
Carbon conduction effect and
multi-scenario carbon emission
responses of land use patterns
transfer: a case study of the
Baiyangdian basin in China

Xing Gao1,2,3†, Meiran Zhao1*†, Mengmeng Zhang1,
Zhongyuan Guo1, Xiao Liu1 and Zihua Yuan1

1School of Public Administration, Hebei University of Economics and Business, Shijiazhuang, China,
2Hebei Collaborative Innovation Center for Urban-Rural Integrated Development, Hebei University of
Economics and Business, Shijiazhuang, China, 3Center for Urban Sustainability and Innovation
Development (CUSID), Hebei University of Economics and Business, Shijiazhuang, China

Carbon pooling and release occur all the time in all corners of the earth, where
the land use factor is key to influencing the realization of carbon peaking and
neutrality. Land use patterns and carbon emissions change under different
scenarios and analyzing the correlation will help formulate scientific land use
policies for the future. In this study, through remote sensing data, we investigated
the changes in land use patterns and carbon emissions in the Baiyangdian basin in
China from 2000 to 2020 and analyzed the carbon conduction effect with the
help of a land transfer matrix. The geographical simulation and optimization
system-future land use simulation (GeoSOS-FLUS) and Markov models were
used to predict the land use changes and carbon emissions under the four
different scenarios for the region in 2035. The results indicated that 1) the net land
use carbon emissions increased from 52,163.03 × 103 to 260,754.91.28 × 103 t
from 2000 to 2020, and the carbon source-sink ratio exhibited a general uptrend;
2) the net carbon emissions due to terrestrial transfers increased over time. The
carbon conduction effects due to the transfer of forests, grasslands, water areas,
and unused lands to built-up lands also showed a rising trend, albeit the latter two
exhibited only small changes; 3) in 2035, the net carbon uptake under the four
development scenarios was predicted to be 404,238.04 × 103, 402,009.45 × 103,
404,231.64 × 103, and 404,202.87×103 t, respectively, with all values much higher
than that of the study area in 2020. The maximum carbon sink capacity was
817.88 × 103 t under the double-carbon target scenario, and the maximum
carbon source emission was 405,033.61 × 103 t under the natural
development scenario. The above results provide an essential reference for
low carbon-based urban land use regulations for the Baiyangdian basin and
other similar projects in the future.
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1 Introduction

Global climate change poses a significant threat to sustainable
development and the survival of humans (Rong et al., 2022). The
terrestrial carbon system is an important component of the global
carbon cycle, which plays a critical role in mitigating global
warming by effectively regulating the regional climate through
the absorption and release of greenhouse gases from the
atmosphere (Yu et al., 2022). Land use activities primarily
affect the carbon cycle of the ecosystem (Mendelsohn and
Sohngen, 2019), with their carbon emissions being second
only to the burning of fossil fuels (Wang Z. et al., 2022).
Thus, regulating land use activities to reduce carbon emissions
is an important means of promoting carbon neutrality from a
practical perspective (Carpio et al., 2021). Therefore, several
studies have aimed to demonstrate how carbon emissions
from land use can help achieve a range of low carbon
development goals, particularly carbon peak and neutrality
(Yang and Liu, 2022).

Most studies on land use carbon emissions focus on accounting,
mechanisms and consequences, projections, and impact factors (Le
Quéré et al., 2012; Houghton and Nassikas, 2017; Yu et al., 2022).
The accounting of land use carbon emissions mainly involves
assessing the emissions by using bookkeeping, the
Intergovernmental Panel on Climate Change (IPCC) inventory,
the Carnegie-Ames-Stanford approach (CASA) model, the global
production efficiency model (GLO-PEM), and the integrated
valuation of ecosystem services and tradeoffs (InVEST) model
(Piao et al., 2022; Raihan et al., 2022; Walker et al., 2022).
Houghton and Nassikas (2017) used a bookkeeping model and
estimated the average global net carbon fluxes induced by land use
and coverage change (LUCC) from 2006 to 2015 to be 1.11 ±
0.35 Pg C yr–1; Ghosh et al. (2022) proposed a method to establish a
low-carbon city by extensively analyzing land use carbon emissions
and sequestration potential using the InVEST model. Regarding the
land use carbon emission effects, it primarily investigates the impact
of vegetation and soil carbon storage, as well as the dynamic
evolution characteristics (Wang et al., 2020; Wolswijk et al.,
2022). Affuso and Hite (2013) showed that participatory
decision-making on land use can triple the net energy value of
biofuels and reduce carbon emissions by 20%; Ghorbani et al. (2023)
showed that soil carbon storage and atmospheric carbon dioxide
(CO2) emissions were directly affected by the changes in the soil
characteristics and land use; rising pastures and forests increased the
soil organic carbon and microbial biomass carbon in both topsoil
and subsoil. For the prediction of land use carbon emissions,
Cellular Automata-Markov (CA-Markov), Conversion of Land
Use and its Effects at Small regional extent (CLUE-S), Future
Land Use Simulation (FLUS), and Patch-generating Land Use
Simulation (PLUS) models were used to predict the land use
spatial layout for carbon emission analysis (Wang H. et al., 2022;
Wu et al., 2022). Liu et al. (2018) used a system dynamics approach
to establish a multi-perspective integrated measurement model to
quantitatively predict new towns on a sector-by-sector basis. They
showed that cities need to rely on regional green spaces to mitigate
carbon emissions; Yao et al. (2023) proposed a bottom-up cadastral
land scale carbon emission prediction framework based on vector
cellular automata. Although the aforementioned works serve as

excellent examples for the study of land use carbon emissions,
only a few studies have focused on carbon emission conduction
due to the change in land type (Li et al., 2023). Investigating the
effects of land type changes on carbon emissions under various
scenarios can provide new perspectives to formulate appropriate
land regulation and carbon emission reduction policies (Ke Y. et al.,
2022). However, most of the existing research is based on past land
use data, and there remains a lack of studies predicting changes in
future land use patterns under multiple scenarios and the resultant
carbon emissions (Chuai et al., 2019).

Therefore, the objectives of this study were 1) Based on the land
use data, combined with the carbon emission estimation model,
obtain the carbon emission characteristics of the Baiyangdian basin
from 2000 to 2020. 2) Use the land transfer matrix to analyze the
carbon transfer effect caused by land use transfer in each period 3)
Predict the land use pattern under four different development
scenarios in 2035, as well as the resulting carbon emissions, to
provide a reference for the city to assess the pressure of carbon
emission reduction (Harper et al., 2018).

The rest of the paper is as follows: Section 2 presents an overview
of the study area and data sources, Section 3 describes the empirical
methodology, Section 4 is the results and analyses section, and
Section 5 provides the discussion and conclusions.

2 Study area overview and data sources

2.1 Study area overview

The Xiong’an New Area, China, as a hub to relieve Beijing of
non-capital functions, is critical to accelerating the synergistic
development of the Beijing-Tianjin-Hebei region, with its land
use changes being typical of the current era (Zhou et al., 2021).
The Baiyangdian basin, as the ecological hinterland of the Xiong’an
New Area, is a prime example of healthy synergies between the
carbon system and the development of the city (Li et al., 2008; Zhao
et al., 2021; Xia et al., 2023). The study area is situated in the
northern part of the North China Plain, between 113°45′–116°26′
eastern longitudes and 37°51′–40°39′ northern latitudes (Figure 1),
which belongs to a warm-temperate monsoon climate. The
Baiyangdian basin in this study refers to the administrative area
of Hebei Province flowing through nine branches such as the Zuma
Long River, the Cao River, and the Zhao Wang Xin River, involving
35 counties (cities and districts) under the jurisdiction of Baoding
City, Zhangjiakou City, Shijiazhuang City and Cangzhou City, with
a total land area of 34,353.07 km2. The basin exhibits an intricate
geography, with highlands in the west (mountains) and lowlands in
the east (plains). The mountainous area mainly comprises forests
and grasslands (17.79% and 19.69% of the total basin area,
respectively), and the plains are primarily cultivable land (46.25%
of the total basin area).

2.2 Data sources

In this study, we employed remote sensing image data, Digital
Elevation Model (DEM) data, slope data, meteorological data, and
fossil energy data as follows:
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(1) The Landsat4-5/Thematic Mapper (TM) and Landsat8/
Operational Land Imager (OLI) remote sensing images used in
this study were obtained from the Chinese Academy of Sciences
Geospatial Data Cloud (https://www.gscloud.cn/). The data
identifiers and dates of the selected images are
LT51230332000145BJC00 2000-05-24, LT51230322010156IKR00
2010-06-05, and LC81230332020120LGN00 2020-4-29,
respectively. Concerning previous classification standards and
combined with research needs, the land was divided into
cultivable land, forest, grassland, built-up land, unused land, and
water area, with a 30-m spatial resolution.

(2) The DEM data were obtained from the Chinese Academy of
Sciences Geospatial Data Cloud (https://www.gscloud.cn/),
and further, the slope data was extracted from the DEM data,
with an initial resolution of 30 m.

(3) Annual average precipitation and average temperature for the
basin study area were collected from the China
Meteorological Data Network (https://data.cma.cn/), the
spatial resolution is 0.5° × 0.5°.

(4) Data on the consumption of the eight main fossil energy
sources used to indirectly estimate carbon emissions from
built-up land were obtained from the statistical yearbooks of
counties and cities and the National Bureau of Statistics

(http://www.stats.gov.cn/) for the years 2000–2020. The
corresponding energy carbon emission coefficients were the
missing values recommended by the Intergovernmental Panel
on Climate Change (IPCC).

3 Research methods

3.1 Land use carbon emission calculations

Carbon sinks include grasslands, forests, unused lands,
and water areas (Guo and Fang, 2021). Cultivable land can
act as both a carbon source and sink due to its different
functions (Ma and Wang, 2015). Therefore, this paper
accurately measured the carbon emission values for these five
land use types by the direct estimation method. Equation 1 is
calculated as follows:

Ci � SipVi (1)
where i = 1, 2, 3, 4, and 5 represent cultivatable land, forest,
grassland, water area, and unused land, respectively (Yue et al.,
2020);Ci is i land type carbon emissions; Si is i land type area; andVi

is i land type carbon emission coefficient (Table 1).

FIGURE 1
Spatial location of the study area. (A) China scope; (B) Hebei Province; (C) Baiyangdian Basin.

Frontiers in Environmental Science frontiersin.org03

Gao et al. 10.3389/fenvs.2024.1374383

https://www.gscloud.cn/
https://www.gscloud.cn/
https://data.cma.cn/
http://www.stats.gov.cn/
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1374383


Carbon emissions from built-up land occur mainly from human
activities and the energy production and industrial processes they
host (Zhang et al., 2021). This paper indirectly estimated the carbon
emissions of the eight main fossil fuel sources through their
consumption. Equation 2 is calculated as follows:

Ec � ∑Ejpθjpfj (2)

where Ec is built − up land carbon emission, j is the energy source
type; Ej is the energy consumption; θj is the energy to standard coal
factor; and fj is the carbon emission (Lu et al., 2022) (Table 2).

According to the principle of indicator system construction, this
paper selects five indicators, including population, carbon emission
intensity, gross domestic product (GDP), historical carbon
emissions, and the proportion of the tertiary industry, to
construct the Baiyangdian Basin Carbon Emission Indicator
System from the perspective of fairness, efficiency, and feasibility
(Table 3). The entropy value technique was initially applied to
calculate the weights of individual indicators. Subsequently, this

method was supplemented by a total carbon emission measurement
model to ultimately quantify the indirect carbon emissions
originating from the different land types in the study region
(Tang et al., 2022).

3.2 Estimation of land transfer-based carbon
emission conduction

Land use changes can cause carbon transfer, which is defined
as the carbon conduction effect of land use carbon emissions.
Two factors, the difference between the level of carbon
sequestration and carbon emissions following a change in land
class and the area of change, mainly determine the amount of
carbon emissions they transmit (Qiao et al., 2016). The area of
land class conversion can be calculated from a land use transfer
matrix indicating the amount of change and the direction of
transfer, and its Eq. 3 is:

TABLE 1 Land use carbon emission coefficients.

Land
type

Definition Carbon emission coefficient
[kg·(m2·a)−1]

Reference
source

Grassland Refers to land where herbaceous plants grow predominantly −0.0021 Jingyun Fang (2001)

Forest Refers to forestry land where trees, shrubs, bamboo, and coastal mangroves grow −0.0578 Jingyun Fang (2001)

Cultivable
land

Refers to land on which crops are grown, including ripe cropland, new land,
recreational land, and rotational land. rest land, grass field rotational crop land;

agricultural fruit, agricultural mulberry, and agricultural forest land; beach land, and
mudflats that have been ploughed for more than 3 years

0.0422 Ying Li (2013)

Water area Refers to natural terrestrial waters and water facility land −0.0252 Ying Li (2013)

Unused land Refers to land that is currently unutilized, including hard-to-utilize land −0.0005 Li Lai (2012)

TABLE 2 Standard coal conversion and carbon emission coefficients for the energy sources.

Energy category Fuel oil Coke Natural gas Crude oil Diesel oil Raw coal Kerosene Gasoline

Conversion coefficient 1.4286 0.9714 1.3300 1.4286 1.4571 0.7143 1.4714 1.4714

Carbon emission coefficient 0.61850 0.8550 0.4483 0.5857 0.5538 0.5921 0.5714 0.5538

TABLE 3 Indicator system for the allocation of carbon emissions.

Principle Index Metrics Indicator
direction

Data source

Fairness Population Population size Positive Hebei Statistical Yearbook, Baoding Economic Statistical
Yearbook

GDP GDP numeric value Positive Hebei Statistical Yearbook, Baoding Economic Statistical
Yearbook

Historical carbon emissions Fossil fuels produce carbon
emissions

Positive Hebei Statistical Yearbook, Hebei Economic Statistical
Yearbook

Efficiency Carbon productivity GDP/carbon emissions Positive China Energy Statistical Yearbook

Feasibility Carbon emission reduction
potential

Tertiary industry proportion Negative Hebei Statistical Yearbook, Hebei Economic Statistical
Yearbook
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Sij �
s11 / s1N
/ 1 /
sN1 / sNN

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (3)

where N is the number of land use types; and Sij is the area
transferred from land type i to land type j. The carbon
transmission due to the interconversion between land categories
other than built-up land (Ct) can be estimated from the transfer
matrix and the difference between the carbon emission coefficients
(δi1 − δi2) of each category using Eq. 4:

Ct � Sij × δi1 − δi2( ) (4)

This paper considers the built-up land within the Baiyangdian
basin to be spatially homogeneous, neglecting the carbon emission
differences that may arise in distinct spatial scenarios per unit area.
Therefore, during the study period T1~T2, the carbon emissions
transferred from built-up land to the other types of land can be
calculated by Eq. 5:

Ct � Sbi × δT1 − δi( ) � Sbi × Eb1/Sb1 − δi( ) (5)

In contrast, Eq. 6 is used to calculate the transfer of carbon
emissions from other land types to built-up land:

Ct � Sib × δi − δT2( ) � Sib × δi − Eb2/Sb2( ) (6)
Where Ct is the Carbon emission transmission; δi is the carbon
emission coefficient (δi1) or carbon absorption coefficient (δi2) for
land use types other than built-up land; δT1 and δT2 are the carbon
emission generated on the unit area of built-up land in T1 and
T2 years, respectively (Zhang et al., 2014b), and the unit is
t·(km2·a)−1. Eb1 and Eb2 are the carbon emissions generated by
built-up land in T1 and T2 years, respectively; Sbi and Sib are the
areas of built-up land in years T1 and T2; Sbi and Sib are the areas of
interconversion of built-up land and other land types, respectively
(Zhang et al., 2014a).

3.3 GeoSOS-FLUS model

In this study, the GeoSOS-FLUS model was used to simulate
future land use change in the Baiyangdian basin. The model has

two main components, scenario setting and model building
(Sun et al., 2021). As a resource on which human activity
depends, changes in land use and spatial distribution
characteristics essentially depend on a tradeoff between
economic development and ecological protection. Therefore,
based on previous studies and specific planning policies of each
city in the Baiyangdian basin, we established four development
scenarios, namely, natural development, balanced
development, cultivable land protection, and double-carbon
target, and analyzed their effects (Tao et al., 2015; Hong
et al., 2021; Wang Z. et al., 2022). The different scenario
settings and corresponding scenario descriptions are shown
in Table 4.

The GeoSOS-FLUS model includes the following two
framework contents:

(1) The study identified six key factors, namely, elevation, slope,
temperature, precipitation, distance to the road, and distance
to the railway, responsible for driving land use changes in the
Baiyangdian basin. To evaluate the probability of each land
use type suitability, we employed an artificial neural network
(ANN) algorithm (Wang et al., 2019). To verify the accuracy
of the calculations, we simulated a land use distribution map
for 2020 using the land use types of the study region in
2010 and matched the findings with the land use distribution
map for the same year. The Kappa coefficient is 0.7464 and
has an overall accuracy of 84.20%, demonstrating good
simulation results.

(2) The model sampled the first-stage land use distribution data
and proposed an adaptive inertia competitive roulette
mechanism to simulate the land use scenario distribution.
A degree of uncertainty and complexity in land use
conversion remained, influenced by a variety of factors.
Due to the application of the sampling method and
competitive mechanism, the proposed model could
effectively avoid error transmission, along with the adverse
effects of uncertainty and complexity. In other words, the
GeoSOS-FLUS model exhibited good accuracy and enabled
the simulation predictions to be consistent with the
actual data.

TABLE 4 Land use change rules for different scenarios.

Scenario type Scenario description

Natural development This reference scenario does not impose any restrictions on the transformation between various land types, nor does it comprise any
government or market interventions

Balanced development In accordance with planning policies and drawings, such as the Planning Outline of Xiong’an New Area in Hebei Province and the Control
Planning of the Starting Area of Xiong’an New Area in Hebei Province, the quantity requirements of different land types in different
planning directions in the future are determined. The land use structure of the other areas in the basin is consistent with the natural
development scenario

Cultivable land protection The quality and quantity of basic cultivable land are associated with national food security, so the land use change simulation needs to
accommodate the concept of cultivable land protection under the baseline scenario. This scenario protects cultivable land in the basin by
strictly controlling its total area and conversion to other types, providing a reference for future regional planning of the basin on the premise
of farmland protection

Double-carbon target This scenario incorporates ecological conservation into the baseline. Ecologically protected areas are defined based on factors, such as the
ecosystem structure and resource-carrying capacity of urban agglomerations, to prevent the disordered expansion of urban areas from
damaging the environment
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3.4 Markov prediction

The Markov process can predict the possible state of an event
at any particular instance in the future according to the current
state of the event by following the “no aftereffect” principle (Yang
et al., 2020). In this study, the transfer probability matrix was
solved by a Markov process according to the change relation of
time series to make an energy knot prediction. The Markov
model was employed to predict future land use patterns in the
Baiyangdian basin energy structure based on historical energy
data from 2000 to 2020. Let us assume that at time m, the state
vector of the energy consumption structure in the basin can be
expressed as Eq. 7:

S m( ) � Sr m( ), Sc m( ), So m( ), Sg m( ), Sk m( ), Sd m( ), Sf m( ), Sn m( ),{ }
(7)

where Sr(m), Sc(m), So(m), Sg(m), Sk(m), Sd(m), Sf(m), and Sn(m) are
the proportions of raw coal, coke, crude oil, gasoline, kerosene,
diesel, fuel oil, and natural gas in energy consumption, respectively.
The transition matrix at time m~m+1 can be expressed as Eq. 8:

Pi−j m( ) �

pr−c m( ) pr−o m( )
pc−r m( ) pc−c m( )

..

. ..
.

. . .

pr−f m( ) pr−n m( )
pc−f m( ) pc−n m( )

..

. ..
.

pf−r m( ) pf−c m( )
pn−r m( ) pn−c m( ) . . .

pf−f m( ) pf−n m( )
pn−f m( ) pn−n m( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

where i and j are energy types; and Pi−j(m) is the probability of
energy i conversion to energy j. The model effect coefficient, w, was
used as the criterion to judge the quality of prediction results, which
can be computed as Eq. 9:

w � 1 − ∑ Sr − Sp( )2
∑ Sr − Sr( )2 (9)

where Sr is the real value, Sp is the predicted value, and Sr is the
average of the actual values. If the value is closer to 1, the prediction
results are close to the actual values and the prediction
accuracy is high.

4 Results and analysis

4.1 Changes in land use carbon emissions

Based on the calculations, Table 5 shows land use carbon
emissions in the Baiyangdian basin for the years 2000, 2010, and

2020. The net land use carbon emissions in the basin were found
to steadily increase over the past two decades, with a total amount
of 208,591.88 × 103 t and an average annual increase of
10,429.59 × 103 t. Grasslands, forests, water areas, and unused
lands acted as carbon sinks, increasing the total carbon
absorption by 9.59 × 103 t. The combined carbon emissions
from cultivable and built-up lands as carbon sources increased
by 208,601.48 × 103 t. The carbon source emission to sink
absorption ratio in the basin increased, especially reaching the
highest value of 330.21 in 2020, 4.9 times higher than in 2000.
This indicated that the carbon sources in the basin were
continuously rising, and the carbon sink was
continuously declining.

Specifically, carbon emissions from built-up lands were on an
upward trend, along with carbon sequestration in forests and
water areas were on an upward trend, other land types steadily
declined as carbon sources or sinks (Figure 2). In the case of
building sites, from 2000 to 2010, rapid urbanization, enhanced
land intensification, and a mass of cultivable lands, forests, and
grasslands were transformed into built-up lands, resulting in an
expansion trend of built-up land, which is manifested in the fact
that the rate of transferring in is 18.5 times higher than the rate of
transferring out. The land use dynamic attitude (k) reached
0.0087, with the land area expanding by 268.36 km2. This
increase accounted for 94.52% of carbon emissions in 2000,
rising to 98.72% in 2020, representing the largest contribution
to carbon emissions (Figure 2). Due to the minimal net
conversion of land from other categories to built-up land
within their respective land usage dynamics between 2000 and
2010, the proportion of carbon emissions attributed to built-up
land was the lowest during the entire research period, in 2020
(Table 6). The area of cultivated land has been decreasing from
2000 to 2010, with 637.45 km2 of cultivated land being
transferred out at a rate 12.67 times faster than the rate of
transfer in, making it the land category with the largest
reduction in area share of any land category.

Among the carbon sinks, grassland and unused land
demonstrated a marginal reduction in carbon sequestration,
with the corresponding proportion decreasing from 0.54% in
2000 to 0.49% in 2020 (Figure 2B). The fluctuating trends in
the carbon uptake ratios of grasslands and unused lands could
be attributed to their continued transfer to built-up and
cultivable lands. In 2000–2010, 86.64 km2 of grassland and
5.14 km2 of unused land were transferred, and in 2010–2020,
1,390.75 km2 of grassland and 17.98 km2 of unused land were
transferred.

TABLE 5 Changes in carbon source emissions, sink absorption, and its ratio in the Baiyangdian basin.

Year Carbon sink absorption
(103t)

Carbon source emissions
(103t)

Net carbon emissions
(103t)

Carbon source-sink
ratio

2000 −782.48 52,945.51 52,163.03 67.66

2010 −795.30 229,974.20 229,178.90 289.17

2020 −792.07 261,546.99 260,754.91 330.21

2000–2020 9.59 208,601.48 208,591.88 4.9 times
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4.2 Carbon conduction effects due to land
type changes

To determine the carbon emissions after each stage of land type
transfer, we combined the land use transfer matrix with the carbon
source/sink capacity of the land type. The values with an asterisk in
Table 7 indicate the net carbon emissions from land use transfer at each
period of the study period and increased over time. Throughout the
entire study period, carbon emissions were determined by the carbon
source category. The key role of built-up land was highlighted by the
study’s finding that built-up land accounted for most carbon emissions
from total carbon sources. The transfer of cultivable lands and
grasslands to built-up lands had the most significant effect on
carbon transfer through the conversion of carbon sinks into sources.
This impact is due to the release of carbon stored in the soil, ecosystem,
and biomass. This transformation of cultivated land and grassland into
built-up land accounted for 84.05% of the total carbon emissions
(Table 7). The carbon conduction from cultivable to built-up land
was 1.02 × 103 t from 2000 to 2010, which increased to 42.44 × 103 t
from 2010 to 2020. The carbon conduction from forests, and grasslands,
to built-up land also showed an increasing trend. The carbon
conduction effect caused by water area and unused land transfer is
the same as that caused by grassland cultivation, which also shows an
increasing trend.

4.3 Multi-scenario simulation and prediction
of land use structure

In this paper, four scenarios were simulated using the GeoSOS-
FLUS model for the prediction of the Baiyangdian basin land use in
2035 (Figure 3). The 2035 balanced development, cultivable land
protection, and double-carbon target scenarios were largely
consistent, but with differences in certain regions.

In the natural development scenario, the area of forests, water area,
grasslands, cultivable lands, and unused lands in 2035 was 12,118.94,
462.03, 1626.05, 15,009.93, and 10.98 km2, respectively. Compared to
2020, the water area increased by 54.17 km2 at most; the forest area
increased by 39.68 km2; and the cultivable land reduced by 5.03%, with
a reduction of 795 km2. In the balanced development scenario,
compared to 2020, the area of built-up lands, forests, and water
bodies increased by 918.30, 260.43, and 119.7 km2, respectively.
Accordingly, the area of the cultivable lands and grasslands was
reduced by 1096.82 km2 and 218.22 km2, respectively. As
urbanization converts large parts of farmlands, food security will be
further threatened if the focus remains only on economic
development. In the cultivable land protection scenario, the built-
up land areawas relatively small, close to 5104.76 km2. Compared with
the natural development scenario, the area of forests and grasslands
increased by 41.48 and 38.61 km2, respectively, while the area of

FIGURE 2
Change and proportion of carbon emissions from land use. (A,B) Land use carbon emissions; (C) Proportion of carbon emissions.
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cultivable lands and grassland decreased by 65.88 and 10.43 km2,
respectively, indicating a severe deterioration of the Baiyangdian basin
ecology. This also suggested that even in the cultivable land protection
scenario, only a small portion of cultivable land, grassland, and water
area were expanded. It also demonstrated the need to place a higher
priority on environmental preservation, rather than economic
development in the Baiyangdian basin. In the double-carbon target

scenario, the area of cultivable lands, forests, grasslands, water area,
unused lands, and built-up lands changed to 14705.15 km2,
12438.86 km2, 1615.62 km2, 527.85 km2, 6.17 km2, and 5007.5 km2,
respectively. In comparison to 2020, the grassland area decreased by
190.96 km2 and the carbon-emitting cultivable land decreased by
1099.78 km2. Moreover, the area of water area rose by 119.99 km2,
while that of the forests expanded by 359.6 km2 (Table 8).

TABLE 6 Land use changes in the Baiyangdian basin from 2000 to 2020.

Year Land use type Unchanged Outflow Inflow Net area change Proportion
of land area

k (%)

Area Area Speed Area Speed

2000–2010 Grassland 1911.17 86.64 8.66 209.09 20.91 122.45 47.58% 0.0061

Cultivable land 16,290.28 637.45 63.75 50.30 5.03 −587.15 35.31% −0.0035

Built-up land 3063.80 15.33 1.53 283.69 28.37 268.36 6.17% 0.0087

Forest 11,918.56 13.47 1.35 207.85 20.78 194.38 9.75% 0.0016

Water area 356.55 32.71 3.27 34.51 3.45 1.80 1.14% 0.0005

Unused land 12.68 5.14 0.51 5.30 0.53 0.16 0.05% 0.0009

2010–2020 Grassland 729.52 1390.75 139.07 1717.65 171.77 326.91 46.00% −0.0134

Cultivable land 13902.25 2438.33 243.83 3042.70 304.27 604.37 35.16% −0.0033

Built-up land 2719.47 628.03 62.80 1703.03 170.30 1075.00 5.35% 0.0259

Forest 9382.23 2744.18 274.42 730.01 73.00 −2014.17 12.26% −0.0004

Water area 289.22 101.83 10.18 116.73 11.67 14.89 1.19% 0.0043

Unused land 0.01 17.98 1.80 10.98 1.10 −7.00 0.03% −0.0389

TABLE 7 Carbon conduction effect of land type transfer in the Baiyangdian basin from 2000 to 2020 (103 t).

Year Land use
type

Cultivable
land

Forest Grassland Built-up
land

Unused
land

Water
area

Carbon
outflow

2000–2010 Cultivable land — −0.71 −0.40 1.02 0.00 −1.59 −1.67

Forest 16.17 — 3.37 0.03 0.00 0.08 19.64

Grassland 8.77 −0.12 — 0.25 −0.01 −0.07 8.82

Built-up land 0.56 −0.49 −0.57 — −0.01 −0.28 −0.79

Unused land 0.12 0.00 0.00 0.09 — 0.00 0.20

Water area 1.62 −0.01 0.20 0.26 −0.01 — 2.07

Carbon inflow 27.24 −1.33 2.60 1.65 −0.03 −1.86 0.00

Total 25.56 18.31 11.41 0.86 0.17 0.21 56.53*

2010–2020 Cultivable land −1.55 −0.44 42.44 0.00 −0.03 40.41

Forest 0.43 0.19 3.84 0.00 0.00 4.45

Grassland 0.22 −0.70 7.41 0.00 −0.01 6.92

Built-up land −134.83 −29.11 −9.89 −0.48 −3.22 −177.53

Unused land 0.00 0.00 0.00 0.55 0.00 0.54

Water area 0.06 0.00 0.00 1.42 0.00 1.48

Carbon inflow −134.13 −31.37 −10.14 55.66 −0.48 −3.26

Total −93.72 −26.92 −3.21 −121.87 0.06 −1.78 −247.45*

* Denotes the sum of carbon transferred out and transferred in for all land use types.
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4.4 Prediction of land use carbon emissions

4.4.1 Direct land use carbon emissions
The cultivable land carbon emissions in the Baiyangdian Basin

in 2020 were calculated to be 666.97 × 103 t, compared to which the

emissions in the four scenarios set in 2035 were predicted to decrease
slightly (Table 9). In particular, the cultivable land carbon emissions
for the balanced development and double-carbon target scenarios
were likely to decrease more about 7%. Regarding the carbon sinks,
the maximum carbon uptake of the forests under the double-carbon

FIGURE 3
Land use change simulation for the Baiyangdian basin in 2035 under different scenarios (The total land area is 34,353.07 km2). (A) Natural
development; (B) Balanced development; (C) Cultivable land protection; (D) double-carbon target.
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target scenario was 801.26 × 103 t, an increase of 3.1% compared
with that in 2020, followed by 794.68 × 103 t under the balanced
development scenario. The carbon uptake of grasslands remained
largely unchanged, with an average value was about 3.5 × 103 t.
Water areas exhibited the largest carbon uptake in the double-
carbon target scenario. Compared with 2020, the water area carbon
emissions increased for all four scenarios, with a growth ratio of
23.71%. The unused land area was relatively small, which also
remained largely unchanged. The predicted results for the
different scenarios are shown in Table 9.

4.4.2 Indirect land use carbon emissions
We chose the energy consumption data of the Baiyangdian basin

in 2019 as the initial value and combined it with the average transfer
probability matrix P obtained by Eq. 9. We subsequently utilized the
Markov model for forecasting the energy composition in 2020 and
verified the accuracy by comparing the predictions with the actual
data (Figure 4).

According to Eq. 9, the model effect coefficient w is
0.999 close to 1, indicating a good prediction result, and
hence, a reasonable and reliable prediction model. Therefore,
the energy consumption in 2020 was selected as the initial vector
and combined with the average transfer probability matrix, P,
obtained from historical energy data from 2000 to 2020, and the
energy consumption structure of the Baiyangdian basin in
2035 was predicted (Figure 4).

Using the carbon emissions data from 2000 to 2020 for the
Baiyangdian basin, we employed the grey prediction GM (1,1)
model to forecast the 2035 emissions and assess the model
precision. The carbon emissions due to built-up lands in the
basin in 2035 were expected to reach 404,400.19 × 103 t.

4.4.3 Summary of land use carbon emissions in the
Baiyangdian basin

In this study, we built a Markov model to forecast total
terrestrial carbon emissions in the Baiyangdian basin
(Table 10). The land use carbon sinks were primarily related
to the land type area, and the carbon sources were primarily
related to the continuous growth of energy consumption.
Compared with 2020, the net land use carbon emissions in the
basin were predicted to increase in 2035 for the four scenarios by
143,483.14 × 103, 143,454.55 × 103, 143,476.74 × 103, and
143,447.97 × 103 t, respectively. All values were much higher
than the net carbon emissions of the study area in 2020. In the
natural development scenario, the carbon source emission
peaked at 405,033.61 × 103 t, increasing by 143,486.62 × 103 t,
about 55.03%. The lowest carbon sink absorption out of the four
scenarios was 795.57 × 103 t, with a slight increase of 3.48 × 103 t
compared with 2020. In the balanced development and cultivable
land protection scenarios, carbon emissions increased
significantly, carbon sink absorptions increased by 19.34 ×
103 t and 7.11 × 103 t, and carbon source emissions increased
by 143,473.89 × 103 t and 143,483.84 × 103 t, respectively. In the
double-carbon target scenario, the lowest carbon source emission
was 405,020.75 × 103 t and the highest carbon sink absorption
was 817.88 × 103 t in the fourth scenario, which has a significant
increase compared to the other three scenarios. Generally, land
use carbon emissions in the natural development scenarios were
the highest, followed by the balanced development, cultivable
land protection, and double-carbon target scenarios. Therefore, it
is worth thinking about how to balance carbon emission and
absorption in the Baiyangdian Basin to achieve healthy
development (Chuai et al., 2016).

TABLE 8 Area of each land use type under multi-scenario modeling (km2).

Land use type Cultivable land Forest Grassland Built-up land Water area Unused land

2020 15804.93 12079.26 1837.08 4212.96 407.86 10.98

Natural development 15009.93 12118.94 1626.05 5105.82 462.03 6.17

Balanced development 14708.11 12339.69 1618.86 5131.26 527.56 6.17

Cultivatable land protection 14944.05 12160.42 1615.62 5104.76 500.64 6.17

Double-carbon target 14705.15 12438.86 1646.12 5007.50 527.85 6.17

TABLE 9 Prediction results of direct carbon emissions from land use under multi-scenario simulation (103t).

Land use type Cultivable land Forest Grassland Water area Unused land

2020 666.9680 −777.9043 −3.8579 −10.3189 −0.0055

Natural development 633.4190 −780.4597 −3.4147 −11.6894 −0.0031

Balanced development 620.6822 −794.6760 −3.3996 −13.3473 −0.0031

Cultivatable land protection 630.6389 −783.1310 −3.3928 −12.6662 −0.0031

Double-carbon target 620.5573 −801.0626 −3.4569 −13.3546 −0.0031
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5 Conclusion and discussion

5.1 Discussion

The macro-scale carbon sinks in the study area could be rapidly
accounted for using the direct carbon emission coefficients of the
different land types. The relevant national-scale or regional studies
by Fang Jingyun and other scholars (2023) served as the basis for the
direct carbon emission coefficients of land use employed in this
study. The next step should be to improve the monitoring of
ecosystem carbon fluxes across countries and the investigation of
carbon density across the various land types to correct the
coefficients in a localized manner. Additionally, the GeoSOS-
PLUS model combines the transformation, as well as pattern
analysis strategies, which can effectively uncover the causes of
land type changes and compare the simulation results for various
scenarios. This can offer guidance for decision-making and future
policy planning. In contrast to Zhou et al. (2020) who used the
conventional CA-Markov model to simulate the land use in the
built-up land of the urban Shanghai area, our experimental results

demonstrated that the GeoSOS-PLUS model significantly improved
the simulation and predictions of land use patterns in the
Baiyangdian basin, with an overall accuracy of 99%. This
addressed the issue of the conventional CA model not adequately
accounting for the connection between the influencing variables and
spatial changes.

Based on the goal of carbon neutrality, this study makes the
following suggestions:

a) The government should strictly regulate the unchecked growth
of built-up in developing areas; moderately resume plowing in
forests, lakes, and grasslands; and boost the capacity of forests
as carbon sinks. They must realize the concept of increasing
sinks and reducing sources through the creation of rational
and scientific land use policies.

b) Improving the industrial and energy consumption structures;
investing more in clean energy resources; and creating a green,
diversified energy supply system should be prioritized.

c) When creating the national “dual carbon” roadmap, the
unbalanced distribution of regional carbon sources and

FIGURE 4
Share of energy consumption in the Baiyangdian Basin by energy source and projections.

TABLE 10 Total land use carbon emissions prediction results under multi-scenario simulations (103 t).

Land use type Carbon sink absorption Carbon source emissions Net carbon emissions

2020 −792.08 261,546.98 260,754.90

Natural development scenario −795.56 405,033.60 404,238.04

Balanced development scenario −811.42 405,020.87 404,209.44

Cultivated land protection scenario −799.19 405,030.82 404,231.63

Double carbon target scenario −817.87 405,020.74 404,202.87
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sinks must be considered and objectively examined for their
growth potential.

It should be noted that this paper uses fixed coefficients to calculate
carbon emissions, and the coefficients can be optimized by combining
the localized measured data or by using multi-source remote sensing
image data to improve the accuracy of the calculation. When analyzing
the transmission effect of carbon emissions, this paper does not consider
the difference in carbon emission coefficients of the same land use type
in different counties and cities, and the same land type in different
regions may have differences in carbon emission capacity due to factors
such as the degree of land intensification. In the future, we will carry out
in-depth research on the refinement of the carbon transmission effect
due to the internal transformation of land use types. In addition, there is
a long way to go to achieve the goal of “double carbon,” and the carbon
emission accounting and prediction model established for the
characteristics of China’s land use has clarified the important paths
affecting China’s carbon emissions from land use and has been widely
applied in cities in the central and eastern parts of China as well as in
northern China. For regions outside of China, it is necessary to combine
regional characteristics, addmore factors describing land characteristics,
and continuously improve the accuracy of the model, which can also be
committed to the study of carbon emissions in other regions.

5.2 Conclusion

In this study, we first analyzed the land use carbon emissions and
subsequent transmissions caused by land use changes in the
Baiyangdian basin. We then simulated four scenarios based on the
GeoSOS-FLUS model, namely, natural development, balanced
development, cultivable land protection, and double-carbon target
(Yang et al., 2022), and finally predicted the land use carbon
emissions in the Baiyangdian basin in 2035 using a Markov model.
The double-carbon target scenario further illustrated the critical
position of ecological conservation (Ke N. et al., 2022). In general,
from the new direction of carbon emission control, combined with
regional land use, our study makes outstanding contributions to
regional land rational planning and ecological protection (Chen
et al., 2022). The primary conclusions of the study are as follows:

1. The ratio of the Baiyangdian basin carbon source emission to sink
absorption has been steadily increasing, especially rapidly in 2020,
reaching a maximum of 330.21, 4.9 times higher than in 2000.
This shows that the carbon sources (sinks) are consistently rising
(declining). Over the past 20 years, the net land use carbon
emissions in the basin increased by 208,591.88 × 103 t, with an
average yearly rise of 10,429.59 × 103 t.

2. The net carbon emissions from land transfer in the basin
exhibit a clear rising trend between 2000 and 2020. The
carbon conduction effect due to forests and grasslands being
converted to built-up land also shows an increasing trend,
whereas the reverse transfer from built-up land to carbon sinks
increases only slightly.

3. After simulating four scenarios in the Baiyangdian basin in
2035, it was found that the net land use carbon emissions under
the natural development, balanced development, cultivable
land protection, and double-carbon target scenarios are

predicted to be 404,238.04 × 103, 402,009.45 × 103,
404,231.64 × 103, and 404,202.87 × 103 t, respectively, much
higher than the values in 2020. However, carbon emissions
from cultivable lands show a decreasing trend; the rate of
increase of carbon emissions from built-up lands slowed down,
and the carbon absorption by forests and grasslands gradually
increased. These trends establish the carbon source-sink ratio
as a highly suitable parameter for the future planning of
ecological vs economic development.
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