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Classifying land use and land cover (LULC) is essential for various environmental
monitoring and geospatial analysis applications. This research focuses on land
classification in District Sukkur, Pakistan, employing the comparison between
machine and deep learning models. Three satellite indices, namely, NDVI,
MNDWI, and NDBI, were derived from Landsat-8 data and utilized to classify
four primary categories: Built-up Area, Water Bodies, Barren Land, and
Vegetation. The main objective of this study is to evaluate and compare the
effectiveness of comparison of machine and deep learning models. The machine
learning models including Random Forest achieved an overall accuracy of 91.3%
and a Kappa coefficient of 0.90. It accurately classified 2.7% of the area as Built-up
Area, 1.9% asWater Bodies, 54.8% as Barren Land, and 40.4% as Vegetation. While
slightly less accurate, Decision Tree model provided reliable classifications. Deep
learning models showed significant accuracy, of Convolutional Neural Networks
(CNN) and Recurrent Neural Networks (RNN). The CNN model achieved an
impressive overall accuracy of 97.3%, excelling in classifying Water Bodies with
User and Producer Accuracy exceeding 99%. The RNN model, with an overall
accuracy of 96.2%, demonstrated strong performance in categorizing
Vegetation. These findings offer valuable insights into the potential
applications of machine learning and deep learning models for perfect land
classifications, with implications for environmental monitoring management and
geospatial analysis. The rigorous validation and comparative analysis of these
models contribute to advancing remote sensing techniques and their utilization
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in land classification tasks. This research presents a significant contribution to the
field and underscores the importance of precise land classification in the context of
sustainable land management and environmental conservation.
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land classifications, remote sensing, Python, machine learning, deep learning,
Sukkur Pakistan

Highlights

• Compared ML and DL for LULC in Sukkur, Pakistan.
• Random Forest achieved 91.3% accuracy.
• CNN excelled with 97.3% overall accuracy.
• NDVI, MNDWI, NDBI for LULC classification.
• Scientific precision in model validation.
• Significance for environmental conservation.

1 Introduction

The classification of Land Use Land Cover (LULC) plays a
critical role in managing resources in developing areas, particularly

in addressing challenges posed by rapid population growth (Avtar
et al., 2019; Assede et al., 2023). The phenomenon of rapid
urbanization emphasizes the crucial role played by accurate
LULC classification in mitigating adverse impacts on global
energy resources, promoting sustainable planning, efficient
resource management, and safeguarding environmental integrity
(Magidi et al., 2021; Praticò et al., 2021; Digra et al., 2022). The
precision of LULC maps is fundamental, as they enable the
systematic categorization of land into distinct classes, providing
deep insights into resource utilization and its wide-ranging
socioeconomic implications (Choudhury et al., 2023). Researchers
extensively rely on these meticulously crafted maps to investigate
various environmental issues across spatial scales (Anwar et al.,
2022). Notably, changes in LULC can profoundly impact weather
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conditions and climate patterns, potentially disrupting the delicate
water balance in specific geographic regions (Mekonnen et al., 2023).
Thus, comprehensive LULC cartography is indispensable for
meticulous monitoring, land management, and hazard assessment
(Jat Baloch et al., 2022; Acharya et al., 2023). Reducing vegetation
cover emerges as a significant driver of elevated land surface
temperatures, underscoring the urgent need for proactive land
cover management (Moisa et al., 2022).

According to studies, classification techniques, including
machine learning (ML) and deep learning (DL) algorithms,
play a vital role (Kussul et al., 2017; Jagannathan and Divya,
2021; Digra et al., 2022; Swetanisha et al., 2022; Wang et al., 2022;
Azedou et al., 2023; Boonpook et al., 2023; Ebenezer and
Manohar, 2023). DL models, demonstrated by Convolutional
Neural Networks (CNN) (Jena et al., 2022) and Recurrent Neural
Networks (RNN) (Gaafar et al., 2022), have gained importance
due to their ability to extract and classify features efficiently
(Swetanisha et al., 2022). Spatial data, remote sensing, and
machine learning analysis have a wide range of applications,
including urban planning, agriculture, resource management,
mineralogy for the environmental management and planning
(Hussein et al., 2023; Iqbal et al., 2023; Kanakala and Reddy,
2023) and have been used for natural language processing (NLP)

(Agga et al., 2022; Vankdothu et al., 2022). Deep learning models
are recognized as intelligent modeling approaches, catalyzing
advancements in land use modeling (Gaafar et al., 2022). The
synergistic Integration of Google Earth Engine (GEE), remote
sensing technology, and Geographic Information System (GIS)
facilitates the rapid and precise mapping of land use and land
cover, among other Earth surface features (Praticò et al., 2021;
dos Santos et al., 2023). Geospatial researchers have employed a
diverse array of LULC mapping techniques, ranging from
conventional methodologies such as Bayesian Maximum
Likelihood to advanced machine and deep learning models,
including Support Vector Machine (SVM) (Braun et al., 2023),
Light Gradient Boosting Machine, Random Forest (RF) (Magidi
et al., 2021), and Decision Trees, (Gazzinelli et al., 2017).
Furthermore, recent studies have also highlighted the
effectiveness of Recurrent Neural Networks (RNN) in LULC
analysis (Jeyavathana). One such study used Long Short Term
Memory (LSTM) networks for land use scene classification,
yielding results comparable to those obtained with CNN (Cao
et al., 2019; Swetanisha et al., 2022) used the machine learning
models XGBoost and SVM were combined for LULCC in India
using Landsat-8 OLI data. Mhanna et al. (2023) applied machine
learning and remote sensing to analyze the Orontes River Basin

FIGURE 1
(A) Boundaries of Pakistan. (B) The study site is situated in Sindh, a province of Pakistan. (C) The study area location and elevation data obtained from
the Shuttle Radar Topography Mission (SRTM).
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(ORB) from 2004 to 2022. Their findings revealed a 21%–24%
decline in cropland areas in Syrian conflict zones after 2013,
while Lebanon experienced a 3.4-fold increase. Refugee
settlement growth in Lebanon and along the Syrian/Turkish
borders exhibited diverse LULC patterns influenced by
settlement dynamics. Alshari et al. (2023) also reported
machine learning approach for land use/land cover
classification, aiming to improve accuracy using Landsat-8
satellites. Their method, ANN-RF, combines artificial neural
networks with random forest, outperforming traditional
approaches and individual satellite classifiers.

Selecting appropriate techniques for LULC change detection
has received relatively less attention by comparing both AI
techniques that is DL and ML. Therefore, the reasonable
choice of methodologies for monitoring LULC changes is
critical for effectively managing agriculture, natural reserves,
and energy resources, particularly with rising population
growth (Roy et al., 2022). Remote sensing data represents a
valuable source of information about Google Earth (Nelson
et al., 2022), Empowering a wide range of applications in
urban planning, agriculture, natural resource management,
and mineralogy (Ouchra et al., 2022). Landsat-8 satellite
composite images capture a wide range of spectral variability,
To circumvent these challenges, Google Earth Engine (GEE)
offers an alternative solution with its extensive data download
and storage requirements employed to classify land (Zhao et al.,
2024). Thus, GEE is a complimentary cloud-based platform
facilitating easy access, visualization, and analysis of satellite
imagery at the petabyte scale. This platform is extensively
utilized for classifying land cover across various scales, from
regional to national and global levels (Abburu and Golla, 2015;
Praticò et al., 2021). When flawlessly integrated into the GEE
platform, empowers rigorous LULC research in Pakistan,
utilizing Landsat-8 satellite imagery (Panhwar et al., 2024; Safi
et al., 2024; Zhao et al., 2024). Various satellite-derived
Incorporating indices, such as the Normalized Difference
Vegetation Index (NDVI) (DeFries and Townshend, 1994; Jat
Baloch et al., 2022) Modified Normalized Difference Water Index
(Guo et al., 2017), and Normalized Difference Built Index
(NDBI) (Ali et al., 2019), are involved in identifying essential
land covers features like Vegetation, Built-up areas, barren land,
and water bodies. Integrating machine and deep learning models
with Geospatial methods Enhances the accuracy of classification
for Land Use and Land Cover (LULC) analysis and robustness
(Wang et al., 2022; Zafar et al., 2024). Leveraging their strengths

and utilizing geospatial data enables more dependable and
thorough Land Use and Land Cover (LULC) classification
outcomes, allowing for capturing intricate land use dynamics
characterized by spatial linkages and patterns (Farshidi et al.,
2023; Zafar et al., 2024). It is essential to emphasize that the initial
step involves defining image features, necessitating feature
extraction to reduce the resource requirements for describing
extensive datasets (Shetty et al., 2019; Sertel et al., 2022).

This study introduces a novel approach by exploring the
effectiveness of various machine and deep learning algorithms for
Land Use and Land Cover (LULC) classification. Our research
aims to evaluate the performance of Machine Learning models
(DTC, RF) and Deep Learning models (CNN, RNN) using
Landsat-8 satellite imagery to classify Water bodies, Built-up
areas, Vegetation, and Barren Land across the Sukkur District,
Pakistan. Employing a comprehensive workflow in Python and
Google Earth Engine (GEE), we compare these algorithms
alongside commonly used ones such as Decision Tree
Classifier, Random Forest, and Convolutional Neural Network,
and assess their accuracy based on metrics including producer
accuracy, user accuracy, and kappa coefficient.

2 Study area

The study area is located at geographical coordinate’s
27°42′22″N latitude and 68°50′54″E longitude, as shown in
Figure 1. Sukkur is a city situated within the Sindh province
in southeastern Pakistan. Geographically, the city is positioned
on the western bank of the Indus River, connected to Rohri on the
opposite bank by a cantilever bridge (Biagi and Vidale, 2022).
Intermediate between these two cities lies the strategically
significant island fort of Bhakkar. Historically, Sukkur was
enveloped by date palm groves. Regarding population, Sukkur
district ranks as the 14th largest city in Pakistan, with an
estimated population of approximately 1,639,897 people
according to the latest available data (Samo et al., 2022). The
city covers an area of 5,165 square kilometers, resulting in a
population density of 317.5 individuals per square kilometer as of
2023. The annual population change from 2017 to 2023 is
estimated at 1.6% (Bhellar et al., 2023). Sukkur experiences a
hot desert climate, which is categorized under the Köppen
climate classification as BWh. This climatic classification is
characterized by exceedingly hot and hazy summers and
relatively warm winters. Sukkur is renowned for its extremely

TABLE 1 Spectral band specifications for Landsat-8 used in the current research.

Band name Band specification wavelength (nm) Spatial resolution(m) Period

Band 2 Blue 458–523 10 July-2023

Band 3 Green 543–578 10

Band 4 Vegetation red edge 560–680 10

Band 8 Red 855–875 20

Band 9 Water vapor 1,565–1,655 20

Band 11 SWIR 930–950 60

Frontiers in Environmental Science frontiersin.org04

Nigar et al. 10.3389/fenvs.2024.1378443

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1378443


hot summers and is known to be one of the most desirable cities
in the region (Abro et al., 2022). Wind speeds in Sukkur remain
consistently low throughout the year, while sunshine is abundant.

Regarding precipitation, the highest recorded annual rainfall in
Sukkur was 698 mm (27.5 inches) in 2022, while the lowest annual
rainfall, amounting to 0 mm, was documented in 1941. The
temperature in Sukkur typically ranges from 46°F to 112°F and
seldom falls below 40°F or exceeds 117°F.

3 Materials and methods

3.1 Data set

In this research, data were sourced from the Google Earth Engine
(GEE) platform, which can be accessed at https://earthengine.google.
com/. GEE offers a substantial repository of Earth observation data,
encompassing renowned systems such as MODIS, and Landsat-8 as

FIGURE 2
Overall framework of research.
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well as various geospatial datasets, including demographic and climate
information. Landsat-8 availability within GEE is facilitated through the
United States Geological Survey (USGS) at https://www.usgs.gov/.
Furthermore, the software used for the mapping was conducted
using ARC GIS 10.8, while machine and deep learning analysis was
performed using Python coding.

The Landsat-8 Multi-Spectral Instrument (MSI) featuring moderate
resolution is a key data source and provides access to spectral bands used
in this study. Detailed information regarding the specific Landsat-8
bands utilized is shown in (Table 1). Landsat-8 imagery from July
2023 was acquired for analysis for the Sukkur region. Notably, the
selected imagery for this study had a cloud cover of less than 10%.

3.2 Methodology

The methodology we proposed, as shown in (Figure 2) and
implemented in the context of Sukkur City, relies entirely on the
GEE environment, and Python coding. The initial phase
encompasses image Pre-processing data acquisition, involving
retrieving composite satellite images from Landsat-8 as shown in
(Figure 1) the second phase entails feature selection for creating
training and validation datasets. The third phase encompasses the
classification process, employing both machine learning and deep
learning techniques using Python-based coding. Python requires
libraries for classification Some of them are: Python libraries have
been imported: OpenCV, Keras, Pandas, TensorFlow, Matplotlib,
PyTorch, and SciKitlearn Lastly, the fourth phase involves a
comparison of accuracy based on different algorithms of machine
and deep learning to derive the outcomes. Subsequent sections
provide in-depth elaboration on each of these phases.

3.3 Image pre-processing

The Landsat-8 data acquired undergo several preprocessing
steps to improve image quality and usability. These procedures

involve radiometric calibration, atmospheric correction, geometric
rectification, and the removal of any noise or artifacts. Following
preprocessing, the Landsat-8 data are subjected to image
segmentation techniques (Yang et al., 2022), which partition the
data into coherent objects or regions by grouping pixels with similar
spectral characteristics. This segmentation process allows for the
delineation of distinct ground features.

Spectral, textural, and contextual information pertinent to these
segmented areas is extracted (Ouchra et al., 2023). The extraction
process may involve computing various indices like NDVI, NDBI,
MNDWI, and other calculated parameters, which quantitatively
represent specific land cover attributes. These extracted features are
then employed in classifying land cover types within the Landsat-8
data. For classification, we compare two machine learning
algorithms (Random Forest and Decision Trees) and two deep
learning algorithms (Convolutional Neural Networks and
Recurrent Neural Networks). The classifier is trained using
training samples to ensure the creation of precise land cover
maps (Ouchra and Belangour). Evaluating the accuracy of land
classification involves comparing the results of the classification
process with ground truth data or reference datasets. Performance
metrics, including overall accuracy and the kappa coefficient, are
computed to assess the efficacy of the classification algorithm
(Anokye et al., 2024). After generating land cover maps from
Landsat-8 data, further analyses can be conducted to extract
meaningful insights into environmental alterations, urban
development, vegetation dynamics, and other pertinent
applications.

Further post-processing steps could include data fusion,
change detection, time series analysis, or spatial modeling,
facilitating a deeper understanding of observed land cover
patterns (Faqe Ibrahim et al., 2023). As shown in Figure 2 this
methodology constitutes a complete flowchart utilized in the
present study. Following the importation of Landsat-8 imagery
into the Google Earth Engine (GEE) platform, data cleaning was
performed to Remove undesired pixels through the application of
the cloud mask technique (Růžička et al., 2022), as proposed by

FIGURE 3
(A) Normalized difference vegetation index. (B) Normalized difference built index. (C) Modified normalized difference water index.
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Zurqani et al. (2022), Rajendiren et al. (2023). In this study, three
indices, NDVI, NDBI, and MNDWI, as shown in Figures 3A–C,
were used for analysis.

This phenomenon primarily arises from the inherent internal
structure of plant leaves. It involves the utilization of two specific
bands: one characterized by high reflectance in the near-infrared
spectrum (NIR) and the other marked by significant absorption in
the red spectrum. NDVI is calculated using the following formula, as
detailed in Eq. 1, based on Landsat-8 NIR and red bands (Anyamba
and Tucker, 2012).

NDVI � NIR band − Red band( )
NIR band + Red band( ) (1)

NDBI is a valuable tool for extracting information regarding
Built-up land from remote sensing imagery. When coupled with a
well-chosen threshold, NDBI effectively isolates impervious surfaces
within urban regions. As explained in (Eq. 2) the computation of
NDBI for Landsat-8 images, utilizes data from the Short-Wave
Infrared (SWIR) and Near-Infrared (NIR) bands (Kuc and
Chormański, 2019).

NDBI � SWIR band −NIR band( )
SWIR band +NIR band( ) (2)

A significant drawback of McFeeters’ NDWI is its limited
ability to effectively reduce signal noise originating from Built-up
land cover features, as highlighted (Nugroho, 2013). Xu’s
observations revealed that water bodies exhibit higher
Absorbance in the Short-Wave Infrared (SWIR) band is
contrasted with that in the Near-Infrared (NIR) band, with
the built land class showing higher radiation intensity in the
SWIR band compared to the NIR band. To address these
limitations, introduced the MNDWI (Xu, 2006) which
quantifies the normalized Difference between the NIR and
SWIR (Band 11), as expressed in Eq. 3.

MNDWI � NIR band − SWIR band( )
NIR band + SWIR band( ) (3)

In the final phase, machine and deep learning models,
specifically Decision Trees (DTC), Random Forest (RF),
Convolutional Neural Networks (CNN), and Recurrent Neural
Networks (RNN), were implemented within the Google Earth
Engine (GEE) to instruct the classifier in handling Landsat-8
data. The resultant Land Use and Land Cover (LULC) map has
been classified into four categories: Vegetation, Built-up areas,
barren land, and water bodies. Detailed descriptions of these
classes are mentioned in Table 2.

3.4 Machine and deep learning models

The significance of using Random Forest (RF), Decision
Trees (DTC), Convolutional Neural Networks (CNN), and
Recurrent Neural Networks (RNN) in conjunction with
geospatial methodologies for Land Use and Land Cover
(LULC) (Sertel et al., 2022; Swetanisha et al., 2022) employed
classification algorithms to determine which ones perform the
best in terms of accuracy, producer accuracy, user accuracy, and
kappa coefficient. Our suggested work approach is fully
developed in the GEE environment, entirely using all its
capabilities to test various variable combinations and gather
reliable data to enhance each stage of classification, optimize
input data acquisition, and ultimately reach the highest levels of
accuracy. Additionally (Jamil et al., 2023), these models facilitate
the detection of temporal changes, thereby providing important
understandings for land management, environmental
management, monitoring, and urban planning (Rane
et al., 2023).

Upon collecting training data and assembling properties
encompassing known class labels and numerical predictor values,
the next step involves the instantiation of classifiers and, if necessary,
defining their parameters. Within the Google Earth Engine (GEE)
platform exists a dedicated ’Classifier’ package designed to manage
supervised classification through the machine and deep learning
algorithms (Liu et al., 2022). In this study, we utilized four classifiers,
namely, RF, DTC, CNN, and RNN. In this phase, we trained these
algorithms using the constructed training data. Subsequently, we
applied them to classify our composite image collection, considering
specific bands to generate a classified map of the study area
ultimately.

3.4.1 Random forest (RF)
Random Forest (RF) stands as a widely employed machine

learning algorithm conceived by (Li et al., 2016), notable for its
unique approach of amalgamating outputs from multiple decision
trees to yield a singular result (Kashyap, 2023). This algorithm has
garnered popularity owing to its user-friendly nature and
adaptability, proficiently addressing both classification and
regression problems (Cengiz et al., 2023). The essence of the
Random Forest technique lies in its construction of numerous
decision trees, thus earning its terminology as a ’forest.’ This
forest of decision trees contributes to more accurate predictions
by aggregating data from these individual trees. While an individual
decision tree typically yields a solitary outcome with a limited scope
of categories, the Random Forest harnesses the collective wisdom of
a more significant number of decision trees to enhance prediction

TABLE 2 Description of classes of land use and land cover.

LULC types Class ID Description

Built-up areas 1 Structures like Buildings, other artificial constructions, and regions categorized as industrial, mixed urban, or developed territory

Vegetation’s 2 Areas devoted to agriculture, forests, and so on

Barren land 3 Areas with no more than 10% vegetation cover throughout the year are characterized by exposed soil, sand, or rocks as their
predominant surface material

Water bodies 4 Bodies of water, including lakes, reservoirs, streams, rivers, and swamps
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accuracy. Additionally, it introduces a degree of randomness into the
model by selecting the most appropriate feature from a randomly
chosen subset of available features (Chang et al., 2022).

One of the foremost advantages of the Random Forest algorithm
is its remarkable versatility (Loddo et al., 2023). It seamlessly
accommodates regression and classification tasks, offering the
added benefit of transparently revealing the relative importance
of input features. This adaptability and its nonlinear nature render it
exceptionally well-suited to diverse data and scenarios (Pokhariya
et al., 2023). This may be stated numerically as Eq. 4. The “Mode”
function returns the most common class prediction in the
individual trees.

Final Prediction � Mode Class predictions from individual trees( )
(4)

3.4.2 Decision Tree Classifier (DTC)
The Decision Tree Classifier (DTC) is a versatile tool in

supervised learning, serving classification and regression tasks
(Azam et al., 2023). It generates a tree-like framework in which
internal nodes represent attribute tests, branches indicate test
results, and leaf nodes hold class labels (Figure 4). The process of
tree formation involves recursively dividing the training data into
subsets, driven by attribute values, until certain stopping criteria,

FIGURE 4
Graphical representation of Decision tree classifier.

FIGURE 5
Graphical representation of Convolution Neural Network (CNN).
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such as maximum tree depth or the minimum samples necessary
for a split, are fulfilled (Lee et al., 2022). During training, the
Decision Tree algorithm selects the optimal attribute for data
partitioning, typically employing metrics like Entropy or Gini
impurity to measure impurity or randomness in subsets Eqs 5, 6
respectively(Disha et al., 2022). The objective is to identify the
attribute that maximizes information gain or minimizes impurity
post-split. Decision tree algorithms, including CART, C4.5, C5.0,
and ID3, can handle diverse data types, such as nonlinear,
numerical, and categorical (Dehghani et al., 2023), while
accommodating missing values. Impurity metrics, specifically
Gini impurity and Entropy, are commonly employed to
evaluate split quality. Gini impurity, denoted as “Gini(t)” for a
node “t” with “J” classes, quantifies the probability of
misclassifying a randomly selected element if it were assigned
a label randomly (Ehsani, 2022).

Gini t( ) � 1- ∑J

j�1 Pj( )2[ ] (5)

Entropy is a measure of the disorder or unpredictability of a
node. Entropy “Entropy(t)” is calculated as follows for a node “t”
with “J” classes:

Entropy t( ) � -∑J

j�1Pjlog2 Pj( ) (6)

In our context, we have a binary classification scenario with two
classes. To compute Pj, which represents the percentage of samples
belonging to class “j” in node “t,” we first count the number of data
points in node “t” for each class, denoted as Nj for j = 1, 2, J. The total
number of data points in node “t” is Nt. Subsequently, we can
calculate Pj by Eq. 7:

Pj � Nj
Nt

(7)

3.4.3 Convolution Neural Network (CNN)
Convolution Neural networks (CNN), a subset of machine

learning, play a central role in deep learning algorithms,
particularly for image-based tasks, due to their proficiency in
capturing local patterns and spatial hierarchies in data (Zhao
et al., 2023). They consist of layered nodes, Consisting of an
input layer, one or more hidden layers, and an output layer; the
network comprises interconnected nodes with corresponding
weights and thresholds (Sawant et al., 2023). Activation occurs
when a node’s output surpasses the specified threshold, as shown
in (Figure 5). These networks utilize filters (kernels) that traverse
input images to detect relevant patterns and features, crucial in tasks
like land use classification. Pooling layers, such as Max Pooling, are
employed to down sample spatial dimensions, reducing
computational complexity while preserving essential features and
enhancing network robustness and efficiency (Mc Cutchan and
Giannopoulos, 2022). Following convolutional and pooling layers,
fully connected layers facilitate learning high-level representations
and making predictions based on earlier extracted features
(Krivoguz et al., 2023). The choice of a loss function, like
categorical cross-entropy for multi-class classification, is task-
dependent. CNNs are trained using labeled data, with model
parameters adjusted during training to minimize the disparity
between predicted and actual class labels.

3.4.4 Recurrent neural network (RNN)
Recurrent Neural Networks (RNNs), a subset of deep learning

networks, primarily refer to temporal recurrent neural networks,
which specialize in processing sequential data with the critical
objective of connecting the current output of a sequence with
previous information to establish a recurrent link (Zhao et al.,
2023). For visual representation (Figure 6), the central feature of
RNNs is the persistent hidden state that spans input and output

FIGURE 6
Graphical representation of Recurrent Neural Networks (RNN).
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phases (Wang et al., 2022). This invisible state, alongside input
vectors, undergoes updates and subsequently serves as an output
alongside output vectors (Stateczny et al., 2022). Notably, the
updated hidden state becomes part of the following input,
preserving prior information (Moharram and Sundaram, 2023).
RNNs find application in Land Use and Land Cover (LULC)
classification in remote sensing images, which often encompass
temporal and spatial data due to their robust material processing
capabilities (Zhao et al., 2023).

3.5 Accuracy assessment

The assessment of the classification map as described by
(Kapishnikov et al.), demonstrated its high quality. Following the
Land Use and Land Cover (LULC) classification, the machine and
deep learning algorithm’s accuracy was assessed to gauge model
performance. To facilitate this Evaluation, points representing
Vegetation, water bodies, barren land, and Built-up areas were
systematically scripted in Python-based coding and partitioned
into datasets for both training and testing, with a split of 70% for
training and 30% for testing. The Evaluation relied on a built-in
function within Google Earth Engine (GEE) known as the confusion
matrix, which validates and quantifies image categorization
accuracy. The Kappa coefficient (Kc) and Overall Accuracy (OA)
were calculated using Eqs 8, 9, respectively.

OA � Pc( )
Pn( )*100 (8)

Kc � N +∑r

i�1xii −
∑r

i�1 xi + x + i( )
N2 − ∑r

i�1 xi + x + i( ) (9)

where Pn is the total number of pixels, and Pc is the number of
correctly identified pixels.

In this process, where N represents the total number of
observations, r stands for the number of rows and columns in
the error matrix, xii signifies the number of observations in row I

and column I, xi+ denotes the marginal total of row I, and x+i
represents the marginal total of column i. The user accuracy for
each class is determined by calculating the ratio of perfectly
classified pixels within that class to the total number of classified
pixels. Similarly, the producer’s accuracy is established by
determining the proportion of correctly classified pixels
within each class of the reference data compared to the total
number of pixels within that class. These accuracy measures
typically range between −1 and +1, with values exceeding
+0.5 indicating strong agreement with the classification
(Talukdar et al., 2020).

In classification projects, the validation and accuracy assessment
steps are essential. This stage plays an essential role in evaluating
models and mapping by determining their reliability and scientific
significance. The main aim at this point is to compare the classified
image with ground truth data we followed a systematic process
(Figure 2) to obtain the dataset. Our approach to evaluating and
calculating the accuracy of each classification method represented as
the accuracy of map classified, involved generating the set of random
points from the ground truth data sets and compared them with the
classified data (classified map) (Alam and Mohanty). By using the
significance of confusion matrix which lies not only in its ability to
quantify various errors made by a prediction algorithm but, more
importantly, in its capacity to distinguish and categorize the
different types of errors made.

4 Results

4.1 Classifications of land use land cover

In this study, Landsat-8 satellite imagery was utilized for land
cover mapping within our designated study area. An operation was
conducted to extract reflectance data from Landsat-8 image bands to
enable land cover classification based on spectral features.
Additionally, we acquired Landsat-8 imagery from July 2023 for
the Sukkur region, with a spatial resolution of 10 m for bands B1 to

FIGURE 7
Area of LULC classes in km2 using machine learning models. (A) Random forest models. (B) Decision tree classifier (DTC).
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B7. We employed the Google Earth Engine (GEE) cloud platform to
address data availability, storage, and preprocessing challenges,
which were particularly crucial due to the extensive feature space
created by the seven spectral bands and the multiple land cover
classes (four classes) in our study area detailed in Table 2. This
approach expedited the computation process, as local computation
would have been time-consuming.

The ongoing investigation evaluates the efficacy of machine
and deep learning methodologies, specifically Random Forest
(RF), Decision Tree Classifier (DTC), Convolutional Neural
Network (CNN), and Recurrent Neural Network (RNN), For
Land Use and Land Cover (LULC) classification in District
Sukkur, Pakistan, this investigation involved the computation

of three satellite indices (NDVI, NDBI, and MNDWI) from
Landsat-8 data. Subsequently, these indices were employed in
applying algorithms to classify four primary categories. Built-up
Area, Water Bodies, Barren Land, and Vegetation. The resulting
LULC map generated by the RF machine learning model is
shown in (Figure 7A), revealing that 2.7% (142 km2) is Built-
up area, 1.9% (99 km2) is water bodies, 54.8% (2,835 km2) is
barren land, and 40.4% (2,089 km2) is Vegetation.

Similarly, the LULC map produced by the DTC model for
Sukkur District, Pakistan, is shown in Figure 7B. According to
the classification results, 2.8% (149 km2) is Built-up area, 2%
(105 km2) is water bodies, 54.9% (2,840 km2) is barren land, and
40.1% (2,070 km2) is Vegetation.

FIGURE 8
Area of LULC classes in km2 using deep learning models (A) Convolution Neural Network (CNN). (B) Recurrent Neural Network (RNN).

FIGURE 9
Land use land cover classification results of machine learning models (A) Random Forest (RF), (B) Decision Tree Classifier (DTC).
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Additionally, our investigation included deep learning models
such as CNN and RNN. The outcomes of the CNNmodel applied to
our research region’s Land Use and Land Cover (LULC) map can be
observed in Figure 8A. The classification results indicate that 3.8%
(201 km2) corresponds to Built-up areas, 2.5% (130 km2) to water
bodies, 49% (2,535 km2) to barren land, and 44.5% (2,299 km2) to
Vegetation. Similarly, the results of the RNN model applied to the
LULC map of our research area, are presented in Figure 8B. The
classification outcomes show that 3.6% (190 km2) represents Built-
up areas, 2.3% (120 km2) represents water bodies, 49.2% (2,542 km2)
corresponds to barren land, and 44.7% (2,314 km2) belongs to
Vegetation.

4.2 Performance evaluation of machine and
deep learning model

The performance of each model, including RF, DTC, CNN, and
RNN, was evaluated based on both the user’s accuracy (UA) and the
producer’s accuracy (PA) for each Land Use and Land Cover
(LULC) class. We present the UA and PA results individually for
each LULC class since the models exhibited varying performance
across different land cover types. The specific UA and PA values for
each LULC class are provided below.

4.2.1 Radom forest accuracy of user and producer
The Random Forest model achieves the land classification

performance. Within the Built-up Area category, the model
correctly identifies 157,778 units, encompassing an area of
142 square kilometers, constituting approximately 2.75% of the
total study area. The model exhibits a notable User Accuracy of
94.2%, indicating a high probability of precise classification, and a
Producer Accuracy of 93%, affirming the model’s reliability. As
shown in Figure 9A the Water Bodies category, the Random Forest
model accurately classifies 110,000 units, covering an area of
99 square kilometers, equivalent to roughly 1.92% of the total
area. Notably, the User Accuracy for Water Bodies reaches an

impressive 99.6%, underscoring the model’s exceptional precision,
while the Producer Accuracy stands at 98.3%, further emphasizing
its reliability. For the Barren Land classification, the model
successfully identifies 3,150,000 units, representing a vast area of
2,835 square kilometers, approximately 54.89% of the study area.
The Producer Accuracy attains 91.2%, signifying a dependable
classification, while the User Accuracy is 90.2%. In the
Vegetation category, the Random Forest algorithm proficiently
classifies 2,321,111 units, covering an area of 2,089 square
kilometers, roughly 40.45% of the total area. The User Accuracy
for Vegetation is 92.2%, highlighting the model’s competency, and
the Producer Accuracy is 91.2%, further substantiating its reliability.
The presented Table 3 provides a comprehensive account of the
overall Random Forest model, which achieves an impressive overall
accuracy of 91.3%, indicating its capability to accurately classify land
cover across all categories within the study area. Moreover, the
Kappa coefficient, with a value of 0.90, signifies a strong concurrence
between the model’s predictions and the actual land classifications,
further affirming the Random Forest model’s robust and dependable
performance in this land classification endeavor.

4.2.2 Decision tree classifier accuracy of user
and producer

The decision tree model’s outcomes are as follows Table 3. In the
Built-up Area category, the algorithm identifies 165,556 units,
encompassing an area of 149 square kilometers (approximately
2.89% of the total area). The User Accuracy for this category
stands at 92.2%, while the Producer Accuracy is 91%. Moving to
Water Bodies, the model correctly classifies 116,667 units, covering
an area of 105 square kilometers (around 2.03% of the total area).
Impressively, the User Accuracy for Water Bodies reaches 98.3%,
and the Producer Accuracy is 96.3%. As shown in Figure 9B
regarding Barren Land, the Decision Tree algorithm classifies a
substantial 3,155,556 units with an area of 2,840 square kilometers
(about 54.99% of the study area). The Producer Accuracy for this
category is 91.2%, while the User Accuracy is 89.2%. In the
Vegetation category, the Decision Tree model successfully

TABLE 3 Accuracy assessment of machine learning models for the classification of land use land cover.

Machine learning Land classification Count Area (km2) Area (%) User accuracy Producer accuracy

Random Forest Built-up Area 157,778 142 2.74 94.2 93

Water Bodies 110,000 99 1.91 99.6 98.3

Barren Land 3,150,000 2,835 54.88 91.2 90.2

Vegetation 2,321,111 2,089 40.44 92.2 91.2

Overall accuracy 91.3

Kappa coefficient 0.90

Decision Tree Classifier Built-up Area 165,556 149 2.88 92.2 91

Water Bodies 116,667 105 2.03 98.3 96.3

Barren Land 3,155,556 2,840 54.99 89.2 91.2

Vegetation 2,300,000 2,070 40.08 91.4 89.2

Overall accuracy 88.3

Kappa coefficient 0.86
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identifies 2,300,000 units, covering an area of 2,070 square
kilometers (approximately 40.08% of the total area). The User
Accuracy for vegetation is 91.4%, while the Producer Accuracy is
89.2%. The overall accuracy of the decision tree model is 88.3%,
representing the accuracy of the entire land classification process
across all categories. Furthermore, the Kappa coefficient for the
decision tree model is 0.86, indicating a somewhat lower level of
agreement than the random forest model, which suggests a slightly
lower performance in agreement between predictions and actual
classifications.

In comparison, the random forest model generally outperforms
the decision tree model regarding overall accuracy (91.3% vs. 88.3%)
and the Kappa coefficient (0.90 vs. 0.86). It exhibits higher User and

Producer Accuracy in most land categories, demonstrating its
superior performance in accurately classifying land cover within
the study area. These results highlight the Random Forest
algorithm’s effectiveness and reliability in land classification tasks.

4.3 Performance evaluation of deep
learning model

4.3.1 Convolution neural network accuracy of user
and producer

The Convolutional Neural Network (CNN) model effectively
classifies various land cover categories. Specifically, the model

TABLE 4 Accuracy assessment of deep learning models for land use land cover classification.

Deep learning Land classification Count Area (km2) Area (%) User accuracy Producer accuracy

Convolution Neural Network Built-up Area 223,333 201 3.89 97.2 96.1

Water Bodies 144,444 130 2.5 99.5 99.3

Barren Land 2,816,667 2,535 49.08 93.6 92.2

Vegetation 2,554,444 2,299 44.51 96.9 92.2

Overall accuracy 97.3

Kappa coefficient 0.93

Recurrent Neural Networks Built-up Area 211,111 190 3.67 96.3 92.1

Water Bodies 133,333 120 2.32 97.4 91.4

Barren Land 2,824,444 2,542 49.20 92.3 93.9

Vegetation 2,571,111 2,314 44.79 99.7 94.8

Overall accuracy 96.2

Kappa coefficient 0.91

FIGURE 10
Land use land cover classification results of deep learning models (A) Convolution Neural Network (CNN), (B) Recurrent Neural Network (RNN).
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successfully categorizes 223,333 units as Up Area, covering a
spatial extent of 201 square kilometers, equivalent to
approximately 3.89% of the total study area. The high User
Accuracy of 97.2% and a Producer Accuracy of 96.1% in this
category indicate a substantial likelihood of accurate
identification. Similarly, within the Water Bodies category, the
CNN model identifies 144,444 units, encompassing 130 square
kilometers or approximately 2.52% of the total study area, with
an impressive User Accuracy of 99.5% and a Producer Accuracy
of 99.3%. Barren Land, constituting 2,816,667 units and covering
2,535 square kilometers (approximately 49.08% of the study
area), is reliably classified with a User Accuracy of 93.6% and
a Producer Accuracy of 92.2%. The Vegetation category sees
successful classification of 2,554,444 units, covering 2,299 square
kilometers or about 44.51% of the total area, with a User
Accuracy of 96.9% and a Producer Accuracy of 92.2%. The
detailed models in the provided Table 4 and Figure 10A, thus
overall, the CNN model achieves an impressive overall accuracy
of 97.3% and a Kappa coefficient of 0.93, demonstrating robust
agreement between its predictions and the actual classifications
across diverse land cover types.

4.3.2 Recurrent neural networks accuracy of user
and producer

The outcomes of the RNNmodel proficiently classify 211,111 units,
corresponding to a spatial extent of 190 square kilometers, accounting
for approximately 3.68% of the total area. Notably, the User Accuracy in
this classification stands at 96.3%, with a corresponding Producer
Accuracy of 92.1%. Moving to the Water Bodies category, the RNN
model identifies 133,333 units, covering an area of 120 square kilometers
(around 2.32%of the total area), achieving aUser Accuracy of 97.4% and
a Producer Accuracy of 91.4%. Barren Land, comprising 2,824,444 units
and spanning an area of 2,542 square kilometers (about 49.21% of the
study area), is successfully classified by the RNNmodel, attaining a User
Accuracy of 92.3% and a Producer Accuracy of 93.9%. The RNN
algorithm accurately classifies 2,571,111 units in the Vegetation
category, encompassing 2,314 square kilometers or approximately
44.79% of the total area. The models are provided Table 4 and
Figure 10B. The User Accuracy for Vegetation is notably high at
99.7%, and the Producer Accuracy is 94.8%. Globally, the RNN
model achieves an impressive overall accuracy of 96.2% and exhibits
a Kappa coefficient of 0.91, indicating substantial concordance between
its predictions and the actual land classifications.

FIGURE 11
Learning curve of machine and deep learning models (A) Random Forest, (B) Decision Tree Classifier (DTC), (C) Convolution Neural Network, (D)
Recurrent Neural Networks.
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In summary, the results of the deep learning-based land
classification study demonstrate the effectiveness of both CNN
and RNN models in accurately categorizing land cover across
various categories. The CNN model showcases higher overall
accuracy and a more substantial agreement with actual
classifications. The RNN model also performs well but with
slightly lower overall accuracy and Kappa coefficient values.
These findings provide valuable insights into the potential
applications of deep learning for land classification tasks.

4.4 Model validations

The model validations conducted in this study adhere to
rigorous scientific protocols to assess the accuracy and reliability
of different land classification models. These validations serve as
critical benchmarks for evaluating the performance of machine
learning and deep learning methodologies in categorizing land
cover. Comparing the Random Forest and Decision Tree models,
statistical measures such as overall accuracy and the Kappa
coefficient were employed (Demir and Sahin, 2022). The
Random Forest model exhibited a remarkable overall accuracy of
91.3% with a Kappa coefficient of 0.90, indicating a strong
agreement between its predictions and the actual land
classifications. In contrast, the Decision Tree model yielded a
slightly lower overall accuracy of 88.3% and a Kappa coefficient
of 0.86, suggesting a slightly reduced level of agreement. The deep
learning models, specifically the Convolutional Neural Network
(CNN) and Recurrent Neural Network (RNN), were subjected to
similar validations. The CNN model demonstrated exceptional
accuracy, achieving an overall accuracy of 97.3% and a Kappa
coefficient of 0.93, highlighting a solid concurrence between
predictions and actual classifications. Notably, the CNN model
excelled in accurately classifying Water Bodies, with User and
Producer Accuracy exceeding 99%. The RNN model, while
slightly less accurate, with an overall accuracy of 96.2% and a
Kappa coefficient of 0.91, still delivered commendable results. It
exhibited remarkable accuracy in classifying Vegetation, achieving a
User Accuracy of 99.7%. The learning curves of both machine and
deep learning models are shown in the (Figures 11A–D). Thus, these
model validations adhere rigorously to the standards of scientific
investigation, exemplifying robust empirical inquiry. Through
systematic evaluation of diverse land classification methodologies,
these validations offer invaluable insights into the strengths and
limitations of each approach. Furthermore, the results derived from
these learning curves underscore the efficacy of both machine
learning and deep learning models in accurately categorizing land
cover. This precision carries significant implications across various
fields, particularly in geospatial analysis and environmental
monitoring.

5 Discussions

The capability for accurate categorization of Land Use and Land
Cover (LULC) maps is essential in remote sensing applications. Key
factors influencing accuracy include the choice of classifier, quality
of training data, terrain variability, datasets utilized, and availability

of reference maps. Remote sensing continues to advance through
enhanced sensor resolutions, vast accessible data archives, and
increased processing capabilities. Google Earth Engine (GEE) has
gained significant traction due to its free access to datasets and
cloud-based platform offering extensive geospatial analysis and
modeling capabilities. Users can access, visualize, and analyze
geospatial data worldwide through GEE, which hosts a
comprehensive dataset ready for analysis, facilitating the testing
of numerous applications. Ongoing improvements to ML and DL
algorithms contribute to the effectiveness of GEE in readily
producing composite images and performing intricate image
processing tasks.

The results obtained in this study were derived from Landsat-8
datasets to evaluate the importance of machine and deep learning
classifiers (RF, DTC, CNN, and RNN) and their respective
accuracies in land classification. These datasets were employed to
map the region of Sukkur, Pakistan, with the aim of delineating the
area of each zone or category (Water bodies, Built-up, Barren Land,
and Vegetation) and assessing the performance of each classifier
utilized in this research. In accordance with our examination of
previous studies (Yang et al., 2021; Nelson et al., 2022; Prasad et al.,
2022; Sertel et al., 2022; Yang et al., 2022; Sellami and Rhinane, 2023;
Zhao et al., 2023; Yari Hesar et al., 2024). From the recent studies, we
discovered that the methodology employed in our experimentation
could be adapted for mapping and evaluating various areas in
different countries or cities. The image classification results were
assessed based on the accuracy of each classifier. We computed
User’s Accuracy (UA), Producer’s Accuracy (PA), Overall Accuracy
(OA), and Kappa Coefficient (Kc) as shown in Tables 3, 4 to evaluate
the accuracy outcomes for Land Use and Land Cover (LULC)
mapping utilizing the applied algorithms. As discussed in the
recent study report by Panhwar et al. (2024) the spatio-temporal
variation in land use and land cover (LULC) Sindh Pakistan
employed the supervised classification, we have also selected to
integrate spectral indices into the training data and the bands of the
Landsat-8 satellite image that we utilized. In this study, efforts were
made to improve the performance of the classifiers for achieving
better classification results in our study area. Spectral indices,
including NDVI, MNDWI, and NDBI, were incorporated to aid
in this enhancement. According to reports (Amini et al., 2022;
Azedou et al., 2023), both the Random Forest and CNN models
demonstrated robust performance in LULC classification, achieving
impressive overall accuracy. These models accurately categorized
Built-up Areas, Water Bodies, Barren Land, and Vegetation.
Notably, its high User and Producer Accuracy in most categories
underscores its reliability (Dehghani et al., 2023; Kanakala and
Reddy, 2023). While slightly less accurate, the Decision Tree
classifier and Recurrent Neural Network (RNN) model also
provided dependable classifications. The Convolutional Neural
Network (CNN) (Raschka et al., 2022), particularly, demonstrates
remarkable accuracy and potential for practical applications.
Additionally, Random Forest (RF) models exhibited exceptional
accuracy in land classification (Gaafar et al., 2022; Kanakala and
Reddy, 2023).

In our current investigation, we observed consistent pattern
where RF and CNN classifiers demonstrated proficiency in mapping
and exhibited outstanding performance, particularly in accurately
classifying water bodies and vegetation. The RNN model yielded
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commendable results, especially in categorizing vegetation.
Additionally, barren land emerged as the most accurately
classified category of Land Use and Land Cover (LULC) in this
study. Previous studies have shown that various classifiers exhibit
distinct performance levels when classifying different LULC
categories using the same data and study periods (Safi et al.,
2024). In our study, we also observed variations in the results of
machine and deep learning models for mapping LULC in the study
area (Roy et al., 2022). Our findings provide important baseline
information for further research and applications in remote sensing
using machine and deep learning models, geospatial analysis, and
land management.

6 Conclusion

The primary objective of this study was to assess and
compare the effectiveness of machine and deep learning
classification algorithms in terms of overall accuracy (OA),
producer accuracy (PA), user accuracy (UA), and Kappa
coefficient (KC). Additionally, we aimed to evaluate the
capability of the GEE platform and Landsat-8 data in
classifying indices such as NDVI, NDBI, and MNDWI,
derived from Landsat-8 data, and classifying four major
categories: built-up area, water bodies, barren land, and
vegetation. The Random Forest model demonstrated robust
performance, achieving an overall accuracy of 91.3% with a
Kappa coefficient of 0.90. It accurately classified 2.7% of the
area as built-up area, 1.9% as water bodies, 54.8% as barren land,
and 40.4% as vegetation. Similarly, the Decision Tree model
provided reliable classifications, albeit slightly less accurate with
an overall accuracy of 88.3% and a Kappa coefficient of 0.86. It
identified 2.8% of the area as built-up area, 2% as water bodies,
54.9% as barren land, and 40.1% as vegetation. Deep learning
models, CNN and RNN, demonstrated significant accuracy. The
CNN model achieved an overall accuracy of 97.3%, with high
User and Producer Accuracy for all categories. Similarly, the
RNN model achieved an overall accuracy of 96.2%, with high
User and Producer Accuracy. The findings of this study suggest
that the GEE platform proves valuable for large-scale
categorization tasks globally and nationally, employing various
machine learning and deep learning models. Furthermore, it
should be suggested that collaboration between governmental
agencies, research institutions, and NGOs is vital to establish
standardized protocols for land classification implementation.
Additionally, maintaining and enhancing Earth observation
platforms such as Google Earth Engine, while ensuring
accessibility to high-resolution satellite imagery, is essential
for effectively monitoring land cover dynamics. These
measures enable authorities to make informed decisions and
foster sustainable land management practices at regional and
national levels.

While our study aimed to comprehensively evaluate the
effectiveness of machine and deep learning classifications
algorithms for Land Use and Land Cover (LULC) mapping, there
are certain limitations to consider, along with avenues for future

research and implementations. Based on our research investigations,
future studies will focus on investigating unsupervised algorithms,
which are expected to offer improved performance in classifying
satellite images. This will facilitate the accomplishment of more
accurate classification and identification of urban areas within the
designated study region of Pakistan.
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