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Developing land use strategies to optimize carbon sinks and improve carbon
footprints involves proposing efficient nature-based solutions that industries and
businesses can implement while considering financial and legislative constraints.
The pulp and paper industry is associated with significant greenhouse gas (GHG)
emissions, primarily due to the substantial carbon dioxide (CO2) footprint of its
mills. Also, some forestry operations contribute to the release of carbon to the
atmosphere in the form of CO2 and methane (CH4). Conversely, this industry
could potentially be a significant ally in the fight against climate change by
favoring forestry practices that reduce carbon emissions and increase its
sequestration, namely, by adding value to industrial by-products (e.g.,
biosolids) instead of treating them as wastes and landfilling them. Notably, the
pulp and paper industry has been seeking alternative uses of its by-products, such
as fertilizers to maximize tree growth. In this paper, we identify opportunities and
challenges that exist for the pulp and paper industry in regard to recycling
industrial by-products to: 1) lower GHG emissions directly at the mill and 2)
improve its GHG budget by increasing carbon sequestration in forests and
plantations. We illustrate our analyses by describing a case study of a pulp and
paper mill in southern Quebec, Canada, that uses its biosolids and other by-
products as fertilizers. This case study highlights that this strategy could not only
contribute to the reduction of GHGs but could also create added value and
improve economic returns of forest operations.

KEYWORDS

biosolids, greenhouse gases, landfilling, methane, nature-based climate solutions, pulp
and paper industry

OPEN ACCESS

EDITED BY

Chenxi Li,
Xi’anUniversity of Architecture and Technology,
China

REVIEWED BY

Andreas Magerl,
University of Natural Resources and Life
Sciences Vienna, Austria
Leonardo Clavijo,
Universidad de la República, Uruguay

*CORRESPONDENCE

Nicolas Bélanger,
nicolas.belanger@teluq.ca

RECEIVED 02 February 2024
ACCEPTED 29 April 2024
PUBLISHED 14 May 2024

CITATION

Laberge S, Courcot B, Lagarde A,
Lebel Desrosiers S, Lafore K, Thiffault E,
Thiffault N and Bélanger N (2024),
Opportunities and challenges to improve
carbon and greenhouse gas budgets of the
forest industry through better management of
pulp and paper by-products.
Front. Environ. Sci. 12:1381141.
doi: 10.3389/fenvs.2024.1381141

COPYRIGHT

© 2024 Laberge, Courcot, Lagarde, Lebel
Desrosiers, Lafore, Thiffault, Thiffault and
Bélanger. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Environmental Science frontiersin.org01

TYPE Perspective
PUBLISHED 14 May 2024
DOI 10.3389/fenvs.2024.1381141

https://www.frontiersin.org/articles/10.3389/fenvs.2024.1381141/full
https://www.frontiersin.org/articles/10.3389/fenvs.2024.1381141/full
https://www.frontiersin.org/articles/10.3389/fenvs.2024.1381141/full
https://www.frontiersin.org/articles/10.3389/fenvs.2024.1381141/full
https://www.frontiersin.org/articles/10.3389/fenvs.2024.1381141/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenvs.2024.1381141&domain=pdf&date_stamp=2024-05-14
mailto:nicolas.belanger@teluq.ca
mailto:nicolas.belanger@teluq.ca
https://doi.org/10.3389/fenvs.2024.1381141
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://doi.org/10.3389/fenvs.2024.1381141


1 Introduction

Other than innovative technologies such as carbon capture
(Kätelhön et al., 2021) and utilization (Jeffry et al., 2021) as well
as charge carrier dynamics (Sun et al., 2023), nature-based climate
solutions (NCS) are proposed to reduce atmospheric greenhouse
gases (GHGs) and mitigate climate change (Griscom et al., 2017;
Seddon, 2022). Nature-based climate solutions include efforts that
aim to increase the ability of ecosystems to sequester carbon and
decrease GHG emissions. Applying NCS may include land-use
practices such as protecting forests or proceeding to afforestation
of abandoned farmlands, decommissioned mine sites or abandoned
industrial fields (Bastin et al., 2019; Lewis et al., 2019; Kaarakka et al.,
2021). Nature-based climate solutions may also include more subtle
changes in cultural practices such as reducing the use of synthetic
fertilizers and using biochar, lime, green crops and crop rotation,
and mycorrhizae to reduce nitrous oxide (N2O) emissions, a potent
GHG (Forster et al., 2021; Hassan et al., 2022). In agricultural
contexts, implementing such NCS could also imply using less
intensive tilling practices to reduce carbon loss from soils (Maia
et al., 2022). Similarly, the forest industry can modify forest
management practices with the goal of sequestering more carbon
and lowering GHG emissions (Drever, 2021).

The pulp and paper industry, known for its energy-intensive
operations (either as electricity, heat for steam production and fuel),
is closely tied to a substantial carbon dioxide (CO2) footprint,
contributing to 2% of direct industrial CO2 emissions in 2022
(Szabó et al., 2009; Del Rio et al., 2022; IEA, 2023), even though
this industry often self-generates its electricity and heat using its
residues as fuel. In the US, for example, Tomberlin et al. (2020)
estimated that onemetric ton of paper creates a production weighted
average of 942 kg of CO2 equivalent, with 50% coming from fuels
(Tomberlin et al., 2020). Globally in 2021, the pulp and paper
industry emitted an average of 0.45 t of CO2 per tonne of paper
produced, whereas projections suggest emissions of 0.31 t CO2 per
tonne of paper by 2030 (IEA, 2022).

Moreover, the industry faces emissions from by-products such
as paper biosolids (PBs) and de-inking sludges, with landfilling and
incineration recognized as sources of CO2 and methane (CH4)
emissions (Faubert et al., 2016). With the aim of developing a
circular economy and mitigating climate change more efficiently,
the pulp and paper industry has been looking at alternatives to
landfilling and incineration of PBs. Notably, the industry has been
using its biosolids as a soil amendment for silvicultural, agricultural
and ecological restoration purposes, as well as for biorefinery
products such as wood adhesives and fillers, thermoplastic
composites, and sorbent materials (Pervaiz and Sain, 2015;
Bilodeau-Gauthier et al., 2022; Chen et al., 2023; Grimond et al.,
2023). Recycling of PBs in silviculture could increase carbon
sequestration by maximizing tree growth (Bilodeau-Gauthier
et al., 2022) and promoting a stable form of carbon in soils
(Khlifa et al., 2023), as well as reducing GHG emissions
compared to synthetic fertilizers (Chen et al., 2023). Additionally,
it could avoid a significant CO2-equivalent flux to the atmosphere
associated with the landfilling or incineration of PBs. This avoidance
could also be conducted in a cost-effective way, while fast-growing
tree plantations receiving PBs could contribute to fibre supply and
help conserve habitats and biodiversity (Himes et al., 2022). In this

perspective paper, we aim to identify opportunities and challenges
for the pulp and paper industry in recycling its PBs to: 1) lower GHG
emissions directly at the mill site, 2) improve its GHG budget by
increasing carbon sequestration in forests and plantations, and 3)
favor a forest land management scheme for the preservation of
natural habitats and biodiversity.

2 The world problem of biosolids, with
emphasis on paper biosolids

Quantifying global waste generation proves challenging due to
varied definitions and methodologies. Current estimates indicate
waste production at 19.8 billion tonnes annually, with 15%
comprising biomass like solid wood, construction wood, paper
and cardboard (Maalouf and Mavropoulos, 2023). Despite
uncertainties, projections suggest a global increase to 28 and
46 billion tonnes per year by 2030 and 2050, respectively (Di
Giacomo and Romano, 2022). Managing these wastes poses a
significant environmental challenge, with 40% being landfilled,
19% recycled or composted, and 11% incinerated (Kaza et al.,
2018). As the global population continues to grow, waste
management emerges as one of the greatest environmental
challenges of the 21st century (Vaverková, 2019).

Effective waste management should be guided by policies that
promote reducing at the source, reusing, recycling and recovering
(i.e., the 4R principle; Rada et al., 2018). However, more often than
not, it involves landfilling or incineration. Because incineration is
costly and a direct and significant source of GHGs, landfilling is the
preferred method and is expected to increase in the coming decades.
Nonetheless, the expansion of landfill sites brings environmental
challenges, including increased hydraulic loads of leachates on
adjacent watercourses, air quality issues (e.g., odors and
suspended particles) and GHG emissions (Wang et al., 2014;
Zhang et al., 2019; Siddiqua et al., 2022).

Sewage sludge, a by-product of municipal wastewater treatment,
is termed municipal biosolids (MBs) when meeting certain criteria
for land application. These must exhibit low levels of pathogens and
other contaminants such as metals, although criteria vary from
country to country (LeBlanc et al., 2009; Lowman et al., 2013;
Popoola et al., 2023). Global production of biosolids is projected
to reach 200 million tonnes annually by 2025 (Mohajerani et al.,
2017), with the pulp and paper industry being a major contributor.
In 2020, 34 countries accounted for 82% of the global paper and
paperboard production (402 million tonnes) (FAO, 2023), set to
increase to 550 million tonnes by 2050 (Mabee and Roy, 2003). As
such, the production of PBs is expected to increase proportionally. In
Quebec, Canada, for example, paper mill biosolids amounted to
1 million tonne in 2018 (RECYC-QUÉBEC, 2018). The pulp and
paper production process generates wastes and by-products, of
which 87% is classified as pulp and paper mill sludge, whereas
the remaining is considered as impurities, waste chemicals and
gaseous emissions (Turner et al., 2022).

The pulp and paper industry is regulated for wastewater
discharge from pulp and paper mills into surface waters. Paper
biosolids, similar toMBs, are disposed by landfilling, incineration, or
are applied to land for various purposes (e.g., agriculture, forestry,
ecological restoration). In addition to environmental impacts,
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landfilling and incineration of biosolids face limited social
acceptance and economic challenges, such as substantial fees.
These fees aim, in part, to incentivize industries to adhere to the
4R principle before resorting to elimination (Primeau, 2014; Faubert
et al., 2015). While landfilling is cost-effective compared to
incineration, cost recovery options (e.g., biogas recovery for
energy production) remains challenging. Consequently, the use of
MBs and PBs as soil amendments or materials for reconstructing
soils in restoration projects is gaining popularity.

3 Landfilling of paper biosolids

Landfilling of PBs is the most widely used disposal method, and
the pulp and paper industry generally manages its own landfilling
facilities (Haile et al., 2021). In addition to hazardous substances
reaching adjacent watercourses and causing air quality issues (Haile
et al., 2021; Siddiqua et al., 2022), landfilling sites generate large
amounts of GHGs under various conditions (Wang et al., 2014;
Zhang et al., 2019). However, estimates of the proportion of landfill
sites dedicated to PB disposal relative to landfill sites as a whole and
empirical estimates of GHG emissions from them are non-existent,
making it difficult to assess their contribution to GHG emissions
globally (Primeau, 2014; Faubert et al., 2016; MELCC, 2020).
Faubert et al. (2016) suggested from modelling and theory that
2.69 tonnes of CO2 and 0.24 tonne of CH4 could be emitted to the
atmosphere for every tonne of PBs that is landfilled. Methane
emissions are a primary concern for climate change due to its
high global warming potential (GWP) compared to CO2,
i.e., 28 to 32 times higher over 100 years as initially suggested by
Byrne and Goldblatt (2014). However, a new model (GWP*) has
recently been proposed to improve calculations of warming-
equivalent emissions since GWP can overestimate the cumulative
effect of short-lived climate pollutants, such as CH4, by not properly
considering the short-term and long-term effects of these pollutants
in the atmosphere (Cain et al., 2019; Lynch et al., 2020). Methane
from landfilled PBs is considered the main GHG because most of
CO2 emissions could be offset by the main constituent of PBs,
i.e., short lignin fibers derived from photosynthesis (Camberato
et al., 2006). However, landfilled biosolids can also generate N2O
through the cooxidation of ammonia by methanotrophic soil
bacteria in cover soils (Zhang et al., 2009).

Methanogenesis occurs during the anaerobic mineralization
of organic matter (Le Mer and Roger, 2001). Anaerobic
conditions in landfill cells are created over time through the
compaction of layers of organic matter (Olivier, 2013). Because
PBs are rich in wood fibers and organic matter, they provide a
significant carbon source for methanogenic microbes
(Camberato et al., 2006). During the fermentation process,
methanogenic microbes transform organic matter into CH4

and some CO2 (Le Mer and Roger, 2001). Landfill cells are
typically covered with an engineered cap comprising a clay
layer to limit water infiltration and gas exchange. This cap is
further covered by a sandy mineral soil with low organic matter
content (Handel et al., 1997; Fraser-McDonald et al., 2022). A
portion of the CH4 produced is then oxidized through
methanotrophy to CO2 and water in the cover soil layer,
facilitated by its high oxygen levels (Boeckx et al., 1996; Le

Mer and Roger, 2001) and low organic matter content
(Handel et al., 1997). Methane that remains unaffected in the
cover soil layer is released to the atmosphere by diffusion and
plant gas exchange (Le Mer and Roger, 2001).

Cover soils thus aim to reduce CH4 emissions by creating
oxygenated conditions where CH4 transforms into CO2 and
water before reaching the atmosphere. However, fissures, cracks
and holes in the mineral cap often form, creating preferential
channels for CH4 from the organic layer to bypass oxidation and
be released directly to the atmosphere (Schroth et al., 2012). Also,
highly porous material can allow CH4 to flow through the cover soil
too quickly for oxidation to occur before reaching the atmosphere
(Wang et al., 2022). The heterogeneous nature of the cover soil often
leads to high spatial variability in CH4 fluxes across a landfill site
(Schroth et al., 2012). Estimates of CH4 emissions from PB landfill
sites, assuming that 10% of CH4 is oxidized in the cover soil, may
therefore be underestimated (Chanton et al., 2009; Schroth et al.,
2012). However, membrane gas permeation has been used in recent
years to channel biogas for energy use or to transform it into CO2

through flaring (Makaruk et al., 2010; Chmielewski et al., 2019). To
our knowledge, however, this method has only been used in
municipal landfills.

4 Paper biosolids as fertilizers

Application of MBs and PBs to agricultural soils can positively
impact soil fertility and crop yields (Gagnon and Ziadi, 2012; Lu
et al., 2012; Ziadi et al., 2013; Abdi et al., 2016; Sharma et al., 2017).
Other than providing nitrogen and phosphorus, PBs: 1) are rich in
calcium, thus addressing soil acidity issues, 2) enhance soil
structure by providing organic matter (or carbon), 3) increase
nutrient cycling by improving soil microbial biomass and activity
and 4) increase soil cation exchange capacity due to the added
organic matter and increased pH. Paper biosolids are less enriched
in nitrogen and phosphorus compared to MBs and contain fewer
contaminants, thus reducing environmental risks (Charbonneau
et al., 2001; Gagnon et al., 2013). The high fiber content of PBs also
imparts slow-nitrogen-release fertilizer properties (Gagnon and
Ziadi, 2012). In forestry, the use of PBs can be particularly
significant for carbon sequestration. It has the potential to
stimulate tree growth by improving foliar nutrition and,
consequently, accelerating carbon capture through
photosynthesis (Lteif et al., 2007; Rodriguez et al., 2018;
Bilodeau-Gauthier et al., 2022). However, further work is
necessary to assess how fertilization with PBs can influence
carbon sequestration of forest plantations under different
climates, site conditions (e.g., soils), site (mechanical)
preparation and weed management. To our knowledge, no
effort was made in synthesizing such data.

Fertilization with PBs can decrease GHG emissions when
compared to synthetic fertilizers such as urea (Chen et al., 2023).
Furthermore, the use of PBs in agriculture and forestry diverts
biosolids from landfills, thereby reducing associated CH4 emissions
(Faubert et al., 2019). Considering these factors, repurposing PBs
from the pulp and paper industry as fertilizers in silviculture
emerges not only as a theoretical concept but also as a practical
NCS. To illustrate this potential, we present a case study from
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southern Quebec. This case study demonstrates how the purposeful
use of PBs in silvicultural treatments can effectively contribute to
sustainable waste management practices and significantly enhance
carbon sequestration efforts (Figure 1).

In this case study, PBs are specifically used to fertilize fast-
growing hybrid poplar (e.g., Populus x canadensis × P.
maximowiczii) plantations, classified as an intensive silvicultural
practice. Trees are planted on mound which are created with an
excavator (Figure 1). Using allometric equations from the R software
package “allodb” (Gonzalez-Akre et al., 2022), it was estimated that,
over a 20-year period, plantations receiving industrial by-products
could sequester up to 26.7% more carbon than unfertilized
plantations (treated: 171 Mg C ha−1; unfertilized: 134 Mg C ha−1).
Achieving a target of 200 m3 ha−1 for merchantable wood could
be realized, on average, in about 20 years in fertilized plantations
(compared to 140 m3 ha−1 in unfertilized plantations), allowing
faster rotations and higher carbon sequestration in the long term.
In comparison, wood biomass (aboveground) in twenty-one mature
(~100–150 years) deciduous forests and mixedwood stands in
southern Quebec holds between 38 and 184 Mg ha−1 of carbon
(K. Lafore, unpublished data).

It could be argued that this wood biomass is destined for paper, a
product with a short life span and limited recycling cycles, resulting
in fewer benefits in terms of carbon emission mitigation. Yet,
augmenting yields in forest plantations destined for paper
production also has the added benefit of relieving pressure on
other forests for wood supply. This, in turn, leads to the

protection of larger swaths of forest landscapes supporting the
provision of other ecosystem services (Wang et al., 2022).

Soil carbon stocks are expected to substantially increase after PB
application due to their high organic carbon content and carbon:
nitrogen ratio (Henry et al., 1994; Gagnon and Ziadi, 2012). At an
application rate of about 125 Mg ha−1, the newly added carbon
(approximately 50–60 Mg C ha−1) is anticipated to become a
stable long-term storage in forest soils, similar to observations in
ecological restoration projects, some being afforestation efforts,
using MBs for soil reconstruction (Trlica and Teshima, 2011;
Carbassa et al., 2020; Khlifa et al., 2023). These afforestation
projects can also lead to significant tree growth and carbon
sequestration as well (e.g., Grimond et al., 2023; Bélanger et al.,
2024). Soil carbon improvement results from ‘pockets’ of PBs
trapped at the base of the mounds during their creation and due
to limited mixing, along with the aggregation of organic carbon to
clay-mineral particulates. The stability of these carbon pools is
largely influenced by the chemical signature of the carbon forms
in the PBs, particularly the presence of more labile carbohydrates
(Gagnon and Ziadi, 2022).

In the mid-term, increased tree growth is expected to further
enhance soil carbon stocks via increased litter flux, including roots,
to the soil (Thevathasan and Gordon, 1997; Arevalo et al., 2011),
promoting forest floor development and carbon accumulation in
mineral horizons. Preliminary data suggest that forest floor depth of
the southern Quebec case study sites increased from an average of
1.7–5 cm in just 12 years for plantations receiving PBs, while no

FIGURE 1
Conceptual diagram of paper biosolids management methods. The size of GHG emissions arrows does not accurately represent differences
between disposal methods but indicates variations within each method. Solid arrows refer to greenhouse gases emitted from biosolids, whereas the
dotted arrow for CO2 represents emitted by background (natural) soil respiration. Soil and tree biomass carbon stocks from unpublished data for mature
managed deciduous forests (K. Lafore) and hybrid poplar plantations (S. Lebel-Desrosiers) in southern Quebec, Canada. For the latter, soil carbon
stocks are not yet available.
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change in forest floor depth was observed in unfertilized plantations
over 14 years. The soil organic content of boreal, mixed and
deciduous forest soils in Quebec is, on average, 44 Mg C ha−1

(Tremblay and Ouimet, 2000). Less than 3% of the forests
exhibited soil organic content (SOC) above 100 Mg C ha−1 in this
study. Similarly, a very large variation in soil carbon stocks
(2–315 Mg ha−1) was measured for old-growth forest stands in
southern Quebec (K. Lafore, unpublished data). Although
estimating the amount of this new carbon is challenging, a forest
floor in steady state in these temperate forests typically reaches a
depth of 5–15 cm and is 25%–40% of the soil carbon stock. The
expectation is that this steady state will be reached more rapidly in
the plantations receiving PBs.

Another key, yet complex aspect to consider, is the potential
reduction in GHG emissions by diverting PBs from landfills and
applying them to plantations. It is anticipated that applying
relatively small amounts of PBs at the soil surface, without or
with very limited compaction and under well-aerated soil
conditions, will significantly lower overall CH4 and N2O
emissions compared to landfilling. However, spatial variation in
fluxes is expected to be large, correlating with field microtopography
associated with mounding. Mounding creates a heterogeneous soil
surface with: 1) dry zones characterized by lower litter accumulation
(mounds), 2) unaltered areas with soil moisture levels and litter
accumulation rates expected from a well-drained forest soil (ground
level), and 3) wetter zones with substantial litter accumulation
(depressions) that could contribute to CH4 and N2O emissions.
In fact, like methanogenesis, denitrification rates are higher in
compacted and poorly drained soils (Beare et al., 2009).
Considering that wet depressions represent about one-third of
the planted landscape, GHG emissions under this
microtopography should be assessed. Preliminary summer
sampling at the case study site suggests that CH4 fluxes are
present in only some depressions and CO2 fluxes were lower in
(wet) depressions and on (dry) mounds (287–356 mg m−2 h−1) than
on unaltered soil (701 mg m−2 h−1).

The values above suggest no significant change in CO2 fluxes due
to mounding or PB application, as they are within the range of those
measured in comparable forest stands under the same soil
temperatures (Bélanger et al., 2021). Similarly, our preliminary
data suggest that PB application does not lead to the production
of N2O across the mounding microtopography. Chen et al. (2023)
observed the opposite after PB application in hybrid poplar
plantations in Alberta, i.e., a 21% and 17% increase in CO2 and
N2O emissions, but no change in CH4 emissions. These sites appear
to show less microtopography (prepared by one-way cultivation).
Measurements of the southern Quebec case study sites were taken
3 years after PB application, while fresh and wet biosolids are known
to be significant sources of N2O (Roman-Perez and Hernandez-
Ramirez, 2022). The duration of these large emissions is not well
known, especially in forest soils; this deserves our full attention
because the benefits that could be gained by reducing landfill CH4

emissions and increasing carbon sequestration with the use of PBs in
hybrid poplar plantations could be offset if this practice also causes
N2O emissions for a prolonged period. Further monitoring of soil
conditions and gas efflux is thus required to determine if carbon
accumulates in the new soils and to assess GHG dynamics to fully
evaluate their potential as a climate solution.

5 Conclusion

Management of waste materials from the pulp and paper
industry often involves landfilling. However, our preliminary
results offer a promising perspective for the enhanced recovery
and recycling of PBs, leading to reduced GHG emissions and
improved carbon sequestration when combined with appropriate
silvicultural practices. As more field data are collected to better
quantify landfill CH4 emissions, diverting PBs from landfills to
plantations could prove valuable for the forest sector to
contribute to CH4 emissions mitigation targets.

Despite the promising benefits of applying biosolids in forestry,
challenges must be addressed. Environmental and regulatory
concerns, including the potential for heavy metal accumulation
and pathogen transmission, require careful management (Pöykiö
et al., 2007; Lu et al., 2012). Among the pollutants of concerns are
perfluoroalkylated substances, synthetic chemicals such as
perfluorooctane sulfonate and perfluorooctanoic acid (PFAS),
which pose health risks (Kirk et al., 2018; Ehrlich et al., 2023;
van Larebeke et al., 2023). Communities near landfill sites have
raised public health concerns, including quality-of-life impacts due
to odors (Lowman et al., 2013). Moreover, it is not yet clear how the
wastewater treatment processes impact the concentration of PFAS in
sludges and biosolids (Behnami et al., 2024; Gewurtz et al., 2024).
Therefore, the development of guidelines and monitoring systems is
essential to ensure that the use of biosolids adheres to environmental
safety standards and does not adversely affect forest ecosystems or
human health.
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