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Particulate matter (PM) stands as a predominant pollutant in developing
countries, demanding effective source identification and remediation
strategies. This review centers on the scanning electron microscopy (SEM)
image-based methodology for PM analysis, particularly emphasizing the
passive technique of utilizing plant leaves for PM capture. The SEM-image-
based approach serves as a powerful tool for unraveling the morphological
characteristics of PM, crucial for source identification. Additionally, SEM, when
equipped with energy dispersive spectroscopy (EDS), enables chemical and
mineralogical characterization, providing insights into the origin of PM. The
first part of the review describes the plant as the best bio-sampler for PM. In
this context, removal of PM from the environment through plant-based
interventions is described. Subsequently, the application of SEM for size-based
analysis using ImageJ and morphological analysis for source identification of PM
is detailed. Following this, the PM chemical and mineralogical composition for
source identification are described based on EDS analysis. Image-based
techniques play a pivotal role in selecting the most effective plant species for
PM removal from the air. The review comprehensively outlines the
morphological, chemical, and mineralogical attributes utilized for PM source
identification and their subsequent remediation by plants. Finally, the benefits of
SEM-image-based techniques for PM analysis are elucidated. This review offers a
holistic understanding of the SEM-EDS and plant-based approach, presenting a
promising avenue for addressing PM pollution and enhancing
environmental quality.
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1 Introduction

Ambient air pollution is projected to cause approximately four million premature
deaths each year, with levels of air pollution continuing to rise in most locations (Neira and
Prüss-Ustün, 2016; Shaddick et al., 2020). The correlation between human disease and poor
air quality has been recognized since antiquity. The major health effect of air pollution
entered the world in the 20th century (Speak et al., 2012). Among air pollutants, airborne
particulate matter (PM) is made up of extremely small particles and liquid droplets
containing soil and dust particles and many harmful substances like organic chemicals,
acids, and metals United States Environmental Protection Agency. In PM, dust, dirt, and
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soot are quite visible with the naked eye; however, some are very
small and can only be seen with the help of microscopes. The
presence of PM in ambient air, which comes in a variety of sizes and
chemical and biological components, is a major scientific and policy
issue (Ali et al., 2019). The composition of PM encompasses both
inorganic and organic components. Inorganic PM may include
minerals, metals, and salts, while organic PM consists of carbon
containing compounds originating from different types of sources
like biomass burning or industrial emissions (Jimenez et al., 2009).
According to the World Health Organization (WHO), in 2021,
approximately 58% of outdoor air pollution-related deaths were due
to ischemic heart disease and stroke. Moreover, about 18% of deaths
occurred due to cardiopulmonary and acute lower respiratory
infection, and 6% of lung cancer deaths are attributed to PM
globally (WHO, 2021).

Atmospheric PM play major contribution in shaping the
impacts of air quality. These particles, suspended in air, exhibit
diverse chemical compositions, originating from both natural and
anthropogenic sources. PM can be broadly classified based on their
origin, such as natural geogenic and anthropogenic. The PM derived
from natural processes such as mineral dust, sea salt, aerosols,
biogenic emissions, forest fires, dust storms, volcanoes, and
aerosolized sea salt. In contrast anthropogenic sources contribute
PM through industrial activities, combustion processes, tobacco
smoke and vehicular emissions (Speak et al., 2012; Seinfeld and
Pandis, 2016). PM in the atmosphere is generated through primary
and secondary processes. Primary PMs are directly emitted in air,
such as soot from combustion or soil erosion particles. Secondary
PM are formed in the environment through complex chemical
reaction between primary PM involving precursors gases leading
to the formation of fine PM (Kanakidou et al., 2005).

In most developing countries, the PM level is higher than the
permissible limit due to continuous increase in industrialization and
the number of vehicles (Speak et al., 2012). PM is classified
according to its aerodynamic diameter: (a) Total suspended
particulate matter (TSPM), (b) coarse PM (≤10 μm), (c) fine PM
(≤2.5 μm), and (d) ultra-fine PM (≤1 μm) (Muhammad et al., 2020;
Xie et al., 2020). PM with a diameter larger than 10 μm has a
somewhat small suspension half-life and is predominantly filtered
by our nose and upper airways. In environmental air samples, the
total number and total surface area of these PM increase
exponentially as the diameter of the PM reduces. However, PM
mass will also reduce with the diameter. According to size
ranges, <11 μm PM can enter the nasal passages of the human
respiratory system, 7–4.7 μm can enter the pharynx, 4.7–3.3 μm can
enter the trachea. PM with an aerodynamic diameter of 3.3–2.1 μm
can enter the primary bronchi, 2.1–1.1 μm can enter the bronchi
branches, 1.1–0.65 μm can enter the bronchiole, and <0.65 μm
particles can enter the alveoli regions (Londahl et al., 2006).
Studies also showed an increase in illness and mortality related
to PM exposure (Anderson et al., 2012; Chen et al., 2022; Liang et al.,
2022; Liu et al., 2022). PM causes many health complications such as
cardiovascular diseases, cancers, neurodegenerative diseases,
respiratory diseases (asthma), and viral infections (Thangavel
et al., 2022). Much evidence is recorded in China, which reveals
PM can increase the mortality rate due to asthma (Liu et al., 2022).
Epidemiological studies related to human mortality provide proof of
the relationship between short-term ambient PM10 and PM2.5

exposure with cardiac ischemic heart disease mortality. PM10 and
PM2.5 show a linear relationship with cardiac ischemic heart disease
mortality (Liang et al., 2022). Various instruments are installed at
various locations, especially in urban and industrial locations
around the globe, for the continuous measurement of PM in
different size fractions such as TSPM and respirable suspended
PM (RSPM) and also in lower fractions. To control pollution, we
need to have proper measurement of PM with respect to its
concentration levels in various size ranges.

In recent decades, numerous research studies on PM and its
associations have been published. To facilitate authentic data
collection associated with PM, the Web of Science stands out as
the best-built tool. A network visualization was conducted using
the Web of Science’s built-in tool and VOSviewer software. This
analysis provides a clearer understanding of PM studies and
global trends. Figure 1 illustrates the network visualization of
terms associated with PM in the last 10 years (2012–2022) with at
least 25 occurrences of associated keywords. Approximately
433 keywords meet the threshold of having a minimum of
25 occurrences. It depicts current trends in research and
development regarding PM studies in the Web of Science. The
word frequency in articles and its associations with other
keywords are displayed on the cloud map. Each term in the
network is represented by a circle, the size of which corresponds
to the number of publications in which the term appears. The
thickness of the lines indicates the strength of connections
between topic areas or keywords, and the length of the curved
lines indicates the approximate connection frequency. Each
colour represents a group of terms grouped into clusters,
showing connections between various topics.

The review work by Galvão et al. (2018) summarizes trends in
analytical methods for the broad chemical characterization of PM
from 1997 to 2018, and single-PM particle analysis has previously
been addressed by Bzdek et al. (2012). Tiwari A. et al. (2022)
discussed all possible methods for the study of PM based on the
literature. It appears that the study of PM has primarily focused on
its composition, particle size, and source apportionment. The
morphology of PM unveils its origin, as each specific activity or
source emitting PM exhibits distinct microscopic characteristics.
(Liati et al., 2019; Zhang et al., 2022). SEM is an effective and easy
tool for identifying the microscopic character of PM. The
morphology of PM indicates the appearance, texture, and source
of the particles. Consequently, SEM-based PM studies are crucial for
accurately identifying particle characterization and composition
(association with EDS). In context of SEM-EDS analysis,
emphasis on mineral composition becomes paramount. Unlike
other analytical technique like inductive coupled plasma (ICP),
SEM-EDS provide insight into the morphological, elemental and
mineralogical aspect of particles. This technique provides clear view
on the source of PM. Mineral composition serves as a key indicator
of their origin and generation processes (Fialová et al., 2017).
However, a small number of studies have attempted to use SEM
imaging to identify the PM shape. This review mainly focuses on the
emerging approach of SEM-EDS based PM investigation and
emphasizes how imaging of PM by SEM and chemical and
mineralogical information by EDS is crucial for its source
apportionment. SEM imaging methods for the study of PM have
been shown as a schematic summary in Figure 2.

Frontiers in Environmental Science frontiersin.org02

Tiwari et al. 10.3389/fenvs.2024.1362422

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1362422


FIGURE 1
Network visualization of terms associated with PM.

FIGURE 2
The source of PM in air and the most common SEM-based method adopted for their study.
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2 Plant leaves as a bio-sampler of PMs

Studies have shown that plants are key points for filtering the
air by absorbing PM on their leaves and remediating PM
pollution (Escobedo et al., 2008; Cavanagh et al., 2009; Maher
et al., 2022; Kim et al., 2023). PM is deposited on plant leaf
surfaces by sedimentation under gravity and diffusion
(i.e., Brownian motion) (Freer-Smith et al., 2005; Maher et al.,
2022; Kim et al., 2023). Plants have the competence to retain PM
on their surface through their micromorphological characters of
leaves, macro structure of vegetation, and environmental
variables like wind and temperature (Freer-Smith et al., 2005;
Mo et al., 2015; Chen et al., 2017; Tiwari et al., 2022). The
arrangement of leaves also plays a major role in enhancing
PM deposition (Chaturvedi et al., 2013; Mo et al., 2015;
Tiwari et al., 2022; Tiwari et al., 2023). Leaves are the best
bio-samplers for PM sampling because many factors are
responsible. The leaf morphology, leaf surface, leaf shape, leaf
size, and foliage pattern of the leaf are responsible for the
capturing of PM (Terzaghi et al., 2013; Wang et al., 2015;
Corada et al., 2021).

In leaf morphology, trichomes were the most frequently cited
leaf surface trait for capturing PM. Trichomes or leaf hairs have
different variations in size and morphology and on leaf
distribution pattern. Mostly they are present on the abaxial side
of the leaves. Plants with a dense number of trichomes or leaf hairs
on their adaxial surface are more efficient in capturing PM
compared to those plants whose leaves are either glabrous
(hairless) or have trichomes present on the abaxial surface and
low-density trichomes (Saebo et al., 2012; Chen et al., 2017; Zhang
et al., 2017; Li et al., 2019). Leaf roughness also influences PM
capture. Leaves with rough surfaces are more efficient, and
furrowed, ridged, and wrinkled surfaces can retain coarse PM
(PM10) better than smooth leaves (Chaudhary and Rathore, 2018).
Waxy coating also plays a major role in PM accumulation.
Ultrafine particles become more enduringly absorbed in the leaf
surface waxy coating (Hofman et al., 2014; Song, 2015). The shape
and size of leaves also impact PM capture. Leaves with larger
surface areas can intercept a greater volume of air, increasing the
chances of PM deposition. Moreover, specific leaf shapes, such as
compound leaves with multiple leaflets, can create additional
surfaces for particle interception (Katoch, and Kulshrestha,
2022). Leaves have a special structure like stomata. Stomatal
size, density, and guard cell area are special traits for PM
capture. PM can be trapped in stomatal cavities and grooves, so
large and dense stomata are more efficient at accumulating fine and
ultra-fine PM (Chen et al., 2017; Zhang et al., 2017; Li et al., 2019).
The entire leaf design of plants, including the arrangement and
density of leaves, influences their ability to trap PM. Dense
canopies with overlapping leaves can form a physical barrier
that prevents airborne particles from passing directly through.
Furthermore, differences in foliage density within a plant
community might influence PM deposition patterns on leaves
(Vardoulakis et al., 2003). Microscopic observation is
commonly used to determine the amount of PM on leaves
(Song et al., 2015; Sgrigna et al., 2016). It can quantify particles
with original diameters of particles and by the shape and may
indicate the source of particles (Stoffyn-Egli et al., 1997).

3 Scanning electron microscopy (SEM)
based PM analysis

Microscopy can be used for measuring particle size distribution
and the number of particles (Weber et al., 2014). SEM is commonly
employed to visually quantify the PM captured by leaves and to
identify the number, types, and sources of the PM (Deljanin et al.,
2014; Manisha et al., 2016). The SEM images reveal the size, shape
distribution, morphology, and chemistry of particles as small as a
few nanometers. Consequently, it can provide information about a
probable source that is not available through basic bulk chemical
analysis (Tasić et al., 2006). Its capacity for greater magnification
with appropriate resolution and a large depth of field makes it highly
useful. SEM also has the ability to analyze the elemental composition
of PM when combined with Energy Dispersive Spectroscopy (EDS)
attached to the microscope (Kocic et al., 2014). However, the most
commonly used method for SEM micrographs is to identify the size
of PM and count PM using software-based analysis. Some studies
have also utilized SEM micrographs in software for size distribution
and quantification of particles. ImageJ software (Ottelé et al., 2010)
was previously employed for quantifying PM in all size ranges
(Gajbhiye et al., 2019; Tiwari et al., 2023).

3.1 Image based counting of PM by software

SEM images provide significant insights into the aggregation
pattern and shape of PM. With the assistance of SEM images, the
quantification of particles becomes possible. SEM micrographs are
utilized for counting particles in different size fractions. Image-based
software is employed for accurate measurement and counting of
particles in various size fractions. The counting of PM10, PM2.5, and
PM0.2 is achievable through SEM micrographs with the aid
of ImageJ.

ImageJ is an image-based technique. To use this software, the
image should be in binary (black and white) form. An electron
microscope is used to take images of the PM sampling surface, such
as plant leaves, filter papers, or another exposed surface of PM. The
SEM images were captured at various magnifications (e.g., 100×,
250×, and 500×). After collecting the images, the particles are
automatically quantified by this software package (Ottelé et al.,
2010). With the help of SEM micrographs of sampled leaves, PM
density is measured by this software package. Particle counting in all
size ranges like PM10, PM2.5, PM1, and PM0.2 can be easily done
(Song et al., 2015; Weerakkody et al., 2018b), and the average size of
PM is also identified by this software (Zapata-Hernandez et al.,
2020). For errorless data, an auto-threshold mechanism is applied to
all the calculations (Ottelé et al., 2010). To explain any changes in
PM accumulation due to variable edge effects, the leaf perimeter/leaf
surface area ratio in each category was determined by this software.
With the help of ImageJ software, we can identify the actual number
of PMs in all size ranges (0.1–100 μm) and how much space they
occupy on the leaf surface (Song et al., 2015; Zhang et al., 2022).

ImageJ software has two types of thresholding mechanisms
(manual and automatic) built-in. Automatic thresholding is used
for PM counting because it is not influenced by the user, but in
manual thresholding, the user arranges the pixels by adjusting itself,
creating biasness in counting PM. The watershed function in ImageJ
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was used to separate particles that were somewhat overlapping in a
threshold image. Particles in this study, which are not circular, can
still be counted (Ottelé et al., 2010). For better
results, ×100 magnification images are used for >10 μm particles,
250× is used for PM10, and 500× magnification image is used for
PM2.5. The magnifications of 250× and 500× were employed,
respectively, 6.25 and 25 times, to make up for the loss in
counting area caused by the zooming effect (Ottelé et al., 2010).
The category of the particle (coarse, fine, or ultrafine) that is more
prevalent on the surface of the leaves can also be determined by
counting particles in various size ranges by ImageJ. After that, these
results help in selecting those plants which are efficient in capturing
fine and ultrafine particles (Shi et al., 2017). This software assists in
recognizing the particle concentration on plant leaves, making it
simple to correlate it with the atmospheric PM concentration of a
specific area (Sternberg et al., 2010). Particle counting can also help
identify the source of PM because smaller, and more numerous
particles typically arise from industrial sources. If there are fewer,
bigger particles present, they are likely to come from soil or other
natural sources. Palma et al. (2017) studied the rural sites always had
the least particles, whereas urban and industrial sites had the most.
Another study which was based on SEM-image was able to reveal
that PM concentration in the air is distinguishable between summer
and winter seasons. As the summer season has more PM
concentration in the air, it was evident from more accumulation
on plant leaf surfaces as compared to the winter season when studied
with SEM-ImageJ method (Kumar and Elumalai, 2018). So, it is
sensitive enough to distinguish the seasonal variation.

The SEM-based imaging facility of PM on the plant leaf surface
provides PM appearance with morphology and the pattern of
accumulation on the leaf surface. ImageJ software analysis of
SEM micrographs provided the distinct deposition pattern of PM
on different leaf surfaces (adaxial Vs. abaxial) (Gajbhiye et al., 2019).
Plant leaves have adaxial and abaxial surfaces, and both surfaces
have different morphology with variable capture efficiency. For
instance, in Calotropis procera, fine PM accumulation was higher
at the abaxial surface, and larger PM accumulation was found at the
adaxial surface (Gajbhiye et al., 2019). This pattern was observed by
the SEM image of the sampled leaf of C. Procera, and counting was
done by ImageJ software. This type of innovative method uses
object-based image processing to automatically estimate PM on
tree leaves from SEM micrographs. This method is very useful for
the selection of plants for removing PM from the air (Li et al., 2021;
Tiwari et al., 2023). Plant leaves can accumulate PM, and the SEM
image of the plant leaves gives information about the accumulation
pattern of PM in different size ranges. PM size, shape, and number
were also identified if the SEM images are analyzed by ImageJ
software. After the analysis (PM counting in different size ranges),
the selection of better plants for removing PM in the respirable range
from the air is possible. For instance, Tiwari et al. (2023) studied six
plants for the selection of suitable plants for removing PM from the
air. In this research, SEM images-based method was used
incorporated with ImageJ and found that Dalbergia sissoo is the
best-performing plant for removing air in the respirable range
(Tiwari et al., 2023). As compared to leaves with rough surfaces
and bigger trichomes, smooth leaves with smaller trichomes retain
more fine and ultrafine particles (Tiwari et al., 2023). Smaller leaves,
lobed shapes, hairy and rough leaf surface are more effective in

retaining the PM on its surface (Weerakkody et al., 2017; 2018b).
Another study was done by Weerakkody et al. (2019) in which they
used SEM-ImageJ method and demonstrated that the arrangement
of plants may also affect the PM retention capability. Findings of this
study showed that planting with heterogeneous topography should
enhance the PM retention ability compared to homogenous
topography planting design (Weerakkody et al., 2019). SEM-
ImageJ based study also used for the characterization of PM
which was emitted from pyrolysis (burning in the absence of
O2). For instance, pyrolysis of cashew nuts at 700°C emits
smaller particles as compared to pyrolysis at 500°C (Kibet et al.,
2017). Based on these findings and literature reviews, high-
temperature cooking may potentially be a source of dangerous
PM, molecular toxins, intermediates, and free radicals, which
may be precursors to disease (Kibet et al., 2017; Chen et al.,
2022; Liang et al., 2022).

4 Morphological analysis of PM by
SEM images

SEM Microscopy can be used to observe the particle deposition
pattern on plant leaves, and the capture of PM from the
environment by plants is considered an important ecosystem
service. The deposition of PM on plant leaves can occur in two
ways. Firstly, plants have the ability to retain particles on the leaf
surface through their micromorphological characteristics, such as
stomata, trichomes, and epicuticular wax (Terzaghi et al., 2013).
Secondly, particles deposited on the leaf surface may be temporary
and can resuspend in the air when there is a change in air flow or an
increase in wind speed. Thus, leaves possess special
micromorphological characteristics to adhere particles to their
surface (Nowak et al., 2014). Microscopy can be employed to
measure the size and shape of PM. SEM is commonly used to
visualize particles and identify types of PM. With this approach,
significant information about the size and shape characteristics of
the particles captured on leaves can be collected. The characteristics
of particles, such as roundness, compactness, and shape index,
provide insights into the source of the particles (Slezakova et al.,
2008; Makkonen et al., 2010; McDonald and Biswas, 2012).

Morphological studies of PM facilitate comparative research on
the PM capturing efficiency of different plant species and source
apportionment of PM based on their morphological characteristics.
This method can also provide insights for species selection for
specific pollutant reduction (Yan et al., 2016). Particles can be
divided into fifteen subcategories based on their shape, size, and
general appearance (Freer-Smith et al., 1997). Smooth sphere,
agglomerate round and ovoid, agglomerate flat, agglomerate free
shape, nodules like, hollow sphere, and hollow irregular-shaped are
considered inorganic particles. Cylindrical dehydrated spores,
symmetrical spores, rough spherical, and sheet material often
curled are considered organic particles (Freer-Smith et al., 1997).
Hollow sphere particles are assumed to be incomplete combustion
products. Probably inorganic materials are amorphous and free-
shaped. Some particles are not distinguishable because they do not
show similarity to the classified categories, so they are not assigned
to any group. Most of the amorphous inorganic particles probably
come from the soil, mainly containing silicon, iron, and aluminum
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(Breed et al., 2002; Almeida et al., 2006; Castanheiro et al., 2020).
Beckett et al. (2000) also categorized particles similarly to Freer-
Smith et al. (1997). However, they divided inorganic amorphous
particles based on their size (<2.5 μm and >2.5 μm), with inorganic
and amorphous particles smaller than 2.5 μm assumed to be of
anthropogenic origin (Guevara, 2016), as the majority of particles in
this size range are present in the air.

Morphological analysis is always appreciated for the ability to link
particles back to their origin. For instance, particles of hollow
carbonaceous sphere shape are emitted from the burning of fossil
fuels. It is difficult to assign the source of agglomerated particles and
mass of mixed materials. They mostly come from anthropogenic
sources. The average size of anthropogenic PM is less than 10 μm. It
can also be observed that particles emitted by anthropogenic sources are
generally smaller than those produced from natural sources (Beckett
et al., 2000). According to Sagnotti et al. (2009), particles rich in iron,
with a size range of 0.1–5 μm, of which 1–2 μm is more common. The
iron-rich particles have variable shapes, ranging from rounded to
irregular, and were found in high traffic squares in Rome
metropolitan areas. These particles showed a distinctive rough,
moss-like surface composed of adjoined or aggregated, sub-round
particles typically about 50–60 nm in size (Sagnotti et al., 2009).
Tasić et al. (2006) classified particles into two categories using SEM-
based PMmorphology in the urban area of Belgrade. First, materials of
organic origin were among the particles of natural origin (pollens,
bacteria, fungal spores). Suspended soil dust (mostly minerals) and
angular-shaped objects were also included in this group. Second,
particles from anthropogenic sources were defined by their special
shape and smooth surface, which were usually emitted by high-

temperature combustion processes (Tasić et al., 2006). A large
amount of PM is emitted from iron and steel-based industries.
These types of industries emit two types of PM: stack PM and
fugitive PM (Zhang et al., 2022). In recent research, it was found
that fugitive PM emitted by the steel industry has five forms based on
their microscopic morphology: spherical, irregular blocky, chain,
lamellar, and flocculent particles (Zhang et al., 2022). Spherical
particles are Si, Al, and Fe-rich and come from high-temperature
combustion. Irregular blocky particles are Fe, Si, Ca, and Mg-rich
and mostly produced by mechanical processes (crushing, belt
conveying, unloading, and dropping) in iron industries. Chain and
flocculent particles are composed of volatile minerals and lamellar
particles are carbon-rich (Zhang et al., 2022). Airborne fiber PM has its
special morphological characters and appearance, providing insights
into the source of PM (Li et al., 2020). Microplastic fiber particles show
spiral forms with a smooth surface, natural organic fibers show regular
fibrous and elongated shapes. Man-made mineral fibers are regular
fibers with a bar-shape, asbestos shows needle-like morphology,
calcium sulfate fibers appear with a smooth strip-like surface, and
metal fibers are regular to irregular fibrous shapes observed in SEM
images (Li et al., 2020). Some possible PM morphology with sources is
shown in Table 1.

5 Particle chemical characterization by
SEM-EDS

For source identification, the characterization of PM and the
identification of its chemical composition are required. The

TABLE 1 Source identification of PM by their morphological character.

S No. Morphology Source Origin References

1 Rounded smooth surface Thermal powerplant, fly ash, fossil fuel
burning

Natural and
anthropogenic

Zeb et al. (2018); Goel et al., 2020

2 Rough spherical Pollen grains Biogenic origin Telloli et al. (2016)

3 Large irregular Soil, local crustal, from combustion process Natural Goel et al. (2020)

4 Large crystal shape with
sharp end

Vehicular emissions, road maintenance Natural and
anthropogenic

Bora et al. (2021)

5 Non spherical Crustal, soil particles, silica powder, Ca and Fe
rich

Natural and
anthropogenic

Satsangi and Yadav. (2014)

6 Minute irregular shape Soil erosion of rocks Natural Satsangi and Yadav. (2014)

7 Crystal shape Rock particles, soil dust Natural Bora et al. (2021)

8 Rounded Combustion process, industrial particle Anthropogenic Yin et al. (2013); Goel et al. (2020)

9 Spherical Coal, power plants, soil resuspensions Anthropogenic Goel et al. (2020)

10 No distinct morphology Soil, automobile emission Natural and
anthropogenic

Satsangi and Yadav. (2014)

11 Irregular Soil, local crustal, from combustion process Natural and
anthropogenic

Satsangi and Yadav. (2014)

12 Small spherical Vehicular emission, fuel type Anthropogenic Yin et al. (2013); Zeb et al. (2018); Goel et al.
(2020)

23 Agglomerate free shape Fuel, biomass burning, incomplete fossil fuel Natural and
anthropogenic

Bora et al. (2021); Rana et al. (2022)

14 Crystal shape Rock particles, soil dust Natural Bora et al. (2021)
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elemental composition of airborne PM deposited on plant leaf
surfaces has been shown to be strongly linked to pollution
sources (Umbrìa et al., 2004; Canepari et al., 2008; Thorpe and
Harrison, 2008; Sgrigna et al., 2016; Baldacchini et al., 2017;
Baldacchini et al., 2019). SEM analysis combined with EDS can
now offer a full characterization of PM deposited on plant leaves
(Castanheiro et al., 2016; Weerakkody et al., 2018a; Castanheiro
et al., 2020). These methods primarily provide information on the
quantity, morphology, and elemental content of PM. SEM-EDS was
used to investigate PM samples to determine their composition,
making an effort to differentiate whether the PM came from
anthropogenic or natural sources.

Based on SEM-EDS observations, particles can also be classified
into anthropogenic, geogenic, and biogenic particles (Usman et al.,
2022). Anthropogenic particles are mostly produced by industrial,
vehicular, and fossil fuel combustion, among others. Carbonaceous
particles are those with a content of C and O greater than 92% (Cong
et al., 2009; Tumolva et al., 2010; Deka and Hoque, 2014; Bhuyan
et al., 2018). The concentration of carbon in the air increases due to
incomplete burning of biomass and fuels (Sahu et al., 2012). Sulfur in
the PM indicates its origin from sulfur included in the fuel during
the combustion process and is most often associated with secondary
formation. (Pósfai et al., 2003; Jimenez et al., 2009; Agarwal et al.,
2011; Seinfeld and Pandis, 2016). Biogenic particles were quantified
using the technique used by Matthias-Maser and Jaenicke
(Matthias-Maser and Jaenicke, 1994). Many scientists have
discovered that particles of biological origin (living or dead)
include tiny amounts of Na, Mg, K, P, Si, Fe, Cl, Al, and Ca in
various sizes and shapes (Artaxo and Hansson, 1995; Matthias-
Maser et al., 2000a; 2000b; Pófsai and Buseck, 2010; Kaur et al.,
2022). The composition of biogenic PM is relatively different from
others, showing O and C concentrations less than 75%, K more than
1%, and P and Cl less than 10%. These particles include plant debris,
animal matter, bacteria, viruses, pollens, and spores (Iordanidis
et al., 2008; Coz et al., 2010; Malli Mohan et al., 2019; Tiwari
et al., 2022). Particles generated by natural crust are termed as
geogenic particles. This particle mainly includes aluminosilicate,
calcium-rich, and quartz (Al, Ca, C, Fe, Mg, O, K, Si, and Na).
Aluminosilicate makes up to 72% of all chemical compounds found
in the Earth’s crust (Davidovits, 1994; Cong et al., 2009). Bioaerosol
also identified by their chemical compositions. Bioaerosols mainly
includes virus, bacteria, pollen grains, animal and plant debris, and
spores. The concentration of O and C is more than 75% and Cl, Ca,
S, P were present in minimum amount (e.g., Chen et al., 2012;
Usman et al., 2022).

The composition of PM provides more information regarding
pollution sources. Some particles have specific characteristics and
compositions. Thus, using SEM-EDS, the elemental composition of
particles was determined, and the origin of the particles can be better
understood. It can be seen that the most abundant element found in
the PM was Si, which has been found to be a marker of soil particle
origin (Chow et al., 1996). Similarly, a high amount of S and Pmarks
the presence of particles from anthropogenic combustion sources
(Fung andWong, 1995). Higher calcium concentration in PM is due
to the presence of chalky soils (Beckett et al., 2000). Agglomerated
particles with elements attributed to diesel (C, Na, Mg, K, Al, Si, P,
and Cl), coal (Al, Si, Fe, Ca, S, Na) and coal ash (C, Al, Si, K, Ca) are
generated by high traffic at roadside plants of industrial area (Searle,

2001; Tomasevic and Anicic, 2010). The C, O, Si, Ca, Na, and Mg in
the PM could have derived from natural sources. Particles
containing Pb, Br, Fe, Cd, Ni, Zn and Cl, on the other hand,
could be the product of anthropogenic activity (Ottelé et al.,
2010; González et al., 2018). According to Tomasevic and Anicic,
(2010), such PMwith the composition Si, Al, Fe, Mg, N, S, Ca, K, and
Cl are the soil dust. On the other hand, PM emitted from fuel
burning were rich in Al, Si, Ca, Ni, Fe, V, and Pb. PM with an
irregular shape and a high concentration of Fe, O, Si, Mg, and Al
could have derived from soil dust resuspension, with a diameter of
less than 3 μm (Song et al., 2015; Engelbrecht et al., 2016). PM with a
diameter of around 10 μm and a spherical shape, as well as a
significant concentration of Pb and Br, and presence of S, Ca,
Na, Mg, and Cl could have come from vehicle exhaust (e.g., Nor
et al., 2022). Fe particles with 86% of Fe weight originated from iron
industries. PM including C, O, Si, Fe, and Ca came mostly from
natural sources and to a lesser extent from human activities (Goudie,
2009; Wang et al., 2012). PM2.5 (fine particles) were almost emitted
from anthropogenic sources with a total content of C 50.18% and O
31.74% (accounting for 81.92%). The PM with Pb rich and
composition with Fe, Zn, Ni, and Cu are the characteristics of
PM emitted from local industrial processes (Tomasevic and Anicic,
2010; Daellenbach et al., 2020) and Fe rich with composition of Cu,
Zn, Pb, Ni, an Cr are emitted form traffic sources (Moreno et al.,
2003; Slezakova et al., 2008). The content of Mg, Al, Si, Cl, Ca, Fe,
and Pb were higher, and these components were related to diesel
fumes and coal dust (Ottelé et al., 2010). Some possible sources of
elements are shown in Table 2. Recent studies related to PM source
identification by its composition show different observations. For
instance, condensable PM is a mixture of several gases (from coal
industries), and its character shows both morphological and
elemental composition evidence (Oroumiyeh et al., 2022).
Condensable PM exhibits a spherical morphology in SEM and is
characterized by the presence of elements such as Hg, As, Se, and Sb
in its composition. PM emitted by heavy traffic has some special
characteristics, such as containing Ba, Cr, Cu, Mo, Pd, Zn, and Zr in
both PM10 and PM2.5; however, Fe, Li, Mn, Bi, Mo and Ti were
mainly associated with PM2.5 in traffic emissions (Oroumiyeh et al.,
2022; Alves et al., 2023). Some PM emitted from quarries, burning
fossil fuels have a mixture of Ca, Si, Pb, Ca, Fe, Ti, and Al possible
metals (Zapata-Hernandez et al., 2020).

6 Mineralogical composition
of PM based on SEM-EDS

Atmospheric PM is composed of various solid and liquid
substances. Classification of atmospheric PM according to their
size, with respect to their mineralogical character, indicates their
potential to affect human health and source identification (Pope and
Dockery, 2006). Mineral dust PM plays a major part in atmospheric
aerosols, contributing 35%–40% of global aerosols from different
natural sources (Ramanathan et al., 2001). Additionally, mineral
dust particles aid in reducing ambient ozone levels by approximately
5% (Soler et al., 2016). These particles, when carried by dust storms,
can be transported over long distances, leading to impacts at
regional and even global scales (Weinzierl et al., 2017).
Therefore, understanding the dynamics of mineral dust aerosols
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is essential for comprehending their role in atmospheric processes
and their potential environmental implications. Most of the mineral
dust PM are found with irregular shapes or amorphous (Bora
et al., 2021).

A recent work by Górka et al. (2020) focused on atmospheric
PM characterization. They divided the PM according to their
mineralogical composition into three groups. Group 1 primarily
reflects industrial activities, showcasing a prevalence of Si/Al
particles (58.2%), often containing toxic metals (34%). These
particles are found across all size fractions (PM10, PM2.5, and
PM0.2), indicating widespread industrial emissions. Group 2, on
the other hand, highlights urban influences, with terrigenous
particles dominating the composition, along with sulfides and
Ca/P/K spherules, originating from various urban sources like
chemical plants and agricultural practices. Lastly, Group
3 predominantly consists of particles derived from natural
geological processes, particularly from the local areas,
featuring terrigenous phases like quartz (42.9%) alongside
other mineral components (Górka et al., 2020). Particles with
the composition of some elements (Al, Ca, Fe, Mg, Mn, Ni, and
Si) showed the presence of alumina silicate, mica, quartz-like
materials. This mineralogical composition denotes that PM
generated from resuspension of dust from soil and other
anthropogenic particles emitted from the burning of fossil
fuels and biomass (Pipal et al., 2014; Bhardwaj et al., 2017;
Sonwani and Kulshrestha, 2018). Teper (2009) also classified
particles based on their origin of mineral components, which
include tailing pond components (Pb, Zn, Fe sulfides; Pb, Zn
carbonates; Fe sulfates), natural components from rock and soil
erosion (aluminosilicates, quartz, Ca-Mg, Ca carbonates), and
other pollutants from various airborne sources (aluminosilicate
glass, Fe-Zn oxides, Fe oxides). However, overlap of some

components between groups occurs due to shared components
like carbonates and aluminosilicates, and some pollutants can
also originate from natural sources (Teper, 2009).

Mineral-rich atmospheric PM inhaled by humans is very
toxic, causing silicosis, tuberculosis, lung cancer, and chronic
bronchitis (Merget et al., 2002). Clay mineral-rich PM has been
reported to have minimal or no toxic effect (Carretero et al.,
2006). SEM-EDS results showed the mineralogical information of
PM. The detection of elements on EDS like Al, Si, O, Mg, C, Ca,
Na, and Fe has clearly confirmed the presence of quartz and
aluminosilicate. The presence of high silicon and oxygen (Si +
O = >50%) content in PM denotes the presence of quartz (SiO2).
These particles come into the environment by both natural and
anthropogenic processes (Pachauri et al., 2013; Satsangi and
Yadav, 2014). Silica is widely present in the earth’s crust and a
major component of granite and sandstone. Furthermore, silica is
widely used in construction processes such as ceramics, cements,
bricks, clays, and glass. So, this type of PM is emitted from the
construction and renovation of buildings (Pachauri et al., 2013).
The size range of silica particles is near about 0.2–0.5 μm (Usman
et al., 2022). If in PM EDS analysis Al, Si, Ca, O present in higher
percentage, it confirms the presence of biotite, almandine, and
grossular minerals (Pachauri et al., 2013; Usman et al., 2022).
Aluminosilicate is also widely present in the earth’s crust (70%)
(Cong et al., 2009). These particles are made up of oxides of Al
and Si, with varying quantities of Fe, Mg, Na, Ca, and K. The
average size of these particles ranges from 2.5 to 30 μm (Usman
et al., 2022). These types of PM show sharp angular structures
and have been identified as Na-feldspar (albite), K-feldspar (K
aluminosilicate), Mg-Fe aluminosilicate, and Ca-Mg
aluminosilicate (Satsangi and Yadav, 2014; Anake et al., 2016;
Usman et al., 2022). By the help of elemental composition of

TABLE 2 Source identification of PM by their elemental composition.

S. No. Sources Elemental composition References

1 Soil particle Si, C, O, Si, Al Chow et al. (1996); Song et al. (2015)

2 Anthropogenic combustion sources P, S, As Fung and Wong (1995)

3 Chalky soils Ca Beckett et al. (2000)

4 Road traffic attributable to diesel Pb, C, Na, Mg, K, Al, Si, P, Cl Searle (2001)

5 Coal Al, Si, Fe, Ca, S, Na, Zn Searle (2001)

6 Building construction dust C, O, Ca Song et al. (2015)

7 Vehicular exhaust Pb, Br, S, Mn Song et al. (2015); Galvez et al. (2022)

8 Iron steel manufacturing industries 86% Fe weight, Br, Cl Song et al. (2015); Galvez et al. (2022)

9 Natural sources C, O, Si, Ca, Na, Mg Ottelé et al. (2010); Song et al. (2015)

10 Carbonaceous aerosol O, N, C, S Galvez et al. (2022)

11 Crustal and traffic emission Si, Zn, Cu, Al, Na, Ba, K, Pb, Mn, O Galvez et al. (2022)

12 Gold product and jewellery enterprises Hg, Pb Galvez et al. (2022)

13 Fly ash (Aluminosilicate) Al, Si, O Searle (2001)

14 Pharmaceutical waste and cosmetics Sb, Fe Bocca et al. (2014); Muritala and Adewole (2019)

15 Mining process Tb, Zn, In Genga et al. (2012)
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SEM-EDS analysis, some particles are nitrate-rich with irregular
shapes (Matsuki et al., 2005). Nitrate particles are present in the
form of NaNO3, HNO3, and other nitrogenous compounds
(Teinilä et al., 2000). With the help of SEM-EDS, Lu et al.
(2007) identified the mineral composition of PM present in
the air in Beijing, China. They found different minerals such
as illite, smectite, chlorite, quartz, feldspar, calcite, gypsum,
kaolinite, present in the form of respirable PM (Lu et al.,
2007). In a recent study by Bartz et al. (2021), PM was
categorized by their mineral compositions into 11 different
groups. Three groups were associated with natural sources,
while others were emitted from anthropogenic sources like
smelter industries. The presence of Si and Al elements in
respirable PM indicates the involvement of anthropogenic
activity (Bartz et al., 2021). Terrigenous minerals (quartz,
feldspar, mica) and clay minerals are emitted from natural
sources or the earth’s crust (Bartz et al., 2021). Other minerals
such as halite, rutile, amphibole, apatite, sulfides (Zn, Cu, Pb, Fe),
carbonates (dolomite, calcite, siderite), and gypsum are emitted
from most anthropogenic sources (Table 3) (Song et al., 2014;
Bartz et al., 2021). Geogenic particles identified by their
mineralogical compositions include aluminosilicates, quartz,
fly ash, chloride particles, iron-silicon alloys, and calcium

carbonate particles. These particles originate from sources
such as soil sediment, biomass burning, construction activities,
and windblown dust, contributing to the composition of PM in
the atmosphere (Ahmad et al., 2023).

The mineralogical composition of PM varies with the source
of origin and the size of the PM. Hematite (Fe2O3) is associated
with larger-sized PM emitted from industrial emissions from iron
ore handling (Machemer, 2004). Magnetite (Fe3O4) and pyrite
(FeS2) are associated with coarse particles and emitted from coal
combustion and steelmaking (Gürdal et al., 2015; Jabłońska and
Janeczek, 2019). These PM were identified by EDS analysis to
contain high amounts of Fe and O (>50%) (Trechera et al., 2020;
Galvão et al., 2022). Metallic iron and iron silicate are also
associated with coarse particles (Tugrul et al., 2009).
Carbonaceous particles are associated with coal and coke
emissions. Silicates decrease with particle size, and sulfates are
more abundant in PM2.5, with primary industrial emissions
contributing significantly (Galvão et al., 2022). SEM-EDS-
based analysis of PM mineralogical composition facilitates the
identification of sources, whether they are anthropogenic,
geogenic, or natural. This composition also reveals chemical
alterations in primary pollutants and provides insight into
secondary airborne pollutants. Once sources are identified, it

TABLE 3 Source identification of PM by their mineralogical composition.

S.N. Mineral Composition of minerals
in EDS

Source Reference

1 Aluminosilicate Al, Si, and O Natural and Combustion
process

Searle (2001)

2 Sodium feldspar Na, Si, Al, and O Anthropogenic sources Galvez et al. (2022)

3 Potassium feldspar K, Al, Si, and O Anthropogenic sources Galvez et al. (2022)

4 Kaolinite Al, Si, and O Coal industries Song et al. (2014)

5 Koktaite N, Ca, S, and O Crustal origin and waste
dump

Song et al. (2014)

6 Mascagnite S, O, and N Coal Combustion Song et al. (2014)

7 Gypsum Ca, S, and O (>40%) Coal ash, waste rock Zheng et al. (2009); Song et al. (2014)

8 Boussingaultite Mg, N, S, O Crustal origin and waste
dump

Song et al. (2014)

9 Quartz Al, Ca, Fe, Mg, Mn, Ni, and
Si (>50%)

Fossil fuel burning, Soil
dust

Sonwani and Kulshrestha, (2018);
Bhardwaj et al. (2017)

10 Mica Al, Ca, Mn, Ni, and Si Natural source, Soil Sonwani and Kulshrestha, (2018);
Bhardwaj et al. (2017)

11 biotite Al, Si, Ca, O, Mg, and Fe Crustal origin Pachauri et al. (2013); Usman et al. (2022)

12 almandine Al, Si, Fe, and O Earth Crust Pachauri et al. (2013); Usman et al. (2022)

13 grossular Al, Si, Ca, and O Crustal origin Usman et al. (2022)

14 Halite, rutile Na, Cl, Ti, O, and Si Rare earth Crust Bartz et al. (2021); Song et al. (2014)

15 Phosphate mineral (Apatite, hydroxyapatite,
fluorapatite and chlorapatite)

Cl, F, O present in high amount. Ca,
Si, and Al

Phosphate fertilizers,
Mining

Macadam et al. (2003); Bartz et al. (2021)

16 Dolomite Rich in Mg, Ca, O and C Crustal origin, Mining Bartz et al. (2021); Song et al. (2014);
Macadam et al. (2003)

17 Carbonates (Calcite, Siderite) Fe, C, Ca, and O (Fe and C rich) Mining, Fossil fuel
burning

Liu et al. (2023)
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becomes easier to devise strategies for reducing PM emissions
through source modifications.

7 Concluding remarks

Airborne PM poses a significant health risk due to its
association with various harmful substances. The majority of
PM is within the respirable range for humans (<10 μm), causing
adverse effects on health. Numerous studies have linked ambient
PM pollution to over four million premature deaths, contributing
to a range of ailments from cardiovascular diseases and
respiratory disorders to cancers and viral infections.
Addressing this issue requires the development of effective
techniques for source identification and remediation.

In this review, an SEM-image-based method is described for PM
source apportionment and their counting on the leaf surface using
ImageJ software. The review focuses on the use of SEM as an efficient
tool for PM analysis, coupled with EDS, providing detailed
information about the morphological and chemical and
mineralogical composition of PM, thus aiding in source
identification. Furthermore, the inclusion of network visualization
provides a clear representation of terms associated with PM on a
global research platform. The review also highlights the role of
ImageJ software in the SEM-based micrograph study of PM,
showcasing its importance.

The combined use of both techniques allows for accessing the
PM accumulation pattern on different plant leaf surfaces, along with
the counting of PM in various size ranges and source identification
by their chemical and mineralogical composition. This approach
also assists in selecting suitable plant species for the removal of PM
from the air. In summary, the review emphasizes the multifaceted
nature of the relationship between PM and human health,
incorporating aspects of pollution measurement, plant-mediated
remediation, advanced imaging techniques, and data analysis
tools. As research in this field progresses, a holistic
understanding of PM dynamics will be crucial for developing
targeted interventions to combat the alarming health implications
of ambient air pollution.
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