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Land use/cover change has an important impact on global climate change and
carbon cycle, and it has become another major source of carbon emission after
energy consumption. Therefore, this study focuses on the main line of “land use
carbon emissions-spatial and temporal patterns-influencing factors,” and selects
13 cities in Jiangsu Province as the research object. Based on the data of land use
and energy consumption, combined with the method of land use carbon
emissions and ArcGIS technology, this study conducted a quantitative analysis
of the spatio-temporal distribution of carbon emissions in Jiangsu Province. The
factors affecting the spatial distribution of carbon emissions from land use in
Jiangsu Province were discussed by using Geographic detector. The results show
that: 1) Carbon emissions in Jiangsu Province showed an overall growth trend,
from 16215.44 × 104tC in 2010–23597.68 × 104tC in 2020, with an average
annual growth rate of 4.55%, of which the construction land and watersheds had
a greater impact on carbon sources and sinks, respectively. 2) During the period,
there were significant differences in carbon emission levels among different cities
in Jiangsu Province, and the land use carbon emission in Jiangsu Province
showed a stable spatial pattern of “northwest—southeast.” The southern part
of Jiangsu is always the hot area of carbon emission, while the cold spot area is
mainly distributed in the northern and central parts of Jiangsu. 3) The interaction
of factors such as economic development, industrial structure, energy intensity,
land use and human activities is an important reason for the spatio-temporal
differences of land use carbon emissions in Jiangsu Province. Among them, the
level of urbanization, population size and economic aggregate have significant
effects on carbon emissions.
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1 Introduction

In recent years, environmental changes have become more and more drastic as global
warming and its negative effects on the ecological environment have gradually intensified
(Wang et al., 2014; Pechanec et al., 2018; Zhang et al., 2022). Environmental problems have
become one of the major issues of common concern to all countries in the world. At present,
global environmental problems are highlighted by climate change triggered by massive
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greenhouse gas emissions (Zhang et al., 2022). After the industrial
revolution, the widespread use of fossil fuels led to the production of
large quantities of carbon dioxide, which triggered a rise in global
temperatures (Nicholls et al., 2020). In the last decade, the global
average temperature has been increasing rapidly. According to the
projections of some scholars, by 2050 the global average surface
temperature could increase by more than 1.5°C over the period from
1850 to 1990 (Zhu et al., 2022). If the world does not act quickly and
aggressively, the global average temperature will continue to rise,
which could raise the future sea level by tens of meters (DeFries et al.,
2002). This disaster will not only lead to the disappearance of nearly
half of the biological species on Earth, but also pose a serious threat
to the sustainable development of society, economy and
environment, which will in turn jeopardize the security and
wellbeing of all humankind (DeFries et al., 2002; Meehl et al.,
2014; Waheed et al., 2019; Jiang and Hao, 2022).

According to CO2.earth, China’s current historical cumulative
energy consumption and carbon dioxide emissions rank second only
to the United States in the world, and it is projected that by 2025,
China’s emissions will exceed those of the United States. Therefore,
there is an urgent need to regulate CO2 emissions in China (Zhang
and Cheng, 2009; Zheng et al., 2019). For this end, in order to
achieve carbon emission reduction, China has proposed a “dual-
carbon” strategy, in which carbon peaking and carbon neutrality are
regarded as new development trends, and low-carbon development
will be the dominant direction in the future (Fu et al., 2022). The
Fifth Report of the United Nations Special Committee on Climate
Change (IPCC) states that carbon dioxide levels in the air have risen
since the beginning of the industrialization process, largely due to
the burning of fossil fuels and changes in land use patterns. Between
1850 and 1998, direct carbon emissions due to land use and its
changes accounted for one-third of the total carbon emissions from
human activities, which had a profound impact on the global carbon
cycle (Chuai et al., 2015). Therefore, the study of land use carbon
emissions from the perspective of land use and its control is of great
significance for perfecting China’s low-carbon development model
and achieving the “dual-carbon” goal (Meng et al., 2023).

Changes in land use will have a great impact on the material
cycle and energy flow of the ecosystem, which will not only change
the structure, process and function of the ecosystem, but also lead to
changes in carbon emissions in the ecosystem (Rong et al., 2022).
Different types of land have obvious differences in biomass. When
one type of land is transformed into another type of land, it will
inevitably cause fluctuations in biomass and lead to changes in
carbon storage (Lai et al., 2016; Zhang et al., 2020). In addition, land
use change can also affect the regional microclimate to some extent,
which can lead to changes in the respiration and decomposition
rates of plants and soils in this area, and can also have an impact on
the carbon cycle of ecosystems (Zhang et al., 2018). Against this
background, many scholars have conducted in-depth discussions on
carbon emissions from land use. These studies mainly focus on the
calculation method of carbon emissions, the scale of the study, and
the various factors affecting carbon emissions (Stuiver, 1978;
Breetz, 2017).

The main methods currently used to calculate carbon emissions
are the sample land inventory method, the emission inventory
method, the mechanistic model simulation method and the
carbon emission factor method. The sample land inventory

method has relatively few intermediate steps and produces fairly
accurate results, however, the obvious drawbacks of this method are
the difficulty and high cost of obtaining resource data (Fischer et al.,
2011). The emission inventory approach also has its limitations,
mainly because it is not comprehensive and fails to accurately reflect
emissions from a wide range of activities and consumption patterns,
while also lacking sufficient transparency in terms of assumptions,
data inputs and emission factors (Leao et al., 2020). Although the
mechanistic model simulation method can accurately simulate the
carbon cycle process with a high degree of precision, the complexity
of the simulation process and the numerous parameters make it
difficult for this method to be widely applied (Wu et al., 2019). In
contrast, the carbon emission factor method can be widely applied at
multiple scales (e.g., macro, meso, and micro scales, etc.) due to its
simple formulae and principles (Hu et al., 2023).

In terms of research scale, most of the existing studies use the
national and provincial scales to analyze carbon emissions, mainly
because the statistics of carbon emissions are carried out at the
provincial scale, while studies at the municipal scale are lacking,
which makes the research at the municipal scale still a relatively
blank stage (Wang et al., 2019; Cai et al., 2021). In fact, the spatial
distribution of carbon emissions is jointly determined by the
dynamic spatial effects of itself and its neighboring units. Carbon
emissions may vary at different spatial scales. By analyzing carbon
emissions at the provincial and municipal scales on a spatial scale,
we can gain a more comprehensive understanding of the
characteristics of carbon emissions in the region.

From the perspective of influencing factors, traditional research
methods, such as LMDI, Kaya or STIRPAT models, only reveal the
direct effect of each variable on the dependent variable, and then
calculate the corresponding influence coefficients. For example
(Zhao et al., 2018), conducted an in-depth study on the matching
between agricultural carbon emissions and soil and water resources
at the provincial level and used the LMDI model for estimation in
order to explore how the development of soil and water resources
affects agricultural carbon emissions (Wu et al., 2016); used the
optimized Kaya constant equation to study the various influencing
factors of carbon emissions in China and observed that the growth of
the urbanization rate, the energy carbon emission coefficient, and
the increase in energy intensity all have a contributing effect on the
increase in carbon emissions (Yang and Liu, 2023); used Toronto
City in InnerMongolia as an example, and used the STIRPATmodel
to conduct linear regression analyses of several indicators, including
population, in order to explore the influencing factors of land-based
carbon emissions in the city. Typically, various drivers affecting
carbon emissions are interconnected, and the interactions between
the factors can have different impacts on carbon emissions (Jiang
et al., 2018). In many previous studies related to carbon emissions,
researchers have identified the relationship between many different
drivers and carbon emissions. However, most of the current studies
have not considered the interaction between the drivers behind
carbon emissions. In addition, most of the models used in the
current literature are based on data-based assumptions and do not
delve into the interaction between the factors. Therefore, this paper
proposes a framework for the study of the interactions among the
drivers of carbon emissions based on the geographic detector model.
The geographic detector model is a research method that quantifies
the spatial heterogeneity of a study object by analyzing the
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differences between intra- and inter-stratum variances. This model
does not need to rely on data assumptions and thus has been widely
used in studies related to impact mechanisms (Wang et al., 2010;
Jiang et al., 2018; Yang et al., 2019). More importantly, the model is
not only able to identify the key drivers that manifest specific spatio-
temporal phenomena, but also to explore the interactions among the
influencing factors (Wang et al., 2010).

At the same time, with the in-depth study of carbon emissions
from land use, more and more scholars have begun to recognize that
carbon emissions show significant spatial variability. In recent years,
some scholars have even focused on the spatial correlation and
spatial aggregation characteristics of carbon emission research.
Using spatial autocorrelation (Sun et al., 2020) and hotspot
analysis methods (Allaire et al., 2012), some studies have
explored the spatial and temporal distribution and agglomeration
effects of urban carbon emissions in different regions. For example
(Xu et al., 2019), discussed the influence of social ties and economic
activities on the spatial and temporal distribution characteristics of
carbon emissions in the Pearl River Delta (PRD) (Wu et al., 2021);
revealed the spatial and temporal distribution pattern of carbon
emissions from industrial land in China during 1997–2016 (Zhang
Q. et al., 2017; Wang and He, 2019). conducted an analysis using the
Moran index, and the results showed that there was a significant
spatial positive correlation between the carbon emissions of various
provinces in China, which further revealed the characteristics of
spatial agglomeration. From previous studies on the spatial
characteristics of carbon emissions, it is clear that China’s carbon
emissions do exhibit significant spatial autocorrelation. The
researchers also emphasize that understanding the differences in
the spatial characteristics of carbon emissions among different cities
plays a crucial role in reducing carbon emissions (Tian and
Zhou, 2019).

In general, domestic and foreign studies have focused on the
accounting of carbon sources, sinks and net carbon emissions from
land use, the spatial and temporal distribution characteristics of
carbon emissions, and the analysis of factors influencing carbon
emissions. These studies are relatively comprehensive, but there are
still some limitations: the analyses of the spatial agglomeration
characteristics of energy consumption and carbon emissions by
the previous researchers mostly stayed at the national and
provincial scales, while studies on the spatial and temporal
analysis at the provincial and municipal level only focus on the
comparison of results from year to year, unable to reveal the
inherent law of spatio-temporal changes in carbon emissions, and
it is difficult to formulate emission reduction policies based on the
spatio-temporal characteristics (Pei et al., 2018); Secondly, in terms
of content, there are fewer in-depth discussions on the interactions
between neighboring regions, but the revelation of the degree of
inter-regional dependence and interactions is helpful to achieve the
complementary advantages and coordinated development of the
regions; then, most of the studies on the driving factors of carbon
emissions have ignored the spatial differences of various influencing
factors and the effects of different driving factors on the spatial
distribution of carbon emissions from land use.

Situated along the eastern coastal belt, Jiangsu Province is not
only one of the most economically prosperous regions in China, but
also the center of the Yangtze River Delta region. Since the reform
and opening up, Jiangsu’s export-oriented industrialization strategy

and accelerated urbanization have led to the province’s rapid
economic development, population explosion, intensified energy
use and rapid expansion of urban construction land area (Guo
and Fang, 2021). Accordingly, the remarkable land-use changes in
Jiangsu Province will inevitably affect the local carbon cycle.
Therefore, in order to investigate the spatial and temporal
dynamic evolution of land use of carbon emissions and its
driving factors in Jiangsu Province, this paper selects
13 prefectural-level cities in Jiangsu Province as the research
object, and estimates the land use carbon emissions of
13 municipal-level cities and administrative districts in Jiangsu
Province from 2010 to 2020 by using the energy consumption
data and land use data extracted from remote sensing imagery,
and analyzed the spatial and temporal distribution characteristics of
their carbon emissions; then, based on the results of carbon emission
estimation, the spatial and temporal patterns were further revealed
from different perspectives by using exploratory spatial and
temporal data analysis (ESTDA) and standard deviation ellipse
(SDE). Finally, the geographical detector model was applied to
identify the main influencing factors and their interactions, and
to reveal the spatial differences of carbon emission drivers in
different regions of Jiangsu Province. The conclusions of this
study help to clarify the spatial distribution characteristics and
influencing factors of carbon emissions from land use in the
13 municipal administrative regions of Jiangsu Province, and also
provide a reference for the formulation of regional and differentiated
carbon emission reduction policies.

2 Data and methodology

2.1 Representative case

Jiangsu is located in the middle of the eastern coastal region of
mainland China, downstream of the Yangtze River and Huaihe
River (116°18ˊ-121°57ˊE, 30°45ˊ-35°20ˊN), which is an important
part of the Yangtze River Delta region. It has jurisdiction over
13 prefecture-level administrative regions, including Nanjing,
Suzhou, Wuxi, Changzhou, Zhenjiang, Nantong, Yangzhou,
Taizhou, Lianyungang, Yancheng, Huai’an, Suqian and Xuzhou,
accounting for 1.12% of China’s total land area (Figure 1).
Geographically, it straddles the north and south, and therefore
the climate and vegetation have characteristics of both the south
and the north. Jiangsu’s per capita GDP, comprehensive
competitiveness, and regional development and livelihood index
(DLI) all rank first among all provinces in China, making it the
province with the highest level of comprehensive development in
China, and it has already stepped into the level of an “upper-middle-
class” developed country. However, in recent years, the conflict
between rapid development and spatial carrying capacity in Jiangsu
Province has become increasingly acute, with drastic changes in land
resources and an increasing scarcity of available land resources,
triggering a series of ecological and environmental problems such as
water pollution and land degradation (He et al., 2022). As an
important support and carrier for social and economic
development of Jiangsu Province, land use affects the realization
of regional carbon balance. Exploring the carbon emission reduction
space in the process of land use is of great significance for realizing
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the “double carbon” goal and improving the green and low-carbon
development level of Jiangsu Province.

2.2 Data sources and processing

2.2.1 Data sources
The data used in this study include: 1) Land use data. According

to the research needs, remote sensing image data with a raster
resolution of 30 m × 30 m in 2010, 2015, 2018 and 2020 were
obtained and divided into six land use types: arable land, woodland,
grassland, water area, construction land and unutilized land, and
ArcGIS software was used to extract the area of each land type. The
main remote sensing data are from Data Center for Resources and
Environmental Sciences, Chinese Academy of Sciences (https://
www.resdc.cn/). 2) Fossil energy data. The fossil energy data used
in this paper to calculate the carbon emissions from construction
land were obtained from the statistical yearbooks of the
13 prefectural-level cities under the jurisdiction of Jiangsu
Province. 3) Social economic data, such as population, GDP were
obtained from the Centre for Resource and Environmental Science
and Data, Chinese Academy of Sciences (https://www.resdc.cn/).

2.2.2 Influencing factor index selection
Based on the existing research results on carbon emission

influencing factors (Deng, 2022; Ye et al., 2023), this study

constructs an index system of driving factors of carbon emission
of land use in Jiangsu Province from various aspects such as
economy, land, population and energy, taking into account the
specific situation of the region and availability of data. Considering
the uniqueness of “collinear immunity” in the geographic detector
model, population size, urbanization rate and population density are
selected at the population level; economic total and industrial
structure are selected at the economic level; land use structure is
selected at the land level; and energy intensity is selected at the
energy level. The meanings and statistical descriptions of relevant
variables are shown in Table 1.

Population: As the dominant land user, the carbon dioxide
released from all economic and social activities carried out by
human beings on the land will affect the overall carbon balance
pattern of the land, and at the same time, the migration in and out of
the population will lead to changes in the population size, thus
indirectly affecting the carbon emissions of the whole land.
Therefore, this paper chooses the total resident population at the
end of the year to represent the population size, and the number of
people per unit area to represent the population density, so as to
explore the interrelationship between them and the carbon
emissions from land use in depth.

Urbanization rate: Rapid development, one of the key indicators
of rapid social development, has led to a significant increase in the
number of people living in cities and towns. This growth has further
triggered the intensive use of energy and land resources, with far-

FIGURE 1
Location of study area.
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reaching impacts on carbon emissions from land use. In view of this,
we use the urbanization rate as an indicator of the level of social
development to explore in depth its impact factors on carbon
emissions from land use.

Economy: As the economy continues to develop, human
consumption of resources such as land and energy gradually
increases, which in turn leads to a rise in carbon emissions from
land use. At the same time, economic prosperity also promotes the
improvement of education and environmental awareness. In this
context, the in-depth implementation of carbon emission reduction
policies, the continuous innovation of energy-saving and emission
reduction technologies and clean energy technologies, as well as the
public’s growing preference for environmentally friendly lifestyles,
all have an impact on carbon emissions. Therefore, there is a close
and dynamic correlation between the level of economic
development and land use carbon emissions. In this study, gross
regional product is taken as one of the important considerations of
carbon emission influencing factors.

Industrial structure: In China’s economic system, the secondary
industry plays an important role in the industrial structure, and
compared with the primary and tertiary industries, it is more
inclined to the use of energy and the development of the
industrial sector, and this industrial characteristic makes it more
closely related to the land use carbon emissions. Therefore, the
article chooses the proportion of the secondary industry in the
regional GDP as the index of industrial structure in this study, in
order to explore the interaction between these two variables.

Land use structure: Land use structure refers to the spatial
distribution of various land uses in a given time scale in a study
area, which can visually reflect the current land-use status of the
area. In different periods of social development, the degree and
pattern of anthropogenic exploitation and utilization will also lead to
differences in carbon emissions from land in different regions. It is
worth noting that construction land has seen the most significant
changes among all types of land use in recent years, and is also the
main source of carbon emissions from land use. Therefore, this
study chooses the proportion of construction land to total land use
as a proxy for land use structure, aiming to explore in depth the
intrinsic link between it and land use carbon emissions.

Energy intensity: The impact of energy use intensity on land use
carbon emissions lies mainly in the non-equilibrium of the
technological level of resource consumption in different regions.
This non-equilibrium makes the energy demand of each region
differ geographically when reaching the same level of economic
growth, which indirectly affects the distribution and spatial
characteristics of total carbon emissions. In view of this, this
study considers the total energy consumption per unit of GDP as
a key element in the system of impact indicators.

2.3 Calculation method of carbon emissions

Land use carbon emissions refer to the CO2 generated during
land use change or use, which can be categorized into direct carbon
emissions and indirect carbon emissions. The former mainly
emphasizes carbon emissions caused by land use, while the latter
focuses more on anthropogenic carbon emissions from living on the
land. Among them, the net carbon emission depends on theT

A
B
LE

1
In
fl
u
e
n
ce

in
d
e
x
se
le
ct
io
n
an

d
co

n
st
ru
ct
io
n
.

G
u
id
e
lin

e
la
ye

r
In
d
ic
at
o
r
la
ye

r
V
ar
ia
b
le

m
e
an

in
g

U
n
it

P
op

ul
at
io
n

X
1:
P
op

ul
at
io
n
si
ze

T
ot
al

re
si
de
nt

po
pu

la
ti
on

of
pr
ef
ec
tu
re
-l
ev
el

ci
ti
es

×
10

4
p
eo
p
le

X
2:
U
rb
an
iz
at
io
n
ra
te

P
ro
po

rt
io
n
of

ur
ba
n
re
si
de
nt

po
pu

la
ti
on

in
to
ta
l
po

pu
la
ti
on

of
th
e
re
gi
on

%

X
3:
P
op

ul
at
io
n
de
ns
it
y

U
ni
t
co
ns
tr
uc
ti
on

la
nd

ar
ea

N
um

be
r
of

pe
rm

an
en
t
re
si
de
nt
s

×
10

4
p
eo
p
le
/k
m

2

E
co
no

m
y

X
4:
E
co
no

m
ic

ag
gr
eg
at
e

T
he

fi
na
l
re
su
lts

of
pr
od

uc
ti
on

ac
ti
vi
ti
es

of
re
si
de
nt

un
it
s
in

a
ce
rt
ai
n
pe
ri
od

of
ti
m
e

×
10

4
y
u
an

X
5:
In
du

st
ri
al

st
ru
ct
ur
e

T
he

pr
op

or
ti
on

of
th
e
gr
os
s
do

m
es
ti
c
pr
od

uc
t
of

th
e
se
co
nd

ar
y
in
du

st
ry

in
th
e
to
ta
l
re
gi
on

al
pr
od

uc
ti
on

va
lu
e

%

La
nd

X
6:
La
nd

us
e
st
ru
ct
ur
e

T
he

pr
op

or
ti
on

of
re
gi
on

al
co
ns
tr
uc
ti
on

la
nd

ar
ea

in
to
ta
l
ar
ea

%

E
ne
rg
y

X
7:
E
ne
rg
y
in
te
ns
it
y

T
ot
al

en
er
gy

co
ns
um

pt
io
n
pe
r
un

it
of

G
D
P

t/
×
10

4
y
u
an

Frontiers in Environmental Science frontiersin.org05

Cai and Li 10.3389/fenvs.2024.1368205

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1368205


difference between the carbon source and the carbon sink.
Combined with the current land use situation in Jiangsu
Province, carbon emissions from land use in the region mainly
come from six land types: arable land, grassland, woodland,
watershed, construction land and unutilized land. Based on the
fact that land has the dual roles of “carbon source” and “carbon sink”
at the same time, this paper will use construction land as a carbon
source to calculate carbon emissions, and woodland, grassland,
watersheds, and unutilized land as carbon sinks to calculate
carbon sequestration, and it is important to note that arable land
has the functions of carbon source and sink at the same time.

2.3.1 Direct carbon emissions accounting
The carbon emission coefficient method is used to directly

account for carbon emissions from arable land, woodland,
grassland, watersheds and unutilized land, which are aggregated
to obtain the direct carbon emissions from land use, and the
calculation formula is as follows:

Ek � ∑ ei � ∑Ai × μi (1)

Where, Ek represents the direct carbon emission; i represents
each land use type, which here represents arable land, woodland,
grassland, watershed, and unutilized land; ei represents the
carbon emission/absorption of land type i; Ai represents the
area of land of type i; μi represents the carbon emission coefficient
of land type i. With reference to the research results of relevant
scholars (Shi et al., 2012; Sun et al., 2015; Zhang P. Y. et al., 2017;
Li et al., 2022; Xu et al., 2022) and combined with the actual
situation in Jiangsu, the carbon emission coefficient of each land
use type is shown in Table 2.

2.3.2 Indirect carbon emissions accounting
Construction land carries many social and economic activities of

human beings, so it is impossible to calculate carbon emission directly
according to the area of construction land. Therefore, indirect carbon
emissions are mainly the carbon emissions generated by human beings
in the process of construction land activities, including fossil energy
consumption, electricity consumption and population respiration. The
calculation formula is as follows:

Rf � ∑ ni × εi × φi (2)
Rp � P × β (3)
Rb � Rf + Rp (4)

Where, Rb is the indirect carbon emissions; Rf is the carbon
emissions from fossil energy consumption; Rp is the carbon
emissions from population respiration; ni represents the annual
consumption of different energy sources; εi and φi represent different
energy conversion factors for standard coal and carbon emissions,
respectively; P represents the number of population in Jiangsu; β
represents the carbon emission’s factor of population breathing in
Jiangsu, Based on the results of previous studies, the value is 79 kg/
person (Zhou, 2011). The energy sources selected in this paper are raw
coal, coke, fuel oil, gasoline, kerosene, diesel, natural gas and Electricity,
and the specific coefficients are shown in Table 3 (carbon emission
coefficients are based on the IPCC2006 inventory; standard coal
conversion coefficients are from the China Energy Statistics Yearbook).

2.4 Standard deviational ellipse (SDE)

The standard deviation ellipse model proposed by Lefever
(1926) is an analytical technique used to accurately characterize
the spatial distribution of the research object, which mainly covers
core elements such as the center of gravity, the long and short axes
and the azimuthal angle (Wang et al., 2020). The primary location of
the element in space is known as the center of gravity, which usually
coincides with the mean position of the arithmetic. The long axis
represents the direction of the data distribution, while the short axis
reveals the extent of the data distribution. The azimuth angle reveals
the trend of the distribution of the study target. This method will be
used in this study to analyze the distribution of carbon emission and
its trends over time for each city in Jiangsu Province. The formulas
are as follows:

a) Center of gravity coordinates
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(5)

b) Azimuth
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c) x-axis standard deviation:

σx �
������������������������∑n

i�1 wi�xi cos θ − wi �yi sin θ( )2√
∑n

i�1w
2
i

(7)

TABLE 2 Carbon emission coefficient of each land use type.

Land-use type Arable land Woodland Grassland Watershed Unutilized land

Carbon emission coefficient 0.497 −0.581 −0.021 −0.253 −0.005

TABLE 3 Carbon emission coefficient of each energy source.

Energy type Raw coal Coke Fuel oil Gasoline Kerosene Diesel Natural gas Electricity

Carbon emission coefficient 0.7559 0.8550 0.5538 0.5714 0.5921 0.6185 0.4483 0.4040

Standard coal coefficient 0.7143 0.9714 1.4286 1.4714 1.4714 1.4571 1.2143 0.7935
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d) y-axis standard deviation:

σy �
������������������������∑n

i�1 wi�xi sin θ − wi �yi cos θ( )2√
∑n

i�1w
2
i

(8)

Where (xi, yi) represents the spatial coordinate position of the
research object; wi stands for weight; (�xi, �yi) denotes the weighted
average center; θ is the azimuth Angle of the ellipse; �xi and �yi

represent the coordinate deviation between the position of the
research object and the average center; σx and σy represent the
standard deviation along the x and y-axes.

2.5 Exploratory spatial data analysis (ESDA)

Exploratory spatial data analysis method is actually the
comprehensive embodiment of spatial data analysis techniques
and methods. This method is often used to describe the
distribution characteristics of data in space, and can identify
and represent outliers in spatial data in an intuitive manner. In
addition, the technique can detect the aggregation effect of
certain events in space, provide insights into the spatial layout
of the data, and elucidate the spatial interaction mechanisms
between different events (Messner et al., 1999). Carbon emissions
in space are not randomly distributed, and there may be some
correlation between different regions. Through the “cold hot spot
analysis” tool in “ArcGIS” software, we can calculate Getis-Ord
Gi* for specific weighted elements. Through the calculated
z-score and p-value, we can determine the spatial aggregation
location of high value areas (hot spots) and low value areas (cold
spots), so as to judge the spatial heterogeneity characteristics
within the study area (Getis and Ord, 1992). This method is
extremely important for the spatial clustering distribution
characteristics of the study area.

2.6 The geographical detector model

The Geographical Detector Model is a method of statistical
analysis that integrates factors, interactions, risks and ecology,
which not only reveals the spatial dissimilarity of a geographic
object or phenomenon, but also detects the driving forces
generated by the dependent variables (Cheng et al., 2014).
Therefore, in this study, we will use the driver detector to
quantify the specific influence of each factor on carbon
emission, and the result is q. The specific calculation formula
is as follows:

q � 1 − ∑L
h�1Nhσ2h
Nσ2

(9)

Where q represents the magnitude of influence, with a value
ranging from 0–1, and a higher value means that its influence is also
stronger; h � 1 2 . . . . .. L represents different classifications or
subdivisions of the independent variables; Nh represents the
number of samples of class h; σ2h represents the variance of the
independent variable of class h; N represents the number of samples
of each city; and σ2 represents the variance.

Among them, the Geographical Detector Model also includes an
interaction detection model, which seeks to elucidate whether the
independent variables have an independent effect on the dependent
variable, or whether there is an enhanced or diminished effect
following an interaction. If an interaction has occurred, there
may be five cases as shown in Table 4. At the same time, in
order to improve the significance of geographical detector
analysis, the article adopts the natural breakpoint method in
ArcGIS software to grade the features of each indicator (divided
into five levels) to achieve the optimal discretization.

3 Results

3.1 Temporal changes in carbon emissions
from land use

As can be seen from Table 5, the net carbon emissions in Jiangsu
Province during the study period showed a trend of first increasing,
then slowly decreasing, and finally rapidly increasing, but in terms of
time, the overall net carbon emissions in Jiangsu Province still showed
an increasing trend, with an average annual growth rate of 4.55 percent.
In 2010–2015, the region’s net carbon emissions showed an upward
trend, increasing from 16215.44 × 104tC in 2010–18458.35 × 104tC in
2015. From 2015 to 2018, the net carbon emissions showed a slow
downward trend, decreasing by 177.66 × 104tC. It can be seen that, with
the increased focus on low-carbon development path, a series of
measures adopted by Jiangsu Province aimed at promoting
sustainable economic and social development measures, has
achieved remarkable results in reducing carbon emissions. In
2018–2020, Jiangsu Province’s net carbon emissions showed a rapid
upward trend again, increasing to 23597.68 × 104tC.

In terms of carbon sources, construction land is the primary land
type contributing to the increase of carbon emissions in the region,
which increased from 15953.78 × 104tC in 2010–18200.48 × 104tC in
2015, then decreased slightly and then rose rapidly to
23343.63 × 104tC in 2020, which coincides with the trend of net
carbon emissions in Jiangsu Province. However, the role of arable land
as a carbon source is weakened in this process, and its contribution to
the carbon source decreased from 1.95% in 2010 to 1.31% in 2020,
which may be related to the shrinkage of arable land in Jiangsu
Province due to the rapid expansion of land for construction. From
the perspective of carbon sinks, watersheds plays a crucial role in
carbon sequestration, with more than 67% of carbon sequestration
originating from watersheds, followed by woodland, while grasslands
and unutilized land in Jiangsu Province are relatively weak in terms of
carbon sequestration capacity. As shown in Table 5, during the period
2010–2020, the amount of carbon absorbed in Jiangsu Province is

TABLE 4 The types of independent variable interaction.

Interaction type Judgment criterion

Nonlinearity attenuation q (Xi ∩ Xj)<min [q (Xi),q (Xj)]

Unilinear attenuation min [q (Xi),q (Xj)]<q (Xi ∩ Xj)<max [q (Xi),q (Xj)]

Bilinear reinforcement q (Xi ∩ Xj)>max [q (Xi),q (Xj)]

Nonlinear reinforcement q (Xi ∩ Xj)>q (Xi)+q (Xj)

independent q (Xi ∩ Xj) = q (Xi)+q (Xj)
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significantly lower than the carbon emissions in the region. Therefore,
the carbon emissions from land use in Jiangsu Province will continue
to increase for some time to come, and it will be difficult to rely solely
on biological means of carbon sequestration, such as planting trees

and grasses, to offset the increase in carbon emissions from land use
for construction.

In order to have an in-depth understanding of the changes of land
use carbon emissions in each city of Jiangsu Province during the study

TABLE 5 Carbon emissions from land use in Jiangsu Province from 2010 to 2020 (tC).

Carbon emission 2010 2015 2018 2020

Carbon Source Arable land 3172312.746 3134848.466 3107855.295 3096525.052

Construction Land 159537764.512 182004841.031 180237891.206 233436276.140

Total 162710077.258 185139689.497 183345746.501 236532801.192

Carbon Sink Woodland −180194.425 −179342.152 −155965.278 −176283.604

Grassland −1929.456 −1915.243 −2319.242 −2227.511

Watershed −373420.030 −374799.710 −380458.146 −377444.856

Unutilized Land −113.606 −91.707 −52.825 −79.674

Total −555657.517 −556148.813 −538795.491 −556035.644

Net carbon emission (104tC) 16215.442 18458.354 18280.695 23597.677

FIGURE 2
Carbon emissions from land use by city in Jiangsu Province (104tC).
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period, this paper conducted detailed statistics on the carbon emissions
data of each city, and the results are shown in Figure 2. Because the
actual situation of each city is different, the change rule of land use
carbon emission varies from city to city. From 2010 to 2015, the carbon
emissions of all cities in Jiangsu Province showed an upward trend,
except for Wuxi and Yangzhou, which decreased. From 2015 to 2020,
the carbon emission from land use in most of the cities in Jiangsu
Province basically shows an upward trend in the fluctuation. Among
them, driven by the radiation of neighboring cities such as Wuxi and
Suzhou, Changzhou’s economy has entered a period of rapid growth,

with the proportion of secondary and tertiary industries gradually
increasing, and the manufacturing industry has also achieved rapid
development. Therefore, Changzhou’s carbon emissions grew most
significantly during this period, increasing slowly at first and then rising
rapidly in 2018, with a total increase of 5427.468 × 104tC. This was
followed by Suzhou, Taizhou and Suqian, where net carbon emissions
increased by 206.399 × 104tC, 131.655 × 104tC and 118.121 × 104tC
respectively. During that period, the net carbon emissions of Xuzhou,
Nantong and Huai’an showed a downward trend year by year.

3.2 Spatial evolution of carbon emissions
from land use

3.2.1 Spatial evolution of land use carbon emissions
in Jiangsu Province

In order to more accurately reflect the spatial and temporal
distribution characteristics of carbon emissions in each city of
Jiangsu Province, this study used the natural segment point
method of spatial analysis in ArcGIS software to classify the net
carbon emissions of the 13 cities in Jiangsu Province according to
different levels (Table 6), which are as follows: light emission zone,

TABLE 6 Classification criteria for carbon emission levels (104tC).

Type Carbon emission level Partition unit

1 Light Emission Zone (0,2754.160]

2 General Emission Zone (2754.160,4298.543]

3 Moderate Emission Zone (4298.543,17650.295]

4 Heavy Emission Zone (17650.295,17995.090]

5 Extremely Heavy Emission Zone S17995.090

FIGURE 3
Spatial distribution of net carbon emissions by province in the study area by year (104tC).
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general emission zone, moderate emission zone, heavy emission
zone, and extremely heavy emission zone.

As can be seen from Figure 3, from 2010 to 2020, carbon
emissions from land use in all cities in the study area show
obvious geographical distribution differences. That is, the overall
carbon emissions have a trend of weakening from the
surrounding areas to the central area and obvious
clustering feature.

From 2010 to 2015, the extremely heavy carbon emission zones
were mainly distributed in the “two wings” of Jiangsu Province,
represented by Xuzhou, Suzhou and other marginal areas with a
relatively high degree of industrialization. Because of their rich
economic development background and unique geographical
location, these areas enjoyed rapid urban construction and
economic growth, which also led to the continuous rise of
carbon emission. Due to the significant reduction in the use of
coal and the transformation and upgrading of five industries,
namely, steel, cement, coking, thermoelectric enterprises and
chemical industry, the carbon emissions generated in the
industrial process have been reduced (Chi et al., 2019), which
also makes the carbon emissions of Xuzhou show a significant
downward trend in 2018, and gradually exit the extremely heavy
carbon emission zone. From 2015 to 2020, as Changzhou’s economy
enters the stage of rapid development, its carbon emissions increase
rapidly and begin to transform into an extremely heavy carbon
emission zone.

The general and medium emission zones were mainly located
in the central region of Jiangsu Province, mainly including
Yancheng, Yangzhou, Taizhou, Zhenjiang and Nantong, etc.
Between 2010 and 2015, except for Nantong, which
transformed into a heavy carbon emission zone, the carbon
emissions of other regions were relatively stable and remained
at their original carbon emission levels. In 2018, Yancheng,
Taizhou, Zhenjiang and Nantong all shifted to medium
emission zone due to accelerated urbanization, but in 2020,
the cities reverted back to general emission zone.

In 2010, the light emission zones were mainly concentrated in
Suqian and Lianyungang, which lagged behind in terms of relatively
slow economic development, and thus had smaller carbon emissions
from their energy consumption. Since 2015, the significant expansion of
urban construction land under the influence of policies led to an
increase in Lianyungang’s carbon emissions, crossing over into the
general carbon emission zone. In 2018, due to Huaian’s stringent
control of its carbon emissions, it was successfully transformed into
a light emission zone, the number of light carbon emission zones in
Jiangsu Province remained at two again. In 2020, the carbon emissions
of all cities in Jiangsu Province have increased on the whole, and the
light carbon emission zone have disappeared.

3.2.2 Exploratory spatial data analysis of carbon
emissions from land use

The “Hot spot Analysis” tool in ArcGIS 10.6 was used to
calculate the spatial aggregation degree and change of net carbon
emissions in cities of Jiangsu Province, and the results were shown in
Table 7. During 2010–2020, the General G value of net carbon
emissions from land use in Jiangsu Province was all greater than
0 and showed an overall upward trend, from 0.423512 to 0.423862,
indicating that net carbon emissions in this region had an obvious
spatial aggregation feature, and the aggregation degree would
increase with the evolution of time.

The overall spatial pattern of carbon emissions from land use in
Jiangsu Province from 2010 to 2020 is “high in the south and low in
the north” (Figure 4). The hot spots of carbon emission are mainly
distributed in Suzhou,Wuxi, Changzhou and other southern Jiangsu
regions, which are geographically adjacent to Shanghai, with rapid
economic development and high urbanization, and are the main
economic development force in Jiangsu Province, so it is necessary
to focus on the management of carbon emissions in this region. The
cold spot zone mainly distributed in the north of Jiangsu Province,
such as Huaian, Yancheng, Lianyungang, etc. Although this region
has rich natural resources, it is located inland and has a low level of
economic development, so the carbon emission is relatively small.

During the study period, the distribution pattern of hotspot
high-value zone and cold spot low-value zone were relatively stable
in space and time, but the distribution characteristics varied among
the stages. Spatio-temporally, the range of hotspot zone in Jiangsu
Province remained stable from 2010 to 2018, but the hotspot center
had an obvious northward trend, which was mainly manifested in
the gradual transition of Nantong as a sub-hotspot zone to a hotspot
zone. At the same time, the range of cold spot zone in Jiangsu
Province is expanded, and Suqian successfully enters the ranks of
sub-hot spot zone. In 2018–2020, the range of hot spot zone in
Jiangsu Province showed a shrinking trend, transforming from three
hot spot zones and two sub-hot spot zones in 2018 to one hot spot
and four sub-hot spot zones in 2020, in which Suzhou and Nantong
exit from the hot spot zone. The scope of the cold spot zone in
Jiangsu Province during this period showed an expanding trend, and
the center of the cold spot showed a tendency to shift to the north-
west direction, which is reflected by the fact that Xuzhou also
gradually transitions to the sub-hot spot zone during this period.
These changes show that Jiangsu Province has made good progress
in carbon emission reduction in recent years, but in some areas there
is still a need to further strengthen management and control.

3.2.3 The migration of gravity center and SDE
analysis of carbon emissions

The SDE model was used to conduct complementarity analysis
to reveal the changing law of the location of the center of gravity of
regional carbon emissions in Jiangsu Province and the spatial
distribution characteristics of high carbon emission areas, as
shown in Table 8 and Figure 5.

During the period 2010–2020, the spatial distribution of carbon
emissions in Jiangsu Province formed a stable “northwest-
southeast” pattern with the change of the length of the axis, and
its direction towards the southern part of Jiangsu Province is
especially obvious, which indicates that the main driving force
for the growth of carbon emissions in Jiangsu Province is the

TABLE 7 The General G value of carbon emissions of Jiangsu Province.

Year General G z-score p-value

2010 0.423512 2.282405 0.022465

2015 0.425774 2.295431 0.021708

2018 0.425122 2.290657 0.021983

2020 0.423862 2.316825 0.020513
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southern part of Jiangsu Province, such as Suzhou, Wuxi, Nanjing,
and so on. In addition, the long and short axes of the standard
deviation ellipse are also changed to different degrees. Specifically,
the long axis decreased from 216.016 km in 2010 to 179.859 km in
2020, with a change amplitude of 36.157 km, indicating that carbon
emissions in Jiangsu Province showed an obvious centripetal

accumulation in the “northwest to southeast” direction during
this period. During 2010–2018, the short axis increased from
72.979 km to 82.547 km, indicating that the carbon emissions of
Jiangsu Province showed a divergence trend in the “northeast-
southwest” direction during this period, mainly because the
carbon emissions of Yancheng, Huaian, Yangzhou and other

FIGURE 4
Hot spot analysis of carbon emissions in Jiangsu Province.

TABLE 8 Elliptic parameters of standard deviation of carbon emissions in Jiangsu Province.

Year Barycentric coordinates Drift
direction

Distance
(km)

Velocity
(km/a)

Macroaxis
(km)

Brachyaxis
(km)

Azimuth
angle (°)

Longitude
(E)

Latitude
(N)

2010 119°34′18.93″ 32°23′45.18″ — — 216.0157 72.9789 144.0230

2015 119°34′06.44″ 32°26′46.59″ Northwest 5.6311 1.1262 213.5580 80.5198 145.1754

2018 119°39′26.70″ 32°22′10.11″ Southeast 11.9118 3.9706 204.7010 82.5465 146.1783

2020 119°38′46.91″ 32°11′37.95″ Southwest 19.5313 9.7656 179.8585 76.7598 148.0974
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northern and central Jiangsu regions also increased, narrowing the
carbon emission gap between different regions. From 2018 to 2020,
the short axis decreases again to 76.760 km, which indicates that the
density of carbon emission distribution gradually increases during
this period. This is because under the “Southern Jiangsu Model,”
Nanjing, Changzhou, Wuxi and Suzhou have emerged as the most
economically developed regions in Jiangsu Province, and have also
become the gathering places of industrial enterprises in Jiangsu
Province. As the scale of industry expands and energy consumption
increases, carbon emissions also show a faster growth trend, and
high carbon emissions further promote the centripetal
concentration of carbon emissions.

During the study period, the center of gravity of carbon
emissions in Jiangsu Province was distributed between

119°34′06.44"~119°39′26.70″E and 32°11′37.95"~32°26′46.59″N,
which is located in the southeast direction of the regional
geometric center, which means that the carbon emissions in the
eastern and southern regions of Jiangsu Province are relatively high.
By observing the trajectory of the change of the center of gravity of
carbon emissions in Jiangsu Province, it can be found that the center
of gravity of carbon emissions in the province mainly migrates to the
southeast, which means that the growth rate of carbon emissions in
the eastern and southern regions of Jiangsu Province is
above average.

From 2010 to 2020, the center of gravity moved a total of
23.352 km to the south-east, and during this period, there was a
backward movement of the center of gravity, which can be divided
into three main phases: the first phase was 2010–2015, during which

FIGURE 5
Standard deviation elliptic distribution and center of gravity shift trajectory of carbon emissions.

TABLE 9 The q-value for detection analysis of carbon emission factors from land use in Jiangsu Province.

Year The q-value

X1 X2 X3 X4 X5 X6 X7

2010 0.7605 0.5167 0.7693 0.8570 0.4758 0.2319 0.2614

2015 0.8071 0.5618 0.7573 0.8545 0.1232 0.2435 0.5699

2018 0.7589 0.6952 0.4583 0.8308 0.2386 0.5933 0.3586

2020 0.2005 0.5022 0.8824 0.3166 0.6540 0.2407 0.2757

Mean value 0.6317 0.5690 0.7168 0.7147 0.3729 0.3274 0.3664
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the center of gravity moved 5.631 km to the north-west, reaching the
northernmost point of the study period; The second phase, from
2015 to 2018. The migration direction of the center of gravity in this
phase was completely opposite to the first phase. The center of
gravity migrated in the south-eastern place, reaching a distance of
11.912 km and the angle of backward migration was the largest
during the study period; The third phase was 2018–2020, in which
the center of gravity moved north-west by 11.99 km at a rate of
9.766 km/a, which was the period with the longest distance and the
fastest rate of migration of the unit during the study period.

3.3 Geo-detection analyses of the impact of
land-use carbon emissions

3.3.1 Detection of single factor
The geographic detector is used for detection and analysis, and the q

value of carbon emission for each detection factor is calculated, and then
the visual display is carried out. The results show that different
influencing factors have certain consistency and difference on land
use carbon emissions in Jiangsu Province (Table 9). From the table, it
can be seen that in 2010, the order of the q-value of each indicator is:
economic total > population density > population size > urbanization
rate > industrial structure > energy intensity > land-use structure, in
which the sum of the explanatory power of population size,
urbanization rate, population density and economic total accounted
for 74.97% of the sum of the total explanatory power affecting carbon
emissions, and the q-values of these four factors are all greater than 0.5.
Therefore, these factors can be regarded as the main driving forces
affecting Jiangsu’s carbon emissions in that year.

In 2015, the q-value of each indicator is in the following order:
economic total > population size > population density > energy
intensity > urbanization rate > land use structure > industrial
structure, of which economic total, population size, population
density, energy intensity and urbanization rate are the dominant
factors affecting carbon emissions in Jiangsu Province in that year.
Under the background of rapid economic development in Jiangsu
Province in 2015, its demand for energy is also rising, and this large-
scale energy consumption has led to a significant increase in carbon
emissions, so it can be found that energy intensity has also become the
dominant factor affecting carbon emissions in Jiangsu Province
in that year.

In 2018, the order of the q-value of each indicator is: economic
total > population size > urbanization rate > land use structure >
population density > energy intensity > industrial structure, in which
economic total, population size, urbanization rate and land use
structure were the main factors influencing carbon emissions in
Jiangsu Province in that year. The influence of land use structure
grew rapidly during the period, which wasmainly due to the accelerated
pace of urbanization driven by population surge, rapid development of
secondary and tertiary industries and government policies, which
triggered the rapid expansion of construction land. This also
indirectly proves that construction land is the main source of
carbon emissions, echoing the previous measurements.

In 2020, the q-value of each indicator is in the following order:
population density > industrial structure > urbanization rate >
economic total > energy intensity > land use structure > population
size, of which the factors that play a dominant role in the carbon

emissions of Jiangsu Province are population density, industrial
structure and urbanization rate. During this period, the influence of
each indicator has changed significantly, and population size and
economic total are no longer the dominant factors affecting carbon
emissions. On the contrary, the industrial structure has gradually
increased its strength in explaining carbon emissions. This change
may be attributed to the fact that the overall economic growth rate of
Jiangsu began to decline due to the impact of the Xin Guan epidemic,
and the secondary industry led by industry gradually became the core
driving force of local economic growth, which led to the gradual
weakening of the influence of the total economic output on carbon
emissions in Jiangsu Province, and the gradual increase of the influence
of the industrial structure on carbon emissions.

3.3.2 Detection of two-factor interaction
The interaction between the indicators was further explored

using the interaction detection method of the geographical detector
(Figure 6). The results of the interaction of the influencing factors
mainly show two-factor enhancement or non-linear enhancement
effects, and there is no mutual independence or weakness, which
means that the spatial and temporal differences in land use carbon
emissions in the study area is not entirely caused by a single factor,
but by the joint action of multiple factors.

Among them, in 2010, the combinations with the most significant
interactions are X2∩X3, X2∩X4, X2∩X5, X4∩X5, and their interaction
values are 0.9988, 0.9935, 0.9890, 0.9972, respectively; in 2015, the
combinations with themost significant interactions are X1∩X3, X2∩X4,
X2∩X5, X4∩X5, X4∩X7, with interaction values of 0.9925, 0.9821,
1.0000, 0.9853, and 0.9918, respectively; in 2018, the combinations with
the most significant interactions were X1∩X5, X1∩X7, X2∩X3, X2∩X7,
and X6∩X7, with interaction values of 0.9989, 0.9999, 0.9886, and
0.9957, respectively; in 2020, the combinations with themost significant
interaction are X1∩X2, X1∩X3, X1∩X5, X2∩X4, X3∩X7, and X4∩X5,
with interaction values of 0.9981, 0.0081, 0.9982, 0.9820, 0.9820, and
0.9847, respectively.

Observing the whole research cycle, the interaction mechanisms
of the indicators in different time periods show obvious differences.
In the early part of the study period (2010–2015), the influences of
urbanization rate or economic volume interacting with other
variable factors are more significant. However, in the middle and
late periods of the study (2015–2020), the interactions between
population size and other variable factors are more prominent.
Overall, the interactions between the three factor combinations of
urbanization rate and population density, urbanization rate and
total economic value, and total economic value and industrial
structure show high explanatory power almost throughout the
study period, which strongly indicates that they have the most
critical impact on carbon emissions in Jiangsu Province.

4 Discussion

4.1 Analysis of spatio-temporal evolution
characteristics of carbon emissions from
land use

During the period of 2010–2020, Jiangsu’s carbon emissions
from land use in general showed a fluctuating upward trend, with a
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downward trend in 2015–2018 and a rapid rise in 2018. This is
because with the national emphasis on the development of low-
carbon economy, Jiangsu Province, in order to ensure the
achievement of the “Twelfth Five-Year” energy-saving, emission
reduction and carbon reduction targets, has formulated policies such
as the “2014–2015 Energy Saving, Emission Reduction and Low-
Carbon Development Action Implementation Programme.” As a
result, in 2015, carbon emissions in Jiangsu Province were under
better control, showing a downward trend. However, as the pace of
China’s urbanization continues to accelerate, Jiangsu Province
stepped into the rapid development stage of urbanization in
2018. This has led to the gradual emergence of problems such as
inefficient use, inappropriate use and disorderly expansion of
construction land, which has triggered a series of ecological and
environmental problems, and thus has led to the trend of rapid
growth of carbon emissions from land use in Jiangsu
Province in 2018.

Overall, about more than half of the carbon sequestration during
the study period originated from watersheds (Table 5). It can be seen

that the watershed of Jiangsu Province seem to possess higher
carbon sequestration potential. One possible explanation for this
is that watershed, as the dividing line between land and sea, have
large organic carbon reserves (Zhang et al., 2022). Therefore, in
order to achieve the goal of reducing carbon emissions, it is also
particularly crucial to prevent water bodies from being polluted. In
Jiangsu Province, industrial and mining land with high carbon
emissions is mainly concentrated in coastal areas near the
Yangtze River Basin, where a large number of other pollutants
may exist that have not yet been identified (Yuan et al., 2022),
therefore, the use of industrial and mining land in areas near the
Yangtze River Basin should be strictly controlled, and in the future, it
is even more important to prohibit the expansion of industrial land
in such areas, as well as consider relocating enterprises elsewhere,
and converting industrial and mining land to other uses.

By analyzing the characteristics of the spatial evolution of
carbon emissions from land use in Jiangsu Province, it can be
found that carbon emissions in Jiangsu Province show a strong
spatial focus. It is mainly manifested in the fact that the

FIGURE 6
Two-factor interaction heat map of carbon emissions from land use in Jiangsu Province.
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surrounding cities of Nanjing, Suzhou, Wuxi and other high
carbon emission areas are also always in the hot spot of carbon
emission. This phenomenon has a certain connection with the
economic development status of each place (Rehman et al., 2021).
As we all know, the economic development of Jiangsu Province is
very unbalanced, showing significant geographical differences, of
which Southern Jiangsu, Central Jiangsu and Northern Jiangsu
are the three major economic regions with obvious gradient
differences. Southern Jiangsu is located in the hinterland of
the “Yangtze River Delta Economic Circle,” adjacent to the
core city of Shanghai, and has a fast-developing economy;
Northern Jiangsu is located in the periphery, farther away
from Shanghai, and the attraction and radiation effect of the
economic center is very weak. Therefore, the overall spatial
distribution pattern of carbon emissions in Jiangsu Province is
high in the south and low in the north. However, with the passage
of time, the number of areas with high carbon emissions in
Jiangsu Province has gradually increased and spread to the
central and northern parts of the Jiangsu Province. This is
mainly due to the fact that Jiangsu Province has begun to
vigorously promote the development and opening up of
northern and central Jiangsu in recent years, and has deeply
explored and utilized the traditional resources of northern and
central Jiangsu. Although the economy has achieved rapid
growth, it has also caused a series of ecological and
environmental pollution problems.

4.2 Analysis of influencing factors of land use
carbon emission in Jiangsu Province

The Carbon emissions from land use in Jiangsu Province are
affected by a variety of factors, such as economic development,
industrial structure, energy intensity, land use and human activities,
and the process has a complex mechanism. Among them,
population size, economic aggregate, urbanization rate and
population density are not only obviously related to the land use
carbon emissions in Jiangsu Province, but also the main driving
force of the uneven spatial distribution of land use carbon emissions
in Jiangsu Province.

The results of the study show that the demographic factors
(population density, population size and urbanization rate) have
always had a strong explanatory power for carbon emissions in
Jiangsu Province. The reason why carbon emissions have
become the focus of global attention is that excessive carbon
emissions can cause a series of environmental problems that are
closely related to the survival of human beings, in which human
beings are both the bearers and generators of carbon emissions ().
Against the backdrop of accelerated industrialization and
urbanization, the supply and demand relationship between
land for living and production and land for construction will
become tighter due to the concentration of population, which in
turn will lead to a continuous increase in the area of arable land
and construction land, and a decrease in the area of carbon sinks,
such as woodland, grassland and watersheds. At the same time,
as the population grows, we need to consume more energy to
make the products we need, which means that more carbon
dioxide will be released in people’s daily lives and travel.

Secondly, as shown in Table 9, carbon emissions from land use
in Jiangsu Province are to a large extent positively driven by the
economic aggregate factor. This is mainly because rapid economic
growth will bring about a significant “siphon effect,” which will
attract the inflow of resources and capital from neighbouring
regions, leading to an increase in energy consumption in
production and life, and ultimately driving the rise of regional
carbon emissions. However, as Jiangsu Province’s economy
continues to improve and its industrial structure transforms, the
province’s economy will gradually become more intensive, and the
efficiency of resource use will continue to increase, which will further
lead to a gradual reduction in the intensity of carbon emissions;
While the economy is developing, people pay more and more
attention to environmental protection, and they begin to pursue
more low-carbon living habits, which also leads to the reduction of
carbon emissions (Gu et al., 2023). Therefore, it can also be found
that the q value of the influence of the total economy is decreasing
year by year, and it is only 0.3166 in 2020.

Although the explanatory power of industrial structure on
carbon emissions is lower than that of the main drivers
mentioned above, we can observe that the influence of industrial
structure on the growth of carbon emissions increases significantly
at a later stage. Therefore, when it comes to carbon emission
reduction in the future, cities and regions in Jiangsu Province
need to focus on concentrating on optimizing the industrial
layout, strengthening the integration between industries, and
integrating the concept of low carbon into the development of
industrialization.

It should be emphasized that the effects of pairwise interactions
of factors on carbon emissions are more significant than those of
single factors (Figure 6). It is clear that carbon dioxide emissions are
the product of the combined influence of many factors. Therefore,
when formulating strategies to reduce carbon emissions, it is
necessary to consider a combination of factors, and the effect of
only targeting a single factor may not be satisfactory.

4.3 Low-carbon recommendations

4.3.1 Optimize the land use structure and strictly
control new construction land

In order to realize the low-carbon development of land use in
Jiangsu Province, it is necessary to pay attention to the strict control
of the expansion rate and scale of construction land, and to
formulate differentiated carbon emission management strategies
at the city and county levels. Firstly, the province should strictly
implement the land use control system, strictly divide the scope of
urban development, and strictly control the conversion of woodland,
watershed and other high carbon sink land into construction land;
secondly, it should vigorously advocate afforestation and greening,
improve environmental management, vigorously develop low-
carbon fisheries, and explore new types of fishery and forestry
management methods, so as to achieve win-win results in terms
of economy and ecology; lastly, it should strengthen the intensive use
of construction land, take the initiative to explore the potentials of its
inherent, and advocate three-dimensional construction land use.
Finally, it is necessary to strengthen the intensive use of construction
land, actively explore its inherent potential, advocate three-
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dimensional development of construction land, carry out a
reasonable layout of construction land, and strengthen the
infrastructure construction of neighboring counties and cities to
alleviate the pressure on the land of the central urban area, and
promote the outward development of towns and cities.

4.3.2 Strengthening industrial transformation and
optimization and upgrading industrial structure

Economic development is an important factor affecting carbon
emissions from land use in Jiangsu Province, and the optimization
and adjustment of industrial structure is the key to achieving green
and low-carbon development. Therefore, in the future, Jiangsu
Province should adjust the structure of the three industries,
promote the transformation of the economic development mode,
change the traditional development mode of “high energy
consumption, high pollution and high emission” to “high
efficiency, high output and high growth,” The traditional
development mode of “high energy consumption, high pollution
and high emission” should be changed to a new economic growth
mode of “high efficiency, high output, high growth” and “low
pollution.” On the one hand, it is necessary to actively promote
the development of low-carbon industries, act in strict accordance
with the country’s new low-carbon industrial policy, and prioritize
the allocation of land resources to innovative industries and modern
service industries that are in line with the direction of industrial
transformation and upgrading. Land use standards will be more
inclined to energy saving, environmental protection, low energy
consumption, high economic benefits and low carbon emissions of
environmental friendly fields. On the other hand, strengthen the
supervision of existing industries, especially industry, strictly control
each carbon emission index, and carry out industrial emission
reduction layer by layer in the two dimensions of supply and
supervision.

4.3.3 Optimizing the structure of energy use and
improving the efficiency of energy use

In the context of fossil energy as the largest source of carbon
emissions, improving energy efficiency has been recognized by
many countries as an effective means of reducing emissions.
Therefore, in order to realize the gradual decoupling of economic
growth and land use carbon emissions, it is necessary to adjust the
economic structure to the direction of capital economy, while
improving energy efficiency and reducing energy consumption.
This will help Jiangsu Province achieve economical and intensive
economic development, thus achieving the goal of reducing
emissions. On the one hand, Jiangsu should make use of its
unique energy advantages to strengthen cross-regional
cooperation with Zhejiang, Anhui and other provinces, deepen
energy cooperation relations with neighboring provinces, commit
to building high-end energy and chemical industry bases, and
comprehensively plan the regional layout of key energy and
chemical industry projects, while promoting the protection of
ecological environment; On the other hand, it will gradually
change the energy consumption structure of Jiangsu Province,
which is dominated by fossil fuels such as coal, oil and natural
gas, promote the diversified development of energy consumption
structure, commit to the development of efficient and green energy
resources, and promote the research and development and

application of safe, efficient and clean renewable energy and
new energy.

4.3.4 Reasonable control of population size
By analyzing the results of the geodetector, we can clearly see

that population size has a significant impact on carbon emissions
from land use. Jiangsu Province, as an economically developed
region, has a huge population base, which will be a key factor for
Jiangsu Province to face greater carbon emission pressure in
the future. In addition, with the full implementation of the two-
child policy, the population size of Jiangsu Province will
continue to increase carbon dioxide emissions in the near
future. Therefore, there is a need to strengthen the control of
the population. The number of household population should be
effectively controlled and people should be guided to establish a
scientific concept of childbearing to prevent the two-child policy
from being implemented without excessive population
growth during the peak fertility period. At the same time, it
is necessary to effectively control the excessive inflow of
migrants and achieve a long-term balance between carbon
emission reduction and attracting migrants to develop
employment.

5 Conclusion

In this study, carbon emissions from land use in Jiangsu
Province during the period 2010–2020 were estimated, and
various technical methods such as hotspot analysis, standard
deviation ellipse and geo-detector were used to conduct an in-
depth study and analysis of their spatial and temporal evolution
patterns as well as the factors that affect these changes, and the
following results were obtained.

From the perspective of time evolution characteristics, carbon
emissions in Jiangsu Province generally show a growth trend, from
16215.44 × 104tC in 2010–23597.68 × 104tC in 2020, with an
average annual growth rate of 4.55 percent. However, in 2018,
carbon emissions have experienced a downward trend. Among
them, construction land is the primary land type causing the rise
of carbon emissions in the region, and the role of carbon sources is
increasing, while the role of arable land as a source of carbon is
weakening; from the perspective of carbon sinks, watershed play a
crucial role in carbon sequestration, whereas the carbon
sequestration capacity of grassland and unutilized land in Jiangsu
Province is relatively weak. Given that emissions from carbon
sources significantly exceed the absorption of carbon sinks, land-
use carbon emissions in Jiangsu Province are expected to continue to
increase in the coming period.

The Carbon emissions from land use in Jiangsu Province show a
spatial trend of weakening from the surrounding regions to the
central region. Among them, except for Xuzhou, the high carbon
emission areas are mainly concentrated in the southern part of
Jiangsu Province near Shanghai. According to the hotspot analysis
and the standard deviation ellipse analysis, the land use carbon
emissions of each city in Jiangsu Province have obvious distribution
characteristics of high in the south and low in the north, and a stable
spatial clustering pattern, and the degree of aggregation increases
with the evolution of time.
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The spatial variability of carbon emissions from land use in
Jiangsu Province is the result of a combination of factors such as
economic development, industrial structure, energy intensity, and
land use. Among them, population size, economic aggregate,
urbanization rate and population density all play a decisive role,
and the results show that the influence of any two influencing factors
after interaction shows different degrees of two-factor enhancement
and non-linear enhancement.

Finally, based on the analysis of the whole paper, it puts forward
the policy suggestions for low-carbon development in Jiangsu
Province, such as strictly controlling the expansion of
construction land, optimizing the industrial structure, improving
energy efficiency, and controlling population growth.

Overall, this study reveals the relationship of carbon
emissions between neighboring regions and the impacts of the
interaction of different drivers on carbon emissions, bridges the
gap in the existing research literature, and provides a reference
for realizing the complementary advantages and coordinated
development between regions. At the same time, the study
may have deficiencies in the following aspects, which should
be avoided as much as possible in future research: (1) When
calculating direct carbon emissions from land use in this study,
the carbon emission coefficients of all land use types are adopted
from previous research results. Due to technical constraints,
these coefficients are not fully localized, which may lead to
slight deviations between the calculation results and the actual
carbon emission characteristics of the study area; nevertheless,
these results are still acceptable and understandable. (2) The
change process of land use carbon emissions should be
continuous, but due to the different uniform calibrations of
land area, this paper chooses to use remote sensing image data
to account for land use carbon emissions during 2010–2020,
which makes the results have a large difference in each time
period and the problem of discontinuous changes. It will be
further improved in the future research.
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