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Background: Prediction of future critical illness could render it practical to test

interventions seeking to avoid or delay the coming event.

Objective: Identify adults having >33% probability of near-future critical illness.

Research Design: Retrospective cohort study, 2013–2015.

Subjects: Community-dwelling residents of Manitoba, Canada, aged 40–89 years.

Measures: The outcome was a near-future critical illness, defined as intensive care

unit admission with invasive mechanical ventilation, or non-palliative death occurring

30–180 days after 1 April each year. By dividing the data into training and test cohorts, a

Classification and Regression Tree analysis was used to identify subgroups with ≥33%

probability of the outcome. We considered 72 predictors including sociodemographics,

chronic conditions, frailty, and health care utilization. Sensitivity analysis used logistic

regression methods.

Results: Approximately 0.38% of each yearly cohort experienced near-future critical

illness. The optimal Tree identified 2,644 mutually exclusive subgroups. Socioeconomic

status was the most influential variable, followed by nursing home residency and frailty;

age was sixth. In the training data, the model performed well; 41 subgroups containing

493 subjects had ≥33% members who developed the outcome. However, in the test

data, those subgroups contained 429 individuals, with 20 (4.7%) experiencing the

outcome, which comprised 0.98% of all subjects with the outcome. While logistic

regression showed less model overfitting, it likewise failed to achieve the stated objective.

Conclusions: High-fidelity prediction of near-future critical illness among

community-dwelling adults was not successful using population-based administrative

data. Additional research is needed to ascertain whether the inclusion of additional types

of data can achieve this goal.

Keywords: critical illness, population health, administrative data, forecasting, cluster analysis, routinely collected
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INTRODUCTION

The care of critically ill people in intensive care units (ICUs) is
an important part of healthcare in all industrialized countries.
Approximately 0.5–1.3% of all adults are admitted to ICUs every
year, which is rising rapidly with age and amounting to 2–5%
of people 85 years of age or older (1, 2). In the United States,
up to half of all people experience ICU care during their final
year of life (3), and many die there (4, 5). In Canada, 11% of
hospitalizations include time in an ICU (6) and 19% of people
die there (7). Estimates from the United States indicate that
ICU care comprises ∼4% of total national health expenditures
(8), equating to 0.7% of the national gross domestic product
(9). Furthermore, ICU utilization is also rising (6, 10). Critical
illnesses cause burdens for society by inhibiting the ability of
survivors to work and earn (11, 12).

The risk of death from critical illness is high, but mortality is
only one of its negative consequences. Many survivors experience
ongoing physical, cognitive, and psychological problems (13). It
would be a major advance to prevent or delay critical illness
among community-dwelling adults. Prospectively identifying
adults with a high probability of developing critical illness in the
near future is a necessary first step toward designing and testing
interventions to achieve this advance. In this work, we specifically
sought to identify adults with a >33% probability of near-future
critical illness.

For the maximum value, the prediction of critical illness needs
to be feasible using readily accessible data that are population-
based and available on an ongoing basis. Administrative (health
claims) data meet these criteria (14). While previous studies have
attempted similar predictions, they have met with limited success
(15–20) We hypothesized that applying advanced statistical
methods to longitudinal information about medical resource
utilization, coupled with information about demographics and
serious health conditions, in a pre-COVID-19 era would: (a)
identify subgroups with high a probability of near-future critical
illness and (b) identify a consequential fraction of all people who
develop that outcome.

MATERIALS AND METHODS

Design, Setting, and Data Sources
This retrospective cohort study used administrative health
data from the universal, single-payer healthcare system in the
Canadian province of Manitoba. Available to all Manitoba
residents, this system covers inpatient and outpatient care,
practitioner fees, diagnostic testing, long-term care, and
homecare. There is limited coverage for outpatient eye
examinations, chiropractor, and physical therapy visits. An
outpatient prescription drug benefit plan with an income-related
deductible is available to low-income registrants. Services
not covered include outpatient care by dentists, podiatrists,
acupuncturists, psychologists, and dietitians; cosmetic surgery;
and ambulance transport, with the exception of air ambulance
transport for residents who live north of the 53rd parallel.

The databases used for this study (Supplementary Table 1)
are held in the Manitoba Centre for Health Policy Research

Data Repository (21). As previously described (22–24), they
are linked via an anonymized version of the unique Personal
Health Identification Number. New data are updated every
6 months, routinely cleaned, and checked. These data have
been demonstrated to have high validity and reliability for
investigating health and the use of healthcare (22).

The Discharge Abstract Database (DAD) captures detailed
data for every hospitalization, including admission and discharge
dates, up to 25 diagnoses reported using the International
Classification of Disease (ICD)-10th edition Canadian format,
and up to 15 procedures in the Canadian Classification of
Interventions (CCI) format (25–27). Centrally trained data
abstractors working in each acute care hospital collect these
data using nationally uniform definitions, format, collection
methods, and data entry software (28). DAD data are validated
and reported to the Canadian Institute for Health Information
by the provincial health authority. The DAD is highly accurate in
identifying the delivery and timing of ICU care (29).

This study was approved by theUniversity ofManitobaHealth
Research Ethics Board and Manitoba’s Health Information
Privacy Committee.

Study Population
The source for this study was the Manitoba population (30).
We included three fiscal year cohorts (FY2013–2015, each from
April 1 to May 30). April 1 was the start date of each FY at
which inclusion and exclusion criteria were applied. We included
individuals aged 40–89 years who were continuously registered
with Manitoba Health from 5 years before the start date to the
previous 1 year after the start date or the critical illness date, if
it occurred.

We excluded individuals who had incidentmalignancies in the
5-year period preceding the start date; those who were in an acute
care facility on the start date; or were enrolled in a palliative care
program anytime during the 2 years preceding the start date. The
rationale for excluding individuals with incident cancers derives
from the fact that since ICU admission and death due to cancers
are common (31, 32) and undiagnosed cancers are rare (33, 34),
critical illness or death from cancer is unlikely to be avoidable.
The 5-year interval is a common benchmark for cancer survival.
Generalizing the finding of Lix et al. (35), we identified incident
malignancy based on the presence of at least one inpatient or
outpatient diagnosis code occurring within 5 years before the
start date, and for which no other cancer diagnosis codes were
identified during the 5–10 years prior to that code. We used
accepted diagnosis codes [Supplementary Table 2; (36)]. We
excluded individuals in an acute care facility because our goal
was to identify individuals residing in the community who were
presumably medically stable when they develop the outcome.
Individuals enrolled in palliative care programs were excluded
because they have a short life expectancy and would not seek
aggressive and curative medical care at the end of life.

Outcome
Our outcome was a critical illness that occurred in the near
future, defined as 30–180 days after the start date. Thirty days
was chosen as the lower limit as it would require some time
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to locate, contact, and engage the individual in an intervention
seeking to avoid the adverse outcome. The 180-day upper limit
provides sufficient time for outcomes to occur, while expecting
that the ability to predict such future events would degrade with
the passage of time after the start date.

Following prior work, critical illness was defined as the
presence of either of the following events: (i) non-elective
hospital admission that included care in a high-intensity ICU
with the use of artificial life support, or (ii) non-palliative
death, in or out of the hospital (18, 37, 38). For non-elective
admissions, we excluded hospitalizations for trauma or injury
(Supplementary Table 2), as they are unforeseen and expected to
be much more difficult to predict or prevent. The critical illness
date was taken as the earlier of the two events within the 30-
to 180-day interval. High-intensity ICUs are those capable of
providing artificial life support for an unlimited period. During
the study period, Manitoba had 10 such adult ICUs serving its
population of 1.3 million (30).

Though we sought to include ICU admissions involving the
use of any of the three most common types of artificial life
support (invasive mechanical ventilation (IMV), intravenous
vasoactive drugs, or renal replacement therapies), DAD coding
has proved only sufficiently accurate for invasive mechanical
ventilation (39). However, 81% of ICU patients in our cohort who
received vasoactive drugs or renal replacement therapies were
also mechanically ventilated (39).

Invasive mechanical ventilation was identified by CCI
procedure codes (Supplementary Table 2). Enrollment in
palliative care was defined as any of the following being present
in the 2 years before the start date: (i) in palliative care in
any Manitoba hospital, identified by the presence of hospital
diagnosis coding (Supplementary Table 2); (ii) DAD service
codes indicating primary responsibility for hospital care under
the palliative care service; (iii) outpatient palliative care identified
by palliative care codes in the provincial Home Care database;
or (iv) outpatient pharmacy database, indicating medication
payment under the provincial palliative care program.

Analysis
Our primary analysis used Classification and Regression Trees
(CART) (40, 41), seeking to identify subgroups of community-
dwelling adults who experienced high rates of critical illness
30–180 days after the start date (Appendix A). CART divides a
cohort intomutually exclusive subgroups, each defined by a given
value/category of each input variable. The result is a ramified tree
where each “terminal leaf” includes one homogeneous subgroup.
Using CART to identify such individuals amounts to identifying
terminal leaves in which a sufficiently high fraction of included
persons experience the outcome. We chose 33% as being a
sufficiently high fraction as it represents needing to intervene on
three people to have a chance of avoiding one outcome.

To create our CART model, we used data from FY2013
and 2014 as the Training data, randomly splitting the data
(60:40) into two subcohorts, which were used to train the model.
Subsequently, we assessed this model on the FY2015 cohort
(Test data). We report the relative influence of each predictor
variable in the final tree, calculated such that the top-ranked
predictor variable is assigned a value of 1.0 (42). To evaluate

predictive ability, we report LIFT (43), defined as the fraction of
outcome events in the subgroup(s) divided by the fraction in the
originating population. See Appendix A for more information,
including the CART settings used.

In a sensitivity analysis, we assessed the performance of
logistic regression for predicting the outcome, combining
FY2013 and 2014 data for model development, and then applying
that model to FY2015 data. All independent variables (next
section) were included. Given the low fraction of outcomes, we
used Firth’s method of bias correction.

For the comparison of parameters between groups, t-test, χ2

test, or Fisher’s exact test were used, as appropriate. All analyses
were performed using SAS version 9.2 and SAS Enterprise Miner
version 13.5 (SAS Institute Inc., Cary, NC).

Predictive Factors
We included 72 parameters (included as 93 input variables)
encompassing measures of sociodemographics, chronic
comorbid conditions, frailty, and prior health care use
(Supplementary Table 3). Sociodemographic variables were
age, sex, residing in a nursing home, awaiting placement in a
nursing home, rurality of living status [assessed by Statistical
Area Classification (44)], straight-line distance from residence
location to the nearest high-intensity ICU, socioeconomic
status [assessed by an area-level measure, the Socioeconomic
Factor Index-2 (SEFI-2), where higher values represent lower
socioeconomic status (45)], and having ever received public
income assistance. Standard coding was used to identify 32
chronic, comorbid conditions (36). Three administrative data
measures of frailty were included (46–48).

A motivating concept of this work was that substantial
additional power for predicting near-future health events would
be derived from longitudinal medical resource use data. For
example, over and above the existence of chronic conditions,
a pattern of the rapidly rising use of medical resources might
indicate a higher risk of near-future critical illness. We, therefore,
included longitudinal information about the use of six types of
medical care: (i) number of classes of prescription medications
dispensed, (ii) hospital days, (iii) days in Alternative Level of Care
[awaiting long-term placement] and rehabilitation facilities, (iv)
outpatient visits, (v) outpatient laboratory tests performed, and
(vi) separate days in which the individual made one or more
calls to Manitoba Health Links, a phone-based system available
around-the-clock, where registered nurses follow assessment
guidelines to triage of health issues (49). We originally planned to
identify trajectories of utilization via group-based methods (50);
however, in our very large cohorts, it proved unable to identify
subject subsets which were substantial in absolute numbers, but
represented small fractions of the cohort (e.g.,<2%, representing
10,000 people within a yearly cohort). Therefore, for each of the
six measures, we instead included counts during each of four
intervals before the start date: (A) 13–24, (B) 5–12, (C) 4–6, and
(D) 0–3months prior. Although this approach does not explicitly
include patterns of use, CART can include counts from different
intervals to relate the outcome to temporal patterns of resource
use, if present.

Finally, we included the most recent use of intensive care,
and three common, invasive diagnostic procedures (cardiac
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TABLE 1 | Selected characteristics of the datasets used for analysis (see Supplementary Table 4 for a complete list).

Variable Training data: 2013–14
†

Test data: 2015
†

(-)Outcome (+)Outcome (-)Outcome (+)Outcome

N 1,060,252 4065 (0.38%) 541,703 2044 (0.38%)

Outcome breakdown:

ICU admission with IMV only

649 (16.0) 380 (18.6)

Non-palliative death only 3145 (77.3) 1529 (74.8)

Both 271 (6.7) 135 (6.6)

Age (yrs)

40–44

154,117 (14.5) 63 (1.5) 77786 (14.4) 44 (2.2)

45–49 161,566 (15.2) 129 (3.2) 78277 (14.5) 57 (2.8)

50–54 174,946 (16.5) 221 (5.4) 88351 (16.3) 109 (5.3)

55–59 156,373 (14.7) 296 (7.3) 80164 (14.8) 158 (7.7)

60–69 228,638 (21.6) 820 (20.2) 121610 (22.4) 387 (18.9)

70–79 119,940 (11.3) 983 (24.2) 63195 (11.7) 525 (25.7)

80–89 64,672 (6.1) 1553 (38.2) 32320 (6.0) 764 (37.4)

Female sex 544,620 (51.4) 1797 (44.2) 277581 (51.2) 894 (43.7)

Prior income assistance 107133 (10.1) 600 (14.8) 56795 (10.5) 336 (16.4)

Timing of prior ICU admission

0–1 months

387 (0.04) 12 (0.3) 189 (0.03) 8 (0.4)

2–6 1764 (0.2) 62 (1.5) 973 (0.2) 24 (1.2)

7–12 2047 (0.2) 46 (1.1) 936 (0.2) 19 (0.9)

13–24 3981 (0.4) 82 (2.0) 1861 (0.3) 31 (1.5)

>24 or none 1,052,073 (99.2) 3863 (95.0) 537744 (99.3) 1962 (96.0)

Open homecare file 11,469 (1.1) 443 (10.9) 5780 (1.1) 227 (11.1)

Lives in long-term care 9233 (0.9) 761 (18.7) 4264 (0.8) 343 (16.8)

Awaiting long-term care placement 583 (0.05) 15 (0.4) 206 (0.04) 8 (0.4)

Segal frailty score, terciles

0

353,738 (33.4) 186 (4.6) 181028 (33.4) 110 (5.4)

0.010–0.030 354,929 (33.5) 542 (13.3) 180924 (33.4) 266 (13.0)

0.031–1.00 351,585 (33.2) 3337 (82.1) 179750 (33.2) 1669 (81.7)

MsIsaac frailty score, terciles

0–3

341,885 (32.2) 318 (7.8) 188800 (34.9) 202 (9.9)

3.5–5.5 373,570 (35.2) 625 (15.4) 183124 (33.8) 340 (16.6)

6–23 344,797 (32.5) 3122 (76.8) 169778 (31.3) 1503 (73.5)

Dementia 15968 (1.5) 762 (18.8) 8023 (1.5) 348 (17.0)

Elixhauser comorbidities

Hypertension without complications

347,428 (32.8) 2419 (59.5) 189505 (35.0) 1311 (64.1)

Depression 232,502 (21.9) 1132 (27.9) 120653 (22.3) 586 (28.7)

Rheumatoid arthritis/CVD 187,681 (17.7) 840 (20.7) 98191 (18.1) 454 (22.2)

Diabetes mellitus without complications 146,011 (13.8) 1286 (31.6) 78753 (14.5) 721 (35.3)

Chronic pulmonary disorders 126,858 (12.0) 1107 (27.2) 68258 (12.6) 550 (26.9)

Hypothyoridism 74,779 (7.1) 420 (10.3) 40957 (7.6) 215 (10.5)

Cardiac arrythmia 41,327 (3.9) 809 (19.9) 21582 (4.0) 408 (20.0)

Deficiency anemia 31,376 (3.0) 351 (8.6) 19401 (3.6) 204 (10.0)

Obesity 29,413 (2.8) 189 (4.7) 15654 (2.9) 105 (5.1)

Other neurologic disorders 27,274 (2.6) 453 (11.1) 14521 (2.7) 226 (11.1)

Congestive heart failure 24,988 (2.4) 917 (22.6) 12649 (2.3) 414 (20.3)

Drug abuse 23,822 (2.3) 135 (3.3) 11165 (2.1) 70 (3.4)

Cancer without metastices 22,118 (2.1) 368 (9.1) 11567 (2.1) 188 (9.2)

Peripheral vascular disease 21,862 (2.1) 433 (10.7) 11383 (2.1) 191 (9.3)

Liver disease 19,310 (1.8) 194 (4.8) 10618 (2.0) 94 (4.6)

Fluid/electolyte disorders 13,979 (1.3) 430 (10.6) 7316 (1.4) 205 (10.0)

(Continued)
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TABLE 1 | Continued

Variable Training data: 2013–14
†

Test data: 2015
†

(-)Outcome (+)Outcome (-)Outcome (+)Outcome

Psychosis 13,474 (1.3) 352 (8.7) 7569 (1.4) 163 (8.0)

Coagulopathy 12,663 (1.2) 193 (4.8) 6290 (1.2) 91 (4.5)

Renal disease 12,558 (1.2) 422 (10.4) 6600 (1.2) 204 (10.0)

Diabetes mellitus with complications 12,353 (1.2) 485 (11.9) 6193 (1.1) 238 (11.6)

Valvular heart disease 10,449 (1.0) 197 (4.9) 5301 (1.0) 100 (4.9)

Peptic ulcer disease without bleeding 7570 (0.7) a 63 (1.6) 3744 (0.7) 47 (2.3)

Alcohol abuse 7454 (0.7) 138 (3.4) 3521 (0.6) 67 (3.3)

Paraplegia/hemiplegia 4097 (0.4) 81 (2.0) 1955 (0.4) 42 (2.1)

Pulmonary circulatory disorders 4039 (0.4) 99 (2.4) 2047 (0.4) 45 (2.2)

Lymphoma 2145 (0.2) 57 (1.4) 1156 (0.2) 30 (1.5)

Hypertension with complications 1759 (0.2) 44 (1.1) 1159 (0.2) 21 (1.0)

Metastatic cancer 1235 (0.1) 105 (2.6) 721 (0.1) 47 (2.3)

Weight loss 1149 (0.1) 52 (1.3) 596 (0.1) 14 (0.7)

HIV/AIDS 809 (0.08) b 8 (0.2) 642 (0.1) c 6 (0.3)

Blood loss anemia 283 (0.03) 15 (0.4) 121 (0.0) 7 (0.3)

Hospital-days

A, mean ± SD

0.41 ± 3.67 4.08 ± 12.80 0.35 ± 3.25 3.48 ± 10.85

B, mean ± SD 0.22 ± 2.44 2.22 ± 8.69 0.20 ± 2.32 2.20 ± 9.06

C, mean ± SD 0.11 ± 1.61 1.37 ± 6.41 0.11 ± 1.58 1.52 ± 6.53

D, mean ± SD 0.097 ± 1.38 1.47 ± 5.87 0.10 ± 1.41 1.77 ± 6.58

Outpatient clinic visits

A, mean ± SD

5.2 ± 5.5 7.7 ± 7.3 5.4 ± 5.5 8.2 ± 7.3

B, mean ± SD 2.8 ± 3.1 4.3 ± 4.4 2.8 ± 3.1 4.4 ± 4.2

C, mean ± SD 1.3 ± 1.7 2.1 ± 2.4 1.4 ± 1.7 2.1 ± 2.4

D, mean ± SD 1.3 ± 1.7 2.2 ± 2.4 1.3 ± 1.7 2.1 ± 2.5

Outpatient laboratory test counts

A, mean ± SD

4.7 ± 7.5 7.1 ± 11.7 5.0 ± 7.9 7.6 ± 11.7

B, mean ± SD 2.5 ± 4.8 4.0 ± 7.2 2.7 ± 5.1 4.2 ± 7.4

C, mean ± SD 1.2 ± 3.1 1.9 ± 4.2 1.3 ± 3.3 1.9 ± 4.1

D, mean ± SD 1.2 ± 3.1 2.1 ± 4.3 1.4 ± 3.3 2.1 ± 4.5

ATC4 prescription counts

A, mean ± SD

3.6 ± 3.8 7.6 ± 5.4 3.6 ± 3.8 7.5 ± 5.3

B, mean ± SD 2.8 ± 3.1 6.3 ± 4.6 2.8 ± 3.2 6.3 ± 4.5

C, mean ± SD 2.3 ± 2.8 5.5 ± 4.2 2.3 ± 2.8 5.5 ± 4.1

D, mean ± SD 2.3 ± 2.8 5.6 ± 4.3 2.3 ± 2.9 5.7 ± 4.3

Values are # (%) unless indicated otherwise. All p-values< 0.0001 for differences between subjects with vs. without the outcome, except as indicated.
†
Fiscal years (April 1-May 30);

Timing backward from the Start date: (A) 13–24 months prior, (B) 5–12 months prior, (C) 4–6 months prior, (D) 0–3 months prior; ICU, intensive care unit; IMV, invasive mechanical

ventilation; ATC4, the fourth level of the Anatomic Therapeutic Chemical Classification system; CVD, collagen-vascular diseases; ap = 0.014; bp = 0.006; cp = 0.02.

catheterization, upper or lower gastrointestinal endoscopy,
bronchoscopy) prior to the start date. These were classified as:
0–1, 2–6, 7–12, 13–24, or >24 months prior to the start date.

RESULTS

Study Populations
Approximately 536,000 individuals comprised each of the 3
yearly cohorts (Table 1; Supplementary Table 4). In all three,
0.38% of individuals experienced the outcome. Each CART
input variable differed between those who did vs. those
who did not experience the outcome, in terms of statistical

significance and absolute terms. People with the outcome
were 2–9 times more likely to have had ICU care, cardiac
catheterization, GI endoscopy, and bronchoscopy within the
1 month before the start date. They were 10–21 times more
likely to live in a personal care home or to have an open
homecare file. They were over ∼2.5-fold more likely to
have frailty scores in the highest tercile. In the 3 months
prior to the start dates, people with the outcome had, on
average, 1.5 more hospital days, 0.8 more outpatient visits,
0.8 more outpatient laboratory tests, and filled prescriptions
for 3.4 additional classes of drugs than individuals without
the outcome.
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CART Analysis
The final optimal tree had 30 levels of branching and 2,644
terminal leaves (Supplementary Table 5). The initial branch
point was by residence in a nursing home. All subjects residing
in nursing homes as of the start date were included in a single
terminal leaf; the larger (60%) subcohort of the Training data
contained 5,954 subjects, of whom 470 (7.9%) experienced the
outcome. Appendix B contains an example of how CART can
combine input variables in complex combinations.

The input variable with the highest predictive value was
socioeconomic status, followed by living in a nursing home
(Table 2; Supplementary Table 6). The Segal and McIsaac frailty
measures occupied the third and fifth slots, and age was sixth.
Utilization of outpatient care and drug prescriptions were the
highest-ranked parameters of medical resource use; though
generally counts further back in time from the start date were
more influential than were those that were closer to the start
date. The first appearance of a count of hospital days is in
the 14th slot, with relative importance less than half that of
socioeconomic status. Among the 32 specific chronic diagnoses,
all had importance values <0.29 on this relative scale ranging
from 0 to 1.

In the Training data, the optimal tree performed well in
identifying individuals with the outcome (Table 3); 493 subjects
contained in 41 terminal leaves each had ≥33% of its members

with the outcome. However, most of this performance in
predicting near-future critical illness represented overfitting of
the model to the Training data, as this performance was not
reproduced when applying the same terminal leaf definitions to
the Test data (Table 3). In the Test data, these 41 leaves contained
429 individuals, but only 20 (4.7%) of them had the outcome,
representing 0.98% of all those with the outcome. Expanding the
range of terminal leaves in the Training data to those with≥ 20%
or ≥10% outcomes likewise performed well in the Training data,
but this was not reproduced in the Test data (Table 3).

Sensitivity Analysis
In the sensitivity analysis, unlike CART, logistic regression
modeling performed similarly in the Training and Test data
(Table 4). Although the Test data logistic modeling correctly
identified a larger percentage of those flagged as having ≥33%
probability of the outcome (20.5 vs. 4.7% from CART), it
identified a similarly low percentage of all those with the outcome
(1.1 vs. 0.98% for CART).

DISCUSSION

High-fidelity prediction of a substantial fraction of persons
experiencing near-future critical illness was not possible using
administrative healthcare data alone. Specifically, we did not

TABLE 2 | Relative predictive value of top 25 variables in the optimal Classification and Regression Tree solution (see Supplementary Table 6 for a complete list).

Input variable Relative importance

1 Socioeconomic status (SEFI-2) 1.000 (reference)

2 Lives in long-term care 0.883

3 Segal frailty score 0.879

4 Distance from home to closest high-intensity 0.860

5 McIsaac frailty score 0.810

6 Age 0.756

7 Outpatient clinic visits: 7–12 months prior to start date 0.587

8 Outpatient clinic visits: 13–24 months prior to start date 0.580

9 Outpatient laboratory test counts: 13–24 months prior to start date 0.577

10 ATC4 prescription counts: 7–12 months prior to start date 0.558

11 ATC4 prescription counts: 4–6 months prior to start date 0.549

12 ATC4 prescription counts: 13–24 months prior to start date 0.535

13 ATC4 prescription counts: 0–3 months prior to start date 0.504

14 Hospital-days: 13–24 months prior to start date 0.458

15 Outpatient laboratory test counts: 7–12 months prior to start date 0.449

16 Outpatient clinic visits: 4–6 months prior to start date 0.444

17 Outpatient clinic visits: 0–3 months prior to start date 0.421

18 Outpatient laboratory test counts: 4–6 months prior to start date 0.416

19 Hospital-days: 0–3 months prior to start date 0.401

20 Hospital-days: 7–12 months prior to start date 0.383

21 Hospital-days: 4–6 months prior to start date 0.301

22 Metastatic cancer 0.285

23 Outpatient laboratory test counts: 4–6 months prior to start date 0.274

24 Statistical area classification 0.200

25 Open homecare file 0.186

ATC4, fourth level of the Anatomic Therapeutic Chemical Classification system; SEFI, socioeconomic factor index.
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TABLE 3 | Performance of the optimal Classification and Regression Tree in identifying individuals with the outcome.

Outcome percentages in training dataset

≥33%

(41 leaves)

≥20%

(279 leaves)

≥10%

(863 leaves)

Training data‡ Test data Training data‡ Test data Training data‡ Test data

# Subjects indicated by the model 493 429 3,242 2,871 9,849 9,111

# Of those with the outcome 191 20 832 100 1,632 171

As % of subjects indicated by the model 38.7 4.7 25.7 3.5 16.6 1.9

As % of all subjects with the outcome 7.8 0.98 34.2 4.9 66.8 8.4

Lift
†

102.0 12.3 67.5 9.2 43.6 4.9

†
Quotient of outcome events in the designated leaves, and in the originating population; ‡Values are for the larger (60%) random subcohort of the fiscal year 2013 and 2014

Training dataset.

TABLE 4 | Performance of logistic regression model in identifying individuals with the outcome.

Predicted outcome percentage cutoff

≥33% ≥20% ≥10%

Training data Test data Training data Test data Training data Test data

# Subjects indicated by the model 298 112 1,030 464 3,830 1,760

# Of those with the outcome 56 23 139 71 462 202

As % of subjects indicated by the model 18.8 20.5 13.5 15.3 12.1 11.5

As % of all subjects with the outcome 1.4 1.1 3.4 3.5 11.4 9.9

succeed in prospectively identifying a substantial number of
individuals belonging to subgroups of community-dwelling
Manitobans with a≥33% probability of developing critical illness
in the following 6 months. We chose the 33% threshold to make
it practical to design and test specially designed interventions
seeking to avoid or delay the coming health event, assuming that
these interventions would be resource-intensive. However, for
individuals in those subgroups in our future (Test) data, that
parameter was 4.7% and not 33%, and comprised ∼1% of all
those with the outcome. While applying logistic regression to
these administrative data showed less overfitting compared to
CART, it likewise failed to achieve the stated objective.

Two prior efforts sought to predict future critical illness
among unselected, community-dwelling persons (16, 18).
Neither were population-based; both used logistic regression
with fewer input variables than our study. Among 4.7 million
health plan enrollees in a validation cohort (16), 0.75%
experienced ICU admission within the following 1 year. Among
the 1% of subjects with the highest predicted risk, 35%
experienced the outcome, though this represented only 0.49%
of all those with the outcome. In comparison, 0.38% of our
validation cohort experienced our outcome within 180 days,
and among those with predicted risk exceeding 33%, 4.7%
experienced the outcome, representing 0.98% of all those with
the outcome. In what was evidently a very different substrate,
among 9,742 people 65 years and older attending Mayo Clinic
outpatient clinics, 8.8% in the cohort experienced critical illness

within the following 2 years, and among the 11% with the
highest risk score, 26% experienced the outcome, which was
33% of those with the outcome (18). Other studies have used
regression methods but for different goals, including attempts
to predict future critical illness among patients brought to
hospital via ambulance, hospitalization and/or death among
community-dwelling persons, and future need for mechanical
ventilation among community-dwelling persons (15, 17, 37, 51).
It is important to note that although efforts to identify people
at high risk of outcomes, such as future critical illness or death
have reported good results using the c-statistic as the metric (52),
the c-statistic failure is inappropriate for a purpose such as ours
because it fails to account for the underlying prevalence of the
disorder of interest (53).

Potential methodologic limitations deserve discussion. We
included numerous input variables representing a wide variety
of concepts related to health and health care, including the
novel aspect of incorporating prior medical resources in a way
that allowed for accounting for trajectories of use. We did
not include other administrative data such as immunizations,
immigrant status, education, Emergency Department visits, or
results of historical laboratory tests. While such additional
information could plausibly add predictive power, it added only
a small increment in an analysis of 1-year mortality among
hospitalized patients (20). Second, we used CART analysis, a
flexible and powerful statistical method that allows for arbitrarily
complicated interactions among the input variables. Sensitivity
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analysis using logistic regression modeling likewise failed to
achieve our goal. While it is possible that another machine-
learningmethodmight perform better, direct comparisons across
a variety of clinical areas have not found any method to be
consistently superior (54–58) Furthermore, a recent systematic
review directly comparing machine learning methods to logistic
regression reported no significant differences in predictive
performance among studies with methodology at low risk of
bias (59). Third, our choice of 30–180 days forward from
the start date as constituting the “near future” was chosen a
priori, but could be questioned. Fourth, we chose a composite
outcome that included non-palliative, non-ICU death. Recalling
that we sought to identify critical illness that could be anticipated
and possibly delayed or avoided, this composite derives from
the following: (i) the idea that any death is associated with
critical illness, even if that illness was very brief, by recognizing
that if such a person had been close to death at the time of
discovery, rather than being dead, they might have survived
long enough to be admitted to an ICU; and (ii) including them
helps address the facts that economically disadvantaged persons
and those in remote communities have less access to timely
care, causing higher rates of prehospital death. This concept
has been previously used in assessing disparities in access to
ICU care and found to demonstrate reassuring face validity (38).
Previous studies have also included death as part of critical illness
in prediction efforts (18, 37), though they did not distinguish
between palliative and non-palliative deaths. A limitation of
this concept is the inability to identify individuals who do not
desire or receive ICU admission when they become critically ill
but lack formal identification of palliative care. This describes
many residents of nursing homes, who have standing Do Not
Resuscitate orders but are not enrolled in formal palliative
care programs. It would be best to identify such individuals
and exclude them from our cohort; however, our data do not
contain the information needed to do so. Their inclusion likely
introducedmisclassification in our outcome, potentially reducing
the performance of our predictive model. Fifth, slight differences
in predictive performance may have occurred by limiting critical
illness onset from April 1 to September 30. Sixth, we excluded
patients hospitalized for trauma; however, as we had no direct
information about prehospital trauma deaths, we were unable to
exclude them from our cohort. Combining Canadian age- and
cause-specific death data (32, 60) with the knowledge that 51%
of trauma deaths in our included age group occur prehospital
(61), we estimate 119 such deaths yearly, indicating a 5.8%
overestimation of the number of yearly outcomes experienced in
our cohorts. Finally, an explanation for reporting on older data is
provided in Appendix C.

The predictive importance of frailty was notable. Frailty
may be defined as a “syndrome of age-related physiological
decline, characterized by marked vulnerability to adverse health
outcomes” (62); it is associated with mortality and morbidity,
and with a reduced ability to benefit from aggressive medical
interventions. The two predominant formal ways of measuring
frailty relate to functioning (63, 64). As administrative data
does not contain such information, claims-based frailty measures
utilize surrogate parameters and/or lists of comorbid conditions
(46–48). In light of this limitation, we chose to include three

different administrative data measures of frailty. In our analysis,
the frailty administrative data definitions of Segal et al. (47) and
McIsaac et al. (48) were among the five most influential variables,
indicating some non-overlap between what they are capturing.
That they had relative importance almost 3-fold higher than
even the most influential specific chronic condition (metastatic
cancer) suggests, as have some prior findings (65), that much
of the influence of chronic conditions on future outcome may
be mediated by the frailty they cause, rather than the condition
per se.

Although longitudinal measures of medical resource use were
influential input variables for predicting the outcome, it was
generally not their most recent values that were most important.
This may indicate that our outcome relates more to longer-
term processes than recent/sudden changes, and it may, in part,
explain the poor performance of prior attempts to predict future
clinical outcomes based primarily on recent data (18, 37, 66).

We are led to a potentially important hypothesis from the
failure of studies including ours and the others mentioned
above (16, 18, 20), to accurately predict future medical needs
or outcomes. That hypothesis is that high-fidelity prediction, if
possible at all, will require the inclusion of input parameters that
tap into different types of information than do administrative and
clinical data; these may include innate biologies such as genetics
and epigenetics, health behaviors, environmental exposures, and
other socioeconomic factors. We conclude that to achieve high
fidelity prediction of future critical illness, it is necessary to go
back to the basics and develop a stronger conceptual framework
to help identify the full range of variables that might be influential
and to determine how they may be routinely captured at the
population level.
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