the actual haplotype information (see “unphased information”

in Figure 4). If only a single haplotype is infecting, haplotype

information is naturally retained. However, if two or more

haplotypes are infecting simultaneously—due to the lack of

phasing—it is in general ambiguous, which haplotypes are

present in the infection. For each locus only the absence and

presence of the alleles carried by the infecting haplotypes

are observable (see “absence/presence” in Figure 4). Hence, an

observation is a vectorxxx = (xxx1, . . . ,xxxL) of length L, where the lth

element xxxl is a 0–1 vector of length nl, indicating the absence and

presence of alleles at locus l. Clearly, many different infections

can lead to the same observation xxx. We write mmm → xxx if the

observation xxx is compatible with infectionmmm.

The probability of observation xxx is

P[xxx] =

∞
∑

m=0

κm

∑

mmm :

|mmm|=m
mmm→xxx

(

m

mmm

)

pppmmm, (11)

where the inner sum runs over all possible infections withmmmwith

MOIm that are compatible with the observation xxx. An explicit

form of Equation (11) is combinatorically rather involved. In the

one locus case, an explicit form assuming a Poisson distribution

is given in Schneider and Escalante (12), Schneider (26), and

Hashemi and Schneider (27).

2.5.1. Erroneous observations

In practice, molecular assays will not be “perfect” i.e., an

assay might fail to detect certain alleles at one or more loci

(see “failure to amplify” in Figure 4), and/or might erroneously

detect alleles that are not present (see “assay errors” in Figure 4).

This can be incorporated into the model. In its general form

let P[mmm ↪ yyy] be the probability that an infection characterized

by the vectormmm yields observation yyy. (Note the notationmmm ↪ yyy

is used to indicate that infections mmm can lead to incompatible

observations yyy.) The probability to observe yyy is then given by

P[yyy] =

∞
∑

m=0

κm

∑

mmm :

|mmm|=m
mmm↪ yyy

P[mmm↪ yyy]

(

m

mmm

)

pppmmm. (12)

Note that Equation (12) is not explicit at all, since a probabilistic

model P[mmm ↪ yyy] needs to be specified for all possible mmm and yyy.

This can be done in various different ways [e.g., (29)] and there

is not one true model.

Importantly, Equation (11) is a special case of Equation (12)

in case that P[mmm↪ yyy] = 1 ifmmm is compatible with yyy (mmm → yyy) and

P[mmm↪ yyy] = 0 ifmmm is not compatible with yyy (mmm 6→ yyy).

3. Results

Given the general framework, the quantities of interest

depend on the underlying questions. From an epidemiological

point of view, one is typically interested in quantities on

the pathogen-population level. Such quantities are the model

parameters that describe the distribution of MOI and the

haplotype-frequency distribution as well as parameters derived

from them, e.g., prevalence of certain haplotypes, i.e., the

probability that they occur in an infection. Such quantities are

fundamental for molecular surveillance.

From a clinical point of view, one is more interested in

reconstructing the actual infection, i.e., to determine MOI

for particular infections and to reconstruct which pathogen

haplotypes interact in a given infection.

In any case, the quantities of interest can be estimated

from empirical data using the general framework. There is not

a unique way to estimate quantities of interest. Two popular

methods are maximum-likelihood estimation and Bayesian

methods. Both methods invoke the likelihood function.

3.1. Estimating quantities of interest

Assume a data set of N observations yyy1, . . . ,yyyN collectively

denoted by X. The likelihood function of the model parameters

θθθ is

L(θθθ;X) =

N
∏

k=1

P[yyyk], (13)

where P[yyy] is given by Equation (12). The model parameters

θθθ contain all parameters describing the distribution of MOI,

the haplotype-frequency distribution ppp, and eventually the

parameters that describe errors in molecular assays.

If the genetic architecture of the haplotypes is complex and

a complex model for errors in molecular assays is assumed, the

probabilities P[yyyk] can be combinatorically infeasible. Therefore,

depending on the specific underlying model, the likelihood

function has to be approximated for statistical inferences.

3.1.1. Maximum-likelihood estimation

One popular method to estimate model parameters is

using maximum-likelihood (ML) estimation, i.e., the model

parameters θθθ are estimated as those that maximize the likelihood

function. This method assumes that there is a true but unknown

parameter vector θθθ0, and yields a point-estimate θ̂θθ for θθθ0.

For instance, the method of Hill and Babiker (18)

provides a maximum-likelihood estimate (MLE) for a genetic

architecture considering one or two loci and assuming either a

Poisson, conditional Poisson, negative binomial, or conditional

negative binomial distribution for MOI. For the same MOI
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FIGURE 4

Infections and observations: Illustrated are three di�erent infections with pathogenic variants of a mosquito-borne disease (cf. Figures 2, 3).

Pathogenic variants are characterized by alleles (colors) at three di�erent genetic markers (shapes). The variants circulating in the pathogen

population are illustrated at the top (mosquito pool). The second row illustrates the three infections of Figure 2, which is unobservable in

practice. The first loss of information is the number of times each variant was transmitted. Resulting only in the presence of distinct haplotypes

present in the infections. Typically, molecular information is unphased. If phasing information is removed, the observations illustrated in the

fourth row emerge. However, information on how many haplotypes carry which allele is also lost. Only the absence/presence of alleles in a

clinical specimen is typically possible as illustrated in the fifth row. Due to imperfect molecular methods, some alleles at some loci might fail to

be identified, as illustrated in the sixth row (failure to amplify). Illustrated in row seven (assay errors) are errors in molecular assays that can result

in wrong identification of alleles at each marker.
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distributions, Hastings and Smith (19) provide MLEs assuming

that haplotypes are characterized by up to 3 biallelic loci (e.g.,

SNPs). For the Poisson and conditional Poisson distribution,

this approach was generalized to an arbitrary number of SNPs

in cf. Li et al. (30) and Tsoungui Obama and Schneider (31).

In Schneider and Escalante (12) profile-likelihood confidence

intervals for the MLE assuming a single locus and a

conditional Poisson distribution are constructed. Under the

same assumptions, Hashemi and Schneider (27) provides several

bias-corrected MLEs.

ML methods typically have desirable properties.

Namely, under fairly general conditions, the estimators

are asymptotically unbiased, efficient, and consistent. However,

ML methods might be sensitive to outliers in the data

(cf. 32, Chapter 5).

3.1.2. Bayesian estimation

Unlike ML estimation, Bayesian approaches in the strict

sense do not assume the existence of a true unknown parameter

θθθ0. Rather the parameterθθθ is regarded as a random vector. Given

prior information about the distribution of the parameter θθθ , i.e.,

the distribution P[θθθ] is known, one seeks to derive the posterior

distribution of θθθ after observing a data set X, i.e., one seeks

to derive P[θθθ |X]. Knowledge of the prior distribution must be

independent of the data set X. In other words, P[θθθ] has to be

estimated from different data sources than X.

Although ML and Bayesian approaches are often seen

as competing alternatives, there is an intrinsic relation

between them. Namely, by the Bayesian theorem, the posterior

distribution is related to the likelihood function by the relation

P[θθθ |X] ∝ L(θθθ;X) P[θθθ]. If no prior information is available

on θθθ , an uninformative (pseudo-) prior, which gives equal

weight to every point in the parameter space should be used.

In this case the likelihood function is proportional to the

posterior distribution.

In Bayesian approaches point estimates are obtained, e.g., as

the mean, median, or maximum of the posterior distribution.

The latter, known as the maximum aposteriori (MAP), coincides

with the MLE if an uninformative prior is chosen.

In conclusion, a certain agreement between Bayesian and

ML methods is expected, except in the cases in which the

maximum of the likelihood function is attained at a point with

low prior probability. This situationmight be characteristic if the

observed dataset is an outlier and not representative. Therefore,

a comparison between both approaches can be informative on

the confidence one can have in a given data set. In practice,

disagreement between alternative ML and Bayesian methods,

which are not based on the same statistical model, might be

indicative of erroneous methods.

In the context of estimating haplotype frequencies andMOI,

the Bayesian method of Ross et al. (22) uses the Metropolis-

Hastings algorithm to estimate haplotype frequencies, but

needs heuristic MOI estimates. Also the program THE REAL

McCOIL [cf. Chang et al. (21)] uses the Metropolis-Hastings

algorithm to provide MOI and minor-allele frequency estimates

at uncorrelated SNPs.

3.1.3. Other approaches

Note that ML and Bayesian estimation are not the only

alternatives. For instance, the method of moment estimation

can also be used [cf. Vaart (32)]. In fact, assuming a single

marker locus and the statistical model Equation (11) based on

the conditional Poisson distribution, themethod ofmoments for

the prevalences (cf. below) of marker frequencies yields the same

estimates as the ML method in Schneider (16).

Also ad-hoc methods, which are not based on a formal

statistical framework, to estimate quantities of interest are

common. Regarding the MOI, it is often defined as the

maximum number of alleles observed across a number of loci,

or as the average number of alleles across several loci. We will

further investigate these definitions in the light of our framework

below. Also haplotype frequencies are often used by ad-hoc

methods. Usually, only samples from which haplotype phasing

is unambiguous are retained, either by removing all “multiple

infections” (cf. 33), or by removing samples that contain more

than two alleles at more than one marker (cf. 34). These “ad-

hoc” estimates can be also considered in the context of the

statistical framework assumed here to assess their statistical

properties. Particularly, such methods are sub-optimal because

they disregard molecular information and they are typically

strongly biased.

3.1.4. Relation between di�erent definitions of
MOI

MOI was defined as the number of distinct haplotypes in

an infection in Nabet et al. (23). Both, this definition and ours

have in common that MOI per se is an unobservable quantity

if no phased haplotype information is available. However, the

definitions differ in several aspects. First, our definition of MOI,

i.e., the number of super-infections, is based on the statistical

model that only one haplotype is transmitted per infective event

(cf. Figure 1A and Section 2.3). Such an assumption is not

made by the definition in Nabet et al. (23) (compare super-

with co-infections as illustrated in Figures 1A,B). Second, unlike

our definition, MOI as defined in Nabet et al. (23) becomes

an observable quantity if haplotype information is phased (see

Figure 4 “distinct haplotypes”). Considering the examples in

Figure 1 (see also Figure 2) MOI according to our definition

would equal to 4, 3 and 2, respectively, for the three illustrated

infections. The number of distinct haplotypes however, would be

3, 3, and 2. In general, our definition of MOI will always yield a

value larger or equal to the number of distinct haplotypes within
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the infection, because in our definition haplotypes are counted

multiple times if they were transmitted several times.

Denote the number of different haplotypes within an

infection by C. Assuming the same underlying statistical model,

the probability of observing an infection with C = c different

haplotypes is (see Section Mathematical Appendix in Appendix)

P[C = c] =
∑

A⊆{1,...,H} :
|A|=c

∑

B⊆A

(−1)|A|−|B|G

(

∑

h∈B

ph

)

for c > 0

(14a)

and

P[C = 0] = κ0. (14b)

In Figure 5 the mean number of haplotypes E[C] is

contrasted to the mean MOI E[MOI] = ψ (see Table 1) for the

conditional Poisson distribution for a range of MOI parameters

λ and a genetic architecture of two biallelic loci. In Figures 5A,B

a balanced and skewed haplotype frequency distribution is

assumed. If only single infections (MOI = 1) occur, i.e., λ = 0,

also only one haplotype is present in each infection, and the

two mean values coincide. However, as super-infections become

more common, i.e., as the Poisson parameter λ increases, the

differences between the expected values increases. The reason

is that super-infections with the same haplotype become more

likely, i.e., the number of super-infections will likely exceed

the number of distinct haplotypes in an infection. This is

particularly true for the assumed genetic architecture with just

four possible haplotypes. The differences between the expected

MOI and expected number of distinct haplotypes is large for

skewed haplotype frequency distribution than for balanced

ones [compare Figure 5(A) with (B)]. The reason is that co-

occurrence of the predominant haplotype is likely in super-

infections. Importantly, the distribution of MOI and hence

the mean MOI are independent of the haplotype frequency

distribution, while the number of distinct haplotypes in an

infection strongly depends on this distribution as seen from

Equation (14). Figures 6, 7 contrast the probability distribution

P[C = c] with the MOI distribution P[MOI = m] = κm.

Clearly, with the assumed genetic architecture,C ≤ 4 whileMOI

is an unbounded quantity. As a consequence the mean MOI

always exceeds the mean number of infecting haplotypes.

Often MOI is defined or rather estimated as the maximum

number of alleles observed at the considered loci [cf. Nabet

et al. (23)]. This definition, unlike our definition of MOI or the

one in Nabet et al. (23), is an observable quantity (see Figure 4

“absence/presence”). Let us denote the maximum number of

alleles observed across the loci by K. Importantly, K cannot

exceed the number of distinct haplotypes in an infection, i.e.,

K ≤ C. In the examples in Figure 2 (see also Figure 4) the

number of haplotypes in the illustrated infections are 3, 3 and 2,

whereas the corresponding maximum number of alleles across

the loci are 2, 3, and 2. Using K as a proxy for MOI is only

meaningful for multiallelic loci. For biallelic loci (e.g., SNPs),

the maximum number of alleles across loci is limited by 2.

Hence, for such data K might substantially underestimate MOI.

This case is illustrated in Figures 5–7. The expected maximum

number of alleles per locus is lower than the expected number

of distinct haplotypes and substantially lower than the mean

MOI (see Figures 5–7), which becomes clear from inspection

of the probability mass function (see Figures 6, 7). This is

particularly pronounced for skewed frequency distributions

[compare Figure 5(A) with (B)].

The probability mass function for the maximum number

of alleles across loci is dependent on the haplotype frequency

distribution and has a rather complicated form. It is derived

in Section Distribution of the average number of alleles across

markers in Appendix of the Section Mathematical Appendix in

Appendix and given by Equation (A.17 in Appendix). In Weir

et al. (24) the average number of alleles across several marker

loci was used as a measure of MOI. Let us denote this average

by K. Clearly, the average number of alleles across several loci is

smaller than the maximum number of alleles across the loci, i.e.,

K ≤ K. Considering the examples in Figure 2 (see also Figure 4),

the maximum numbers of alleles across the loci are equal to 2, 3,

and 2, respectively, while the average numbers are, 2, 2.33, and

1.67, respectively.

The probability mass function of K is similarly complicated

as the one of K and hence only presented in the Section

Distribution of the maximum number of alleles across markers

in Appendix of the SectionMathematical Appendix in Appendix

(see Equation A.17 in Appendix). The expected value E[K] is

lower than that of K and substantially lower than that of the

mean MOI, particularly for unbalanced haplotype frequency

distributions [compare Figure 5(A) with (B)].

3.1.5. Prevalence

Following the distribution of haplotypes in the pathogen

population is a cornerstone of molecular surveillance and the

population genetics of the pathogen. At the public health

sector, however, one is more interested in the manifestation

of individual infections. The clinical pathogenesis might be

substantially influenced by the mixture of infecting pathogenic

variants, particularly with drug-resistant variants or those

that challenge diagnostics. Hence, rather than its relative

abundance in the pathogen population, the probability that a

pathogen haplotype is detected in a host, i.e., its prevalence, is

more relevant.

A particular MOI vector mmm is a realization of a random

vector. We denote the random variable indicating how often

a haplotype hhh was transmitted by Mhhh. The prevalence of

haplotype hhh can be straightforwardly derived to be (see Section
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FIGURE 5

Mean MOI: Shown are the expectations of the di�erent definitions of MOI, i.e., the mean numbers of super-infections (ψ ), di�erent haplotypes

(E[C]), the maximum number of alleles across loci (E[K]), and of the average number of alleles per locus (E[K]). The same genetic architecture as

in Figures 6, 7 are assumed. The haplotype frequency distributions used in (A,B) are show at the top of the panels.

FIGURE 6

Distributions of MOI-derived quantities: Illustrated are the probability mass function of the di�erent definitions of MOI, i.e., the number of

super-infections (κm), the number of di�erent haplotypes (C), maximum number of alleles across loci (K), assuming that the number of

super-infections is conditionally Poisson distributed and a genetic architecture of two biallelic loci, resulting in 4 possible haplotypes. The

haplotype frequency distribution (shown on top of the panels) is assumed to be balanced. Figures (A–D) Show the probabilities of MOI (in the

respective definition) to be equal 1, 2, 3, and 4, respectively, as a function of the Poisson parameter λ. With the underlying genetic architecture

C ≤ 4 and K ≤ 2.

Mathematical Appendix in Appendix)

P[Mhhh > 0] = 1− G(1− phhh), (15)

where G(x) is the probability generating function (PGF) of

the distribution of MOI. (The PGF allows to easily retain the

probabilities κm from its derivatives.) Examples for the PGF for

different choices of MOI distributions are presented in Table 1.

Note that the prevalence of haplotype h has a different

interpretation when considering random individuals or disease-

positive individuals. In the former case it is the probability that
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FIGURE 7

(A–D) Distributions of MOI-derived quantities: See Figure 6 but for an unbalanced haplotype frequency distribution.

the individual is infected and the infection contains haplotype h,

while in the latter case it is the probability that the haplotype h

occurs in an infected individual.

Assume G is the generating function of MOI, with κ0 > 0.

Then the corresponding conditional distribution κ̃m =
κm

1− κ0
has the generating function G̃(x) = G(x)−κ0

1−κ0
. The prevalence of

haplotype h in the whole population (infected and uninfected)

is 1 − G(1 − ph), while the prevalence of haplotype h among all

infected individuals is then 1− G̃(1− ph).

Consider only infected individuals. If only single infection

occur, i.e., each infection has MOIM = 1, the prevalence of

haplotype h equals its frequency, i.e., P[Mh > 0] = ph. In any

other case P[Mh > 0] > ph.

While knowledge of the prevalence of certain haplotypes,

e.g., those conferring drug resistance, can be fundamental

for different reasons, accurate estimates of prevalence

are notoriously difficult in endemic areas with seasonal

transmission. If the distribution of MOI changes seasonally,

so does prevalence, even with a constant haplotype frequency

distribution. Seasonal transmission is common in mosquito-

borne diseases such as malaria (15). Seasonality in precipitation

mediates the abundance of disease vectors and hence disease

transmission. Figure 8 exemplifies hypothetical changes in

prevalence due to seasonality in transmission. From the

examples in Figure 8 it becomes clear that prevalence estimates

will be sensitive to the time points of data collection. Two aspects

are important in this regard. First, it will be easier to achieve

a good sample size during times of high disease transmission.

Second, the relevant times for sample collection are measured

in generation time (of full transmission cycles) rather than in

real time. In other words, a month of high transmission might

correspond to several months of low transmission. Altogether,

seasonality leads to ascertainment bias in practice, which has to

be properly addressed by adequate sample designs.

3.2. MOI per infection

Another quantity of interest is the actual MOI of a particular

infection, i.e., for an observation xxx one wants to know the actual

MOI. Since this quantity is unobservable, one can provide the

probability distributions of MOI given an observation xxx. For this

purpose the estimates for the MOI distribution and haplotype

frequency distribution can be used as plug-in estimates.

In particular, in a frequentist framework, after deriving point

estimates for the model parameters θ̂θθ , the probability of an

observation xxx having MOI = m is given by

P[xxx,m] = κ̂m

∑

mmm :

|mmm|=m
mmm→xxx

(

m

mmm

)

p̂pp
mmm
. (16a)
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FIGURE 8

Prevalence: Shown is the change in prevalence (solid lines) of pathogenic variants corresponding to di�erent frequencies (dashed lines) over

time and assuming that MOI follows a conditional Poisson distribution with changing MOI parameter. Time is measured in units of transmission

cycles. (A) Corresponds to seasonal transmission with a dry season having MOI parameter λ = 0.8 that lasts for five transmission cycles and a

rainy season with higher transmission (λ = 1.2) which lasts for 10 transmission cycles. (B) Assumes seasonally fluctuating transmission, where

the MOI parameter λ fluctuates in a sine wave that lasts 20 transmission cycles by 30% around a seasonal average of λ̄ = 1.

The probability of MOI = m given observation xxx is hence

P[MOI = m|xxx] =
P[xxx,m]

P[xxx]
=

κ̂m
∑

mmm :

|mmm|=m
mmm→xxx

(m
mmm

)

p̂pp
mmm

∞
∑

m=0
κ̂m

∑

mmm :

|mmm|=m
mmm→xxx

(m
mmm

)

p̂pp
mmm
. (16b)

A more explicit but still complicated formula is presented in

Section Mathematical Appendix in Appendix.

The true MOI underlying an observation xxx can then be

estimated as the maximum a posteriori, i.e., as

m̂ = argmax
m

P[MOI = m|xxx]. (16c)

Although the above quantity has a relatively complex formula, it

is straightforward to implement.

Similarly, one might be interested in the actual number of

distinct haplotypes in an infection with observation xxx. Namely,

P[C = c|xxx] =
P[xxx,C = c]

P[xxx]
. (17)

Amore explicit form of the above probability is combinatorically

involved, but straightforward to implement algorithmically,

therefore it is only presented in the Section Mathematical

Appendix in Appendix.

Assume a genetic architecture of two biallelic loci, resulting

in four possible haplotypes hhh1 = (1, 1), hhh2 = (1, 2), hhh3 = (2, 1),

hhh4 = (2, 2). Further, assume the observation xxx = ({1}, {1, 2}).

Obviously, exactly two haplotypes (hhh1, hhh2) are present in the

underlying infection, i.e., the given observation xxx = ({1}, {1, 2}),

C = 2 with probability one, or

P
[

C = 2
∣

∣ ({1}, {1, 2})
]

= 1. (18)

However, the underlying MOI is unclear. The probability of

MOI = m given the observation xxx = ({1}, {1, 2}) is

P
[

MOI = m
∣

∣ ({1}, {1, 2})
]

= κ̂m
(p1 + p2)

m − pm1 − pm2 + 0m

G(p1 + p2)− G(p1)− G(p2)+ G(0)
. (19)

Figure 9 shows P
[

MOI = m
∣

∣ ({1}, {1, 2})
]

assuming a

conditional Poisson distribution for MOI as a function of the

Poisson parameter λ for two different haplotype distributions.

For the observation xxx = ({1, 2}, {1, 2}) it is unclear,

whether 2, 3, or 4 haplotypes are present in the infection. From

Figure 9, it becomes clear that the distribution of MOI given

an observation depends sensitively on the underlying haplotype

frequency distribution and MOI parameter, indicating how

likely super-infections are. In Figure 9A it is assumed that both

haplotypes are equally frequent at 25%. Unless λ is large, MOI =

2 is most likely. This picture changes in Figure 9B, where it

is assumed that the first haplotype is predominant. In such a

setting, higher values of MOI are more likely. In particular, if

the predominant haplotype is detected in an infection with a

minor haplotype, it is likely that the predominant haplotype

was transmitted several times. Hence, larger values of MOI are

more likely.

Figures 10A,C illustrates P
[

MOI = m
∣

∣ ({1, 2}, {1, 2})
]

for two different haplotype frequency distributions. The

observation ({1, 2}, {1, 2}) can be caused by 2 (hhh1 and hhh4 or hhh2

andhhh3), any 3 or all 4 infecting haplotypes. Although for λ > 1.2

an MOI > 2 is most probable, just two infecting haplotypes

are most likely at the same time. Figure 10C assumes equal

frequencies for all haplotypes. In this case, for large λ it becomes

likely that 3 haplotypes are present in the underlying infections.

In Figure 10D the first two haplotypes are predominant, such
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FIGURE 9

Distribution of MOI conditioned on an observation: Assuming a genetic architecture of two biallelic loci (resulting in 4 possible haplotypes), the

distribution of MOI (assuming a conditional Poisson distribution) given the observation xxx = ({1}, {1, 2}) is shown as a function of the Poisson

parameter λ for MOI = 1, . . . , 6. This observation can only contain haplotypes hhh1 having allelic configuration (1, 1) and hhh2 having allelic

configurations (1, 2). The probabilities of MOI given xxx is independent of the haplotype frequencies p3 and p4. The frequencies p1 and p2 used in

(A,B) are shown on top of the panels. Note that P[C = 2|xxx] = 1 for xxx = ({1}, {1, 2}).

that, even with high MOI, it most probable that just 3 different

haplotypes where infecting.

As a more specific example, assume the estimates of

haplotype frequencies where p̂k = 0.25 for all k and λ̂ = 2.

Then given the observation ({1, 2}, {1, 2}), Equation (16c) would

yield m̂ = 3 (see Figure 10A) and it is most probable that C =

3 haplotypes were infecting (see Figure 10B). Altogether this

suggests that three super-infections with different haplotypes

are most probable. If the estimate for the Poisson parameter

was λ̂ = 4, m̂ = 4 and C = 3 haplotypes would be most

probable, i.e., this suggests that one haplotype was transmitted

independently two times.

4. Discussion

Estimating multiplicity of infection (MOI) or complexity of

infection (COI), identifying pathogenic variants, and estimating

their frequencies and prevalence are cornerstones of molecular

disease surveillance (14, 35, 36). This is particularly true for

malaria, although the concepts per se are not limited to this

disease. In malaria, the quantities of interest are estimated by

heuristic ad-hoc or sophisticated statistical methods for SNPs

(ranging from a 5 to 15 SNPs, e.g., in the context of anti-malaria

drug resistance (14), to 20–1,028 SNPs, e.g., in the context of

determining genetic relatedness (37, 38), microsatellites (e.g.,

34), or restriction fragment length polymorphisms (RFLP) (e.g.,

39). The concepts presented here are not restricted to specific

data sources and can be generated by a variety of platforms. e.g.,

in the context of monitoring anti-malarial drug resistance, point

mutations were often obtained by pyro-sequencing cf. Zhou

et al. (40), or microsatellite markers typed by gel electrophoresis

e.g., Anderson et al. (41), while currently next-generation

sequencing techniques e.g., Kunasol et al. (42) and whole

genome sequencing are increasingly being used e.g., Akoniyon

et al. (43). For the concepts here, loci and alleles must be

specified. A locus can be a position of a SNP, a codon, an STR or

RFLPmarker, or a short non-recombining region in the genome.

Estimating quantities of interest is challenging, because

molecular/genetic data assayed from clinical specimens typically

does not contain phased haplotype information cf. Certain

and Sibley (44). To avoid the use of complicated statistical

methods, MOI is approximated, e.g., as the maximum number

of alleles observed across a set of molecular markers, or as

the average number of alleles across several marker loci (23,

24). This leads to a variety of different definitions of MOI in

the literature. To address the ambiguous definitions of MOI

in the literature, we provided a statistical framework, capable

of explaining the relationship between various definitions.

We followed the concept of MOI, which arises naturally in

mathematical/statistical models (particularly in malaria) (11,

45), although MOI was historically introduced for viruses

infecting cells (13). The latter is formally identical, but applies

on a cellular rather than on an epidemiological level.

Some of the ad-hoc quantities used in the empirical literature

are limited in their meaningfulness. For instance, estimating

MOI as the maximum number of alleles across loci is limited

when considering SNP data, as this estimate would either

yield 1 or 2. We illustrated the discrepancies between our

formal definition of MOI and ad-hoc approximations by simple

examples. We also illustrated the importance to distinguish

between the relative abundance of a variant in the pathogen
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FIGURE 10

Distribution of MOI and the number of haplotypes conditioned on an observation: Assuming a conditional Poisson distribution for MOI and a

genetic architecture of two biallelic loci (resulting in 4 possible haplotypes), the distribution of MOI (A,C) and the number of haplotypes C (B,D)

given the observation xxx = ({1, 2}, {1, 2}) are shown as functions of the Poisson parameter λ for MOI = 1, . . . , 6 and C = 1, . . . , 4, respectively. The

haplotype frequency distributions used are shown at the top of the panels.

population, i.e., frequency, and the likelihood that a variant

occurs in an infection, i.e., prevalence. As illustrated, in malaria,

this is important in the context of seasonal transmission.

Note that a sample never reflects an infection as a whole.

In diseases like malaria, the pathogen is well mixed up in

the blood stream, so a sample properly reflects the pathogen

variants which are present. The exception are variants at low

frequency, which are irrelevant for the pathogenesis and might

have emerged de novo within the host. In diseases which

are localized in certain body parts, e.g., fungal infections, a

sample might not be representative for the true infection load.

In such a case, it is important to include appropriate model

extensions. We outlined how the statistical framework has to

be adapted to include missing values in the molecular data

due to imperfect molecular assays, specimens, and errors in

determining alleles at genetic/molecular markers. This was done

in a very general way. For specific applications, appropriate

models have to be specified. In any case, for complex genetic

architecture, models incorporating missing data and errors are

combinatorically challenging. This results in computationally

intractable likelihood functions. For instance, assuming a

genetic architecture of 10 markers with 10 alleles segregating

at each marker (which is common for microsatellites) would

result in 10 billion possible haplotypes - most of which will

not be realized in the pathogen population. Hence, the number

of model parameters will exceed the sample size by orders of

magnitude. In practice, sample size will additionally suffer from

depletion due to missing data. These limitations impede to

fully utilize exact haplotype-based statistical methods. Hence,

approximations to the likelihood function become necessary

[see e.g., Plucinski et al. (29)].

A simplifying assumption is to assume linkage equilibrium

(LE) between markers, which substantially reduces the number

of model parameters. When assuming LE, the above genetic

architecture is characterized by 90 allele frequencies rather than

10 billion haplotype frequencies. However, haplotype-based
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approaches are essential if linkage disequilibrium between

the considered molecular/genetic markers is expected. For

exact methods, a feasible genetic architecture consists of

haplotypes characterized by 8–10 SNPs, which is appropriate

for drug-resistance markers in malaria, or 3–5 microsatellite

markers, which is appropriate to calculate pairwise linkage

disequilibria. For more complicated genetic architectures even

in efficient implementations, the RAM of modern computers

will be exhausted.

Several methods cited in Sections 3.1.1–3.1.3, which

are related to the framework presented here, are based

on appropriate approximations. Software implementations of

many of them are also available. [All these methods require

specific data formats and software packages are available to

assist users to transform molecular data into standardized

formats, e.g., the R package MLMOI (46)]. Unfortunately, the

strengths and limitations of the various methods available,

can only be ascertained from their methodological details—

which requires a solid statistical background. The description

of the framework here, is intended to facilitate comparisons

between different methods and can be understood in principle

from the illustrations in Figures 1–4. Nevertheless, similar

methods should yield comparable results. Particularly, estimates

of MOI (at the population or individual level) and haplotype

frequencies/prevalence using maximum-likelihood (ML) or

Bayesian methods should yield consistent results because both

approaches involve the likelihood function. Point estimates

obtained by either method can be used as plug-in estimates to

obtain approximations of MOI used in the empirical literature.

In any case, the merit of having a concise and unifying

definition of MOI is obvious. Namely, it allows comparison

between different studies. Importantly, themethod is not limited

to malaria. It will apply similarly to other non-chronic infectious

diseases, for which multiple infections during one disease

episode can occur and de novo mutations during the course

of the infection can be neglected. Furthermore, the framework

presented here can also be applied to super-infections with

different pathogens or pathogen species.
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