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In the context of rapid advancement in automation and increasing global
warming, understanding the impact of artificial intelligence (AI) on carbon
emissions (CES) is a cutting-edge research topic. However, there is limited
focus in existing research on the nonlinear carbon reduction effect (CRE) of
AI. This paper first theoretically elaborates the dual impact mechanisms of AI on
CES and illuminates the nonlinear carbon reduction mechanisms of AI. Then, this
study employs panel data encompassing 30 Chinese provinces between
1997 and 2019 to empirically test the net effect of AI on CES and the
nonlinear carbon reduction effect of AI through econometric models. The
results are as follows: first, although AI can both reduce and increase CES, AI
primarily helps decrease CES. This conclusion holds true even after considering
robustness, endogeneity, and spatial heterogeneity. Secondly, relative to the
central and western regions, AI has significant achievement in reducing carbon
intensity and per capita CES in the eastern region. However, there is still room for
improvement in terms of reducing the total CES in the eastern region. Thirdly,
improving the AI development level (AIDL) can magnify the marginal CRE of AI
and lead to a nonlinear CRE of AI. Lastly, even if the AIDL remains constant,
improving the level of marketization, human capital, digital infrastructure,
economic development, openness, and government intervention can also
amplify the marginal CRE of AI and lead to a nonlinear CRE of AI. To fully
harness the potential of AI for green development, concerted efforts should
be directed towards enhancing the innovation and application of AI technologies
with carbon reduction potential.
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1 Introduction

Climate change, primarily attributed to carbon emissions (CES) resulting from human
activities, has exerted a significant and detrimental impact on human survival and
development (Zhang W. et al., 2022; Li et al., 2022; Wang et al., 2023b). The global
community has consequently made decarbonization a key priority (Vorozheykina, 2022).
Additionally, artificial intelligence (AI) has emerged as one of the most eagerly anticipated
technologies. In this context, the impact of AI on CES has become a focal point of scholarly
inquiry. Extensive research has highlighted the dual nature of AI’s impact on CES,
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encompassing both reduction and increase (Chen P. et al., 2022;
Kaack et al., 2022; Cowls et al., 2023). Hence, the questions arise:
Will the development of AI ultimately result in a carbon reduction
effect (CRE)? Does the CRE of AI exhibit a nonlinear characteristic?
Resolving these inquiries holds substantial theoretical and practical
significance. Regrettably, existing studies have not fully addressed
the aforementioned questions.

To address these gaps, firstly, this paper will theoretically analyze
the carbon reduction mechanisms and carbon increase mechanisms
of AI, and will point out that AI will ultimately reduce CES.
Secondly, from a theoretical perspective, the paper will illustrate
that the improvement of AI development, marketization, human
capital, digital infrastructure, economic development, openness, and
government intervention level can magnify the marginal CRE of AI
and lead to a nonlinear CRE of AI. Finally, this paper will empirically
test the aforementioned theoretical perspectives using provincial
panel data from China spanning from 1997 to 2019 and
econometric models.

This paper makes significant contributions in three key
points. Firstly, this paper will provide a unified framework for
understanding of the impact of AI on CES. Existing research has
primarily focused on analyzing the carbon reduction
mechanisms and CRE of AI. While some studies also consider
the carbon increase mechanisms and carbon increase effect of AI,
there is limited research that systematically analyzes both the
carbon reduction and increase mechanisms within a unified
framework. Moreover, there is relatively little discussion in
existing research regarding the crucial question of whether the
CRE or the carbon increase effect of AI is greater. This paper, at
the theoretical level, systematically analyzes both the carbon
reduction and increase mechanisms of AI and empirically
confirms the viewpoint that the CRE of AI is greater than the
carbon increase effect. Secondly, this paper will contribute to a
deeper understanding of the CRE of AI. Although existing
research indicates that AI can reduce CES, there is limited
analysis of the nonlinear characteristic of the CRE of AI. This
paper, both theoretically and empirically, confirms that the
improvement of AI development, marketization, human
capital, digital infrastructure, economic development,
openness, and government intervention level can magnify the
marginal CRE of AI and lead to a nonlinear CRE of AI. Thirdly,
our research employs more refined methodologies to gauge the
AI development level (AIDL). Measuring the AIDL represents a
contemporary research Frontier. Current research primarily
relies on industrial robot data and AI patent data to assess
AIDL. However, industrial robot data predominantly reflects
the extent of intelligent manufacturing rather than offering a
holistic evaluation of AIDL. Although AI patent data can offer a
holistic evaluation of AIDL, previous studies have employed a
limited set of keywords in their searches for AI patents. In
contrast, our paper measures AIDL using a broader array of
AI-related keywords.

The rest of our study is outlined as follows: Section 2 provides a
systematic literature review. Section 3 introduces the theoretical
framework and research hypotheses. Section 4 introduces the
empirical models and details the sources of data. Section 5
provides the empirical results and discussion. Section 6 provides
the conclusions, implications, and limitations.

2 Literature review

The literature pertinent to our research can be categorized into
three key domains: the measurement of carbon emission level (CEL)
and the influencing factors of CES, the measurement of AIDL, and
the impact of AI on CES.

2.1 The measurement of CEL and the
influencing factors of CES

Currently, there are four proxy variables employed to
characterize CEL. The initial proxy variable is the total CES
(Wang et al., 2023b; Ding et al., 2023; Tang and Yang, 2023).
Some scholars have developed carbon emission databases
containing total CES data (Shan et al., 2020). Furthermore, a
positive correlation exists between satellite light data and total
CES, prompting some scholars to derive total CES based on
satellite light data (Meng et al., 2023). The second proxy variable
pertains to carbon density, quantified as the ratio of total CES to
GDP (Chen P. et al., 2022; Li et al., 2022; Tang and Yang, 2023), the
ratio of total CES to the value added by the secondary industry (Yi
et al., 2022), or the ratio of industry energy-related CES to industry
sales value (Liu et al., 2022). The third proxy variable relates to per
capita CES, determined by dividing total CES by the year-end
population (Wang et al., 2023b; Tang and Yang, 2023). The
fourth proxy variable is carbon emission performance, a measure
that considers both economic development and total CES. Typically,
it is assessed using a Data Envelopment Analysis (DEA) model
featuring multiple input and output indicators (Zhang W.
et al., 2022).

Existing research indicates that numerous factors can influence
CES. For example, economic development, per capita income,
population size, technological advancement, green technology
innovation, openness, urbanization, industrial concentration,
industrial upgrading, energy regulations, energy demand, energy
consumption, energy intensity, energy prices, energy structure,
energy efficiency, energy innovations, human capital, carbon
taxation, financial development, transportation infrastructure,
environmental regulation, marketization, green total factor
productivity (GTFP), working hours, digital economy, and AI
can influence CES (Chen Y. et al., 2022; Zhang X. et al., 2022; Li
et al., 2022; Yi et al., 2022;Wang et al., 2023b; Ding et al., 2023; Meng
et al., 2023; Tang and Yang, 2023; Yanzhe and Ullah, 2023).

2.2 The measurement of AIDL

Given the rapid development, extensive application, and the
challenge of defining precise boundary and composition for AI, an
ongoing debate persists regarding the measurement of AIDL
(Damioli et al., 2021; Bianchini et al., 2023). Consequently, a
consensus on the measurement of AIDL remains elusive.
Presently, there are five proxy variables utilized to gauge AIDL.
The first proxy variable is the frequency of AI-related terms
appearing in the reports of publicly listed companies (Zhang W.
et al., 2022) or in the annual government work reports (Tang and
Yang, 2023). The second proxy variable is the industrial robot data
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sourced from the International Federation of Robotics (IFR). This
encompasses metrics such as the increment of industrial robots (Li
and Tian, 2023), the increment of industrial robots per worker
(Chen Y. et al., 2022), the stock of industrial robots (Zhang X. et al.,
2022; Liu et al., 2022; Wang et al., 2023b; Li and Tian, 2023), the
stock of industrial robots per unit of GDP (Li et al., 2022), the stock
of industrial robots per worker (Chen P. et al., 2022; Chen et al.,
2022 Y.; Li et al., 2022; Lv et al., 2022; Vorozheykina, 2022; Yang and
Shen, 2023), and the adjusted penetration of industrial robots
(Acemoglu and Restrepo, 2020; Chen Y. et al., 2022). The third
proxy variable relates to the number of AI patents (Damioli et al.,
2021; Yang, 2022; Bianchini et al., 2023). The fourth proxy variable
involves AI-related research paper counts (Li et al., 2022). The fifth
proxy variable employs an AI Index (Ding et al., 2023; Maslej et al.,
2023), typically exemplified by Stanford University’s AI Index
(Maslej et al., 2023).

2.3 The impact of AI on CES

Extensive research has highlighted the dual nature of AI’s impact
on CES, encompassing both reduction and increase (Chen P. et al.,
2022; Kaack et al., 2022; Cowls et al., 2023). On the one hand, AI has
the potential to reduce CES through various pathways. AI can
reduce CES by fostering green technology innovation, improving
energy efficiency, and driving industrial upgrading (Elnour et al.,
2022b; Himeur et al., 2022; 2023; Ding et al., 2023). The deployment
of industrial robots can diminish CES by promoting green
technology innovation, optimizing the industry structure,
enhancing digital infrastructure, improving GTFP, lowering
energy intensity, driving technological innovation, promoting
research and development investment, encouraging manual
labour substitution, saving work time, and promoting green
employment (Chen P. et al., 2022; Chen et al., 2022 Y.; Elnour
et al., 2022a; Li et al., 2022; Meng et al., 2022; Wang et al., 2023b;
2024; Li and Tian, 2023).

On the other hand, AI can also contribute to a surge in CES
through various channels. First, the operation of computationally
intensive industrial robots will consume substantial energy and will
generate CES (Wang et al., 2023b). Training and deploying large AI
models, such as ChatGPT, can generate substantial CES (An et al.,
2023). Second, in addition to being responsible for the CES
generated during the operational phase, AI devices should also
share responsibility for the embodied emissions resulting from
other stages of its life cycle, including the raw material extraction
phase, manufacturing phase, transportation phase, and hardware
disposal phase (Kaack et al., 2022; Wu et al., 2022; Cowls et al.,
2023). Third, the digital infrastructures supporting AI development
have significantly contributed to increased CES by increasing energy
consumption (Tang and Yang, 2023). Last, AI’s capacity to enhance
production and consumption efficiency can result in a rebound
effect, leading to increased production and consumption level and
consequently, elevated CES (Kaack et al., 2022).

The dual nature of AI’s impact on CES sparks ongoing debate
regarding the net effect of AI on CES. Presently, there exist three
main perspectives regarding this point. The first perspective
contends that the net effect of AI on CES is negative. This
perspective has been substantiated by research conducted at

various levels, including the city (Chen P. et al., 2022; Zhang W.
et al., 2022; Wang et al., 2023b), provincial (Wang et al., 2023a; Ding
et al., 2023), manufacturing industry (Liu et al., 2022; Li and Tian,
2023), and national (Chen Y. et al., 2022; Li et al., 2022) levels.
Furthermore, the CRE of AI demonstrates spatial heterogeneity
(Chen P. et al., 2022; Chen et al., 2022 Y.; Zhang W. et al., 2022; Li
et al., 2022; Meng et al., 2022; Wang et al., 2023b; 2024; Ding et al.,
2023), time heterogeneity (Liu et al., 2022), industry heterogeneity
(Li et al., 2022; Liu et al., 2022; Li and Tian, 2023; Wang et al., 2024),
and spatial spillover (Zhang W. et al., 2022; Ding et al., 2023)
characteristics. Some scholars have also pointed out that the
intensity of the CRE of AI is closely related to the scale of high-
skilled labor, digital endowment, and the intensity of environmental
regulation (Wang et al., 2024). The second viewpoint holds that the
net effect of AI on CES is positive. This perspective has been
substantiated by certain studies (Bianchini et al., 2023; Tang and
Yang, 2023). For example, some scholars have suggested that the
carbon increment effect of AI is weaker in regions with large green
technology endowments (Bianchini et al., 2023). The third
perspective considers the net effect of AI on CES to be uncertain.
Some scholars have proposed that estimating the overall immediate
impact of AI on CES is exceedingly challenging due to the absence of
data on the deployment rate of AI, the diversity of application areas,
and the lack of precise procedures to attribute emissions effect to AI
usage (Kaack et al., 2022). Some scholars have proposed that the
development of AI does not necessarily lead to an immediate carbon
emission effect, and AI can only reduce carbon emissions in the
industrial sector when the level of intelligence reaches a certain
threshold (Wang et al., 2024). Some scholars have also proposed that
the impact of industrial robots on CES exhibits an inverted
U-shaped relationship (Liu et al., 2024).

In summary, existing research has not systematically analyzed
the impact mechanisms and effects of AI on CES. There is a shortfall
in revealing the nonlinear CRE of AI and precisely measuring the
AIDL. The main purpose of this paper is to address these gaps by
utilizing provincial panel data from China.

3 Theoretical analysis and hypotheses
development

3.1 The net effect of AI on CES

AI can both reduce and increase CES. On the one hand, AI can
reduce CES. Firstly, AI can play a pivotal role in guiding scientists,
governments, and individuals to mitigate CES (Yi et al., 2022; Al-
Nefaie and Aldhyani, 2023; Hu and Man, 2023; Nassef et al., 2023;
Zadmirzaei et al., 2023; Zhao et al., 2023). Secondly, AI assumes a
crucial role in promoting the innovation, dissemination, and
adoption of green technologies (Chen P. et al., 2022; Li et al.,
2022), thereby reducing CES. Thirdly, AI, which plays a crucial
role in accelerating the shift of energy supply structure and energy
consumption structure from a high CES scenario to a low CES
scenario, is effective in mitigating CES (Chen Y. et al., 2022; Yi et al.,
2022). Fourthly, AI contributes to CES reduction by facilitating the
industrial structure with high CES transfer to the industrial structure
with low CES (Chen P. et al., 2022; Ding et al., 2023). Fifthly, AI can
enhance energy efficiency and GTFP (Paryanto et al., 2015), thereby
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mitigating energy consumption and CES. Sixthly, AI contributes to
CES reduction by reducing trade-related costs and enhancing
openness, because enhanced openness can attract foreign
enterprises with advanced green technologies and management
practices. Lastly, AI plays a vital role in carbon reduction by
enhancing the efficiency of carbon capture (Priya et al., 2023).

On the other hand, AI can also increase CES. Firstly, AI system,
including AI models and AI devices, is carbon-intensive due to its
heavy energy reliance, continuous upgrading, and widespread
utilization (Strubell et al., 2019; Kaack et al., 2022; Bianchini
et al., 2023; Bieser et al., 2023; Cowls et al., 2023; Jean-Quartier
et al., 2023). Secondly, AI has the potential to impede the transition
to a more sustainable energy structure, consequently contributing to
increased CES. For instance, oil companies can utilize AI to extract
and sell oil and gas more efficiently, which could hinder the energy
structure transformation. Thirdly, AI may lead to a rebound effect in
production and consumption, consequently resulting in increased
CES (Huang et al., 2022; Kaack et al., 2022). Lastly, AI can
potentially contribute to increased CES by enhancing openness
and expanding the scale of trade. Drawing upon the above, this
paper proposes the following hypothesis:

Hypothesis 1: Although AI can exert both positive and negative
impact on CES, but the CRE of AI is greater, and the net effect is a
reduction in CES.

3.2 The nonlinear CRE of AI

The nonlinear CRE of AI primarily stems from two aspects. On
the one hand, change in the AIDL can affect the marginal CRE of
AI, thereby leading to a nonlinear CRE of AI. Data, computational
infrastructure, and algorithms constitute the pivotal elements of
the AI system. Unlike other inputs, data often yields increasing
marginal return, thereby leading to an increasing marginal CRE of
AI and a nonlinear CRE of AI. For example, as the scale of data
grows, AI models trained on data can become more precise in
predicting CES and can offer more possibilities to promote carbon
reduction. Some scholars have observed an increasing positive
marginal effect of intelligent manufacturing on industrial GTFP
(Yang and Shen, 2023). Therefore, this paper proposes the
following hypothesis:

Hypothesis 2: The enhancement of AIDL can magnify the
marginal CRE of AI and lead to a nonlinear CRE of AI.

On the other hand, variations in other factors that facilitate the
innovation and implementation of AI technologies can also impact the
marginal CRE of AI, thereby leading to a nonlinear CRE of AI. Firstly,
change in the level of marketization can impact the marginal CRE of AI
and lead to a nonlinear CREofAI. Increasedmarketization can enhance
the ability to optimize resource allocation and provide more
opportunities in the market to unlock the business potential of
technologies (Yi et al., 2022). Consequently, a higher degree of
marketization encourages the innovation and application of AI
technologies, thereby magnifying the marginal CRE of AI and
leading to a nonlinear CRE of AI. Secondly, change in the level of
human capital can influence the marginal CRE of AI and lead to a
nonlinear CRE of AI. AI comprises a complex technological ecosystem.

Undoubtedly, the innovation and application of AI technologies pose
substantial challenges. Thus, a higher level of human capital enables a
more effective identification, innovation, absorption, and application of
AI technologies, drawing upon prior relevant knowledge, thereby
magnifying the marginal CRE of AI and leading to a nonlinear CRE
of AI. Thirdly, change in the level of digital infrastructures can influence
the marginal CRE of AI and lead to a nonlinear CRE of AI. Data is
pivotal in both the development and application of AI technologies. A
higher level of digital infrastructures can enhance the generation,
collection, storage, transmission, and analysis of valuable data.
Consequently, improved digital infrastructures foster the
advancement and utilization of AI technologies, thereby magnifying
themarginal CRE of AI and leading to a nonlinear CRE of AI. Fourthly,
change in the level of economic development can influence themarginal
CRE of AI and lead to a nonlinear CRE of AI. Greater economic
development will amplify the capacity and demand for AI products and
services. This, in turn, promotes the innovation and application of AI
technologies, further magnifying themarginal CRE of AI and leading to
a nonlinear CRE of AI. Fifthly, change in the level of openness can
influence the marginal CRE of AI and lead to a nonlinear CRE of AI. A
higher level of openness translates to more opportunities for acquiring
new knowledge. Consequently, greater openness facilitates the
identification, innovation, absorption, and application of AI
technologies, thereby magnifying the marginal CRE of AI and
leading to a nonlinear CRE of AI. Lastly, change in the level of
government intervention can influence the marginal CRE of AI and
lead to a nonlinear CRE of AI. AI is recognized as a strategic technology,
prompting many countries to implement policies aimed at fostering its
innovation and application. Therefore, a higher level of government
intervention accelerates the pace of innovation and application of AI
technologies, therebymagnifying themarginal CRE ofAI and leading to
a nonlinear CRE of AI. Drawing upon the above, this paper proposes
the following hypothesis:

Hypothesis 3: The improvement of marketization, human capital,
digital infrastructures, economic development, openness, and
government intervention level can magnify the marginal CRE of
AI and lead to a nonlinear CRE of AI.

4 Models and data

4.1 Models

This paper will employ the following model to test whether the
net effect of AI on CES is negative (Li et al., 2022):

CELit � α0 + α1AIDLit + α2lnpgdpit + α3goverit + α4lnfdiit

+α5lnindusit + α6lndroadit + α7urbanit + α8lngreenit

+α9estrucit + α10higherit + α11gtfpit + α12lnenergyit

+ωi + ωt + ωit (1)
where, i represents the province, and t denotes the year. CELit
represents the carbon emission level. AIDLit denotes the AI
development level. lnpgdpit, goverit, lnfdiit, lnindusit, lndroadit,
urbanit, lngreenit, estrucit, higherit, gtfpit, and lnenergyit are the
control variables, and these variables represent economic
development level, government intervention level, openness level,
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industrial scale, transportation development level, urbanization
level, green technological innovation level, energy structure,
industrial structure upgrading, green total factor productivity,
and energy consumption level, respectively. The literature basis
for selecting these control variables and the measurement
methods for the CEL, the AIDL, and the control variables are
presented in Table 1. α0 is the intercept term. ωi, ωt and ωit are
the province fixed effect, the time fixed effect, and the random error
term, respectively. The coefficient of AI is negative, indicating that
the net effect of AI on CES is negative.

As depicted in Table 1. To demonstrate the robustness of the
empirical results, this article will adopt three methods tomeasure the
CEL in the empirical analysis.

As shown in Table 1. To demonstrate the robustness of the
empirical results, this paper will also adopt three methods to
measure the AIDL in the empirical analysis. First, this study will use

the number of AI patents to characterize the AIDL. Several studies have
chosen the quantity of AI patents (lnAI) to characterize the AIDL
(Damioli et al., 2021; Yang, 2022; Bianchini et al., 2023). However,
identifying AI patents is not a straightforward task, as there is no unified
criterion for their identification, unlike green patents. To address this
challenge, most studies begin by selecting keywords related to AI and
then extract the quantity of AI patents from the patent database using a
keyword-matching approach (Damioli et al., 2021; Yang, 2022;
Bianchini et al., 2023). In this paper, we will also extract the
quantity of AI patents from the patent database based on a
keyword-matching approach. Table 2 shows the keywords related to
AI, drawing from existing studies and the AI category (Damioli et al.,
2021; Yang, 2022; Bianchini et al., 2023). In comparison with previous
research, this paper adopts a more extensive list of AI-related keywords
and further categorizes them into hardware, software, and
application layers.

TABLE 1 The variable symbols and measurement methods.

Variables Symbols Measurement methods

CEL lncb Natural logarithm of total CES (tons) (Tang and Yang, 2023)

lndcb Natural logarithm of the ratio of total CES to real GDP (tons/100 million
CNY) (Tang and Yang, 2023)

lnpcb Natural logarithm of the ratio of total CES to the year-end population (tons/
10,000 people) (Tang and Yang, 2023)

AIDL lnAI Natural logarithm of the quantity of AI patents (count) (Damioli et al., 2021;
Yang, 2022; Bianchini et al., 2023)

lnstock The operational stock of industrial robots (Chen et al., 2022b; Li et al., 2022;
Yang and Shen, 2023)

lninstall The increment of industrial robots (Chen et al., 2022b; Li et al., 2022; Yang
and Shen, 2023)

Economic development level lnpgdp Natural logarithm of real per capitaGDP (CNY per capita) (Tang and Yang,
2023)

Government intervention level gover The proportion of government expenditure in GDP (%) (Zhang et al.,
2022a)

Openness level lnfdi Natural logarithm of FDI (100,000 CNY) (Wang et al., 2023b)

Industrial scale lnindus Natural logarithm of the quantity of employees in the secondary industry
(10,000 employees) (Liu et al., 2022)

Transportation development level lndroad Natural logarithm of the density of roads and railways (miles per square
kilometre) (Chen et al., 2023)

Urbanization level urban Proportion of construction land area to the total area (%) (Li et al., 2022)

Green technological innovation level lngreen Natural logarithm of the quantity of granted green patents (count) (Zhang
et al., 2022a; Yi et al., 2022)

Energy structure estruc The ratio of coal consumption to total energy consumption (%) (Yi et al.,
2022)

Industrial structure upgrading higher The ratio of value-added in the tertiary industry to that in the secondary
industry (%) (Meng et al., 2023)

Green total factor productivity gtfp Measured using a global super-efficiency SBM model (Li et al., 2022)

Energy consumption level lnenergy Natural logarithm of total energy consumption (tons of standard coal)
(Wang et al., 2023b)

Marketization level lnmarket Natural logarithm of the marketization index (Yi et al., 2022)

Human capital level hcapital Average number of college students per 10,000 population

Digital infrastructure level digital Mobile phone exchange capacity per 10,000 people
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Second, we will use both the cumulative inventory of
operational industrial robots and the growth in the quantity of
industrial robots to measure the AIDL. Following the
methodology of related studies (Chen Y. et al., 2022; Li et al.,
2022; Yang and Shen, 2023), we can obtain the cumulative
inventory of operational industrial robots (lnstock) and the
growth in the quantity of industrial robots (lninstall) at the
provincial level, which can be measured as follows:

robotpt � ∑
j

labourpjt
labourjt

× robotjt( ) (2)

where, p represents the province. t denotes the year. j is the type of
industry. robotpt denotes the cumulative inventory of operational
industrial robots or the growth in the quantity of industrial robots.
labourpjt and labourjt represent the labour force quantity. robotjt
is the operational stock of industrial robots or the increment of
industrial robots.

This paper will employ the following model to test whether the
improvement of AIDL can magnify the marginal CRE of AI and lead
to a nonlinear CRE of AI (Li et al., 2022):

CELit � λ0 + λ1AIDLit + λ2AIDLit
2 + λ3lnpgdpit + λ4goverit

+λ5lnfdiit + λ6lnindusit + λ7lndroadit + λ8urbanit

+λ9lngreenit + λ10estrucit + λ11higherit + λ12gtfpit

+λ13lnenergyit + ξ i + ξt + ξit (3)
where, AIDLit

2 is the quadratic term of AIDL. The meanings of
other variables are similar to that in Formula (1).

This paper will employ the following models to test whether
the improvement of marketization, human capital, digital
infrastructures, economic development, openness, and

government intervention level can magnify the marginal CRE
of AI and lead to a nonlinear CRE of AI (Li et al., 2022),
respectively:

CELit � γ0 + γ1AIDLit + γ2lnpgdpit + γ3goverit + γ4lnfdiit

+γ5lnindusit + γ6lndroadit + γ7urbanit + γ8lngreenit

+γ9estrucit + γ10higherit + γ11gtfpit + γ12lnenergyit

+γ13lnmarketit + γ14lnmarketit × AIDLit + τi + τt + τit

(4)
CELit � β0 + β1AIDLit + β2lnpgdpit + β3goverit + β4lnfdiit

+β5lnindusit + β6lndroadit + β7urbanit + β8lngreenit

+β9estrucit + β10higherit + β11gtfpit + β12lnenergyit

+β13hcapitalit + β14hcapitalit × AIDLit + δi + δt + δit

(5)
CELit � ζ0 + ζ1AIDLit + ζ2lnpgdpit + ζ3goverit + ζ4lnfdiit

+ζ5lnindusit + ζ6lndroadit + ζ7urbanit + ζ8lngreenit

+ζ9estrucit + ζ10higherit + ζ11gtfpit + ζ12lnenergyit

+ζ13digitalit + ζ14digitalit × AIDLit + εi + εt + εit (6)
CELit � η0 + η1AIDLit + η2lnpgdpit + η3goverit + η4lnfdiit

+η5lnindusit + η6lndroadit + η7urbanit + η8lngreenit

+η9estrucit + η10higherit + η11gtfpit + η12lnenergyit

+η13lnpgdpit × AIDLit + ϵi + ϵt + ϵit (7)

CELit � θ0 + θ1AIDLit + θ2lnpgdpit + θ3goverit + θ4lnfdiit

+θ5lnindusit + θ6lndroadit + θ7urbanit + θ8lngreenit

+θ9estrucit + θ10higherit + θ11gtfpit + θ12lnenergyit

+θ13lnfdiit × AIDLit + ϑi + ϑt + ϑit (8)

TABLE 2 AI-related keywords for extracting the number of AI patents.

AI AI-related keywords

Hardware layer intelligent processing unit, intelligent processor, inference chip, intelligent chip, AI chip, neural network chip, brain-like chip, accelerator,
acceleration processor, acceleration chip, hard acceleration, acceleration core, acceleration unit, smart sensor, application-specific integrated
circuit, field programmable gate array, graphics processor, image signal processor, neural processing unit, tensor processor, tensor processing
unit, data processor, data processing unit, integrated processing unit, collaborative processing unit, mass processor, deep learning processor,
edge computing

Software layer natural language, computer vision, machine vision, augmented reality, AR, image recognition, speech recognition, voiceprint recognition, object
tracking, speech processing, sentiment analysis, speaker recognition, scene understanding, machine translation, speech synthesis, information
extraction, biometrics, face recognition, iris recognition, video recognition, pattern recognition, predictive analytics, semantic, speech-to-
speech, text-to-speech, character recognition, text recognition, machine learning, supervised learning, support vector machines, biological
heuristic methods, genetic algorithms, swarm intelligence, classification and regression trees, decision trees, learning algorithms, deep learning,
instance learning, multitasking learning, reinforcement learning, rule learning, transfer learning, fuzzy logic, expert system, logic programming,
neural network, CNN, latent representation, probabilistic graphical model, probabilistic reasoning, descriptive logic, generative adversarial
network, multilayer perception, MLP, hidden Markov model, HMM, clustering, random forest, stochastic method, probabilistic method,
feature selection, Bayesian network, gradient lift, gradient descent, GBDT, data mining, learning model, self-learning, objective function, logistic
regression, latent Dirichlet distribution, cognitive computing, artificial intelligence, AI, artificial reality, automatic classification, Bayesian
model, big data, computational neuroscience, data science, evolutionary computing, gesture recognition, holographic display, knowledge
representation, machine intelligence, machine-to-machine, mixed reality, neuro-linguistic programming, object detection, predictive model,
probabilistic model, statistical learning, voice recognition, virtual reality, VR, unsupervised learning, path planning, knowledge graph, swarm
intelligence, intelligent cloud, intelligent speech, quantum computing, cloud computing, image recognition, federated learning

Application layer smart industry, smart factory, smart manufacturing, smart energy, smart water affairs, smart detection, smart inspection, smart monitoring,
smart city, smart transportation, smart network, smart traffic management, smart bus, intelligent parking, unmanned driving, autonomous
driving, intelligent medical, clinical decision support system, intelligent medical case, intelligent finance, intelligent marketing, smart logistics,
smart education, smart agriculture, smart farming, smart greenhouses, smart irrigation, smart weather, smart house, smart life, smart security,
human-computer interaction, smart robot, smart search, intelligent recommendation, virtual assistant, intelligent assistant, chat machine, self-
driving car, humanoid robot, internet of things, robot, smart glasses, unmanned aerial vehicle, unmanned aerial system
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TABLE 3 The results of descriptive statistics and the data sources of variables.

Variables Observations Mean Standard
deviation

Min Max Data source

lncb 690 18.9381 1.0096 13.6048 21.2539 China Carbon Accounting Database (https://www.ceads.net.cn/data/)

lndcb 690 10.3258 0.7453 7.3874 12.3145 China Carbon Accounting Database (https://www.ceads.net.cn/data/)

State Statistics Bureau (https://data.stats.gov.cn/easyquery.htm?
cn=C01)

lnpcb 690 10.7881 0.7981 7.1371 13.0943 China Carbon Accounting Database (https://www.ceads.net.cn/data/)

State Statistics Bureau (https://data.stats.gov.cn/easyquery.htm?
cn=C01)

lnAI 690 4.0295 2.5475 0.0000 10.3975 PatentHub (https://www.patenthub.cn/search/advanced.html)

lnstock 420 7.3783 1.7594 2.6567 11.8745 International Federation of Robotics (https://ifr.org/)

EPS database (https://www.epsnet.com.cn/index.html#/Index)

China Research Data Service Platform (https://www.cnrds.com/
Home/Login)

lninstall 420 6.1720 1.6419 1.7267 10.2445 International Federation of Robotics (https://ifr.org/)

EPS database (https://www.epsnet.com.cn/index.html#/Index)

China Research Data Service Platform (https://www.cnrds.com/
Home/Login)

lnpgdp 690 9.6777 0.7764 7.7003 11.5619 State Statistics Bureau (https://data.stats.gov.cn/easyquery.htm?
cn=C01)

lnindus 690 7.7405 1.1881 4.1225 10.2340 State Statistics Bureau (https://data.stats.gov.cn/easyquery.htm?
cn=C01)

lndroad 690 8.5143 0.9232 5.3192 9.9881 State Statistics Bureau (https://data.stats.gov.cn/easyquery.htm?
cn=C01)

gover 690 0.2012 0.1048 0.0530 0.7583 State Statistics Bureau (https://data.stats.gov.cn/easyquery.htm?
cn=C01)

urban 690 0.0157 0.0280 0.0001 0.1952 China Research Data Service Platform (https://www.cnrds.com/
Home/Login)

EPS database (https://www.epsnet.com.cn/index.html#/Index)

State Statistics Bureau (https://data.stats.gov.cn/easyquery.htm?
cn=C01)

lngreen 690 5.8767 1.9457 0.0000 10.4248 China Research Data Service Platform (https://www.cnrds.com/
Home/Login)

estruc 690 0.9629 0.3790 0.0248 2.4609 State Statistics Bureau (https://data.stats.gov.cn/easyquery.htm?
cn=C01)

hihger 690 1.1230 0.5707 0.4346 5.2340 State Statistics Bureau (https://data.stats.gov.cn/easyquery.htm?
cn=C01)

gtfp 690 0.3732 0.3023 0.1124 4.6188 China Research Data Service Platform (https://www.cnrds.com/
Home/Login)

EPS database (https://www.epsnet.com.cn/index.html#/Index)

State Statistics Bureau (https://data.stats.gov.cn/easyquery.htm?
cn=C01)

lnfdi 690 11.1415 2.5600 0.4828 17.7481 China Research Data Service Platform (https://www.cnrds.com/
Home/Login)

EPS database (https://www.epsnet.com.cn/index.html#/Index)

lnenergy 690 18.1827 0.8339 15.1765 19.8411 China Research Data Service Platform (https://www.cnrds.com/
Home/Login)

EPS database (https://www.epsnet.com.cn/index.html#/Index)

(Continued on following page)
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CELit � μ0 + μ1AIDLit + μ2lnpgdpit + μ3goverit + μ4lnfdiit

+μ5lnindusit + μ6lndroadit + μ7urbanit + μ8lngreenit

+μ9estrucit + μ10higherit + μ11gtfpit + μ12lnenergyit

+μ13goverit × AIDLit + ]i + ]t + ]it (9)
where, lnmarketit, hcapitalit, and digitalit denote marketization
level, human capital level, and digital infrastructure level. The
literature basis for selecting above three variables and the
measurement methods for above three variables are presented in
Table 1. The meanings of other variables are similar to those in
Formula (1). The coefficient of AI and the interaction term are both
significant and share the same sign, indicating that the moderating
variable can magnify the marginal CRE of AI and lead to a nonlinear
CRE of AI.

4.2 Data sources

A balanced panel dataset comprising 30 Chinese provinces for
the period spanning 1997–2019 has been used in this study. Tibet,
Hong Kong, Macao, and Taiwan are excluded from the analysis
because of data unavailability. Missing data has been imputed using
the interpolation method. For all currency-measured variables, the
influence of inflation has been removed by using the GDP index of
each province, with the base period price level set at 1998. The
natural logarithm has been applied to some variables to ensure data
stability and address heteroscedasticity issues. Table 3 shows the
results of descriptive statistics and the data sources of variables.

5 Results and discussion

5.1 The spatial and temporal characteristics
of the development of AI in China

Figure 1 demonstrates the chronological evolution of the
number of AI patents in China from 1997 to 2019. In Figure 1,
we characterize the temporal evolution of AI patent counts in
China during the study period using two indicators: the total
number of AI patents per year and the average number of AI
patents per province per year. Two significant observations can be
made from Figure 1. First, both indicators show a growth trend,

indicating that the number of AI patents in China has been
increasing consistently. Second, the values of both indicators
have shown an accelerated growth trend since 2012, especially
after 2014, with a significantly faster growth rate. This is attributed
to the breakthrough advancements made in AI technologies such
as deep learning, image recognition, natural language processing,
and intelligent chips during this period. For instance, in 2012,
Google’s deep learning algorithm achieved a breakthrough
performance in the ImageNet image recognition competition.
This demonstrates that the AI patent data used in this study
can effectively capture the evolution of AI technology
development. It further reinforces the scientific validity of the
AI patent data employed in this research.

Table 4 presents the spatial distribution of the number of AI patents
across China’s provinces in certain years. From Table 4, it can be
observed that the provinces with a high level of economic development
and technological innovation capability, such as Beijing, Tianjin,
Liaoning, Shanghai, Jiangsu, Zhejiang, Anhui, Fujian, Shandong,
Guangdong, Henan, Hubei, Hunan, Shaanxi, Sichuan, and
Chongqing, possess a larger number of AI patents. This indicates
that AI technological innovation is closely related to the level of
economic development and technological innovation capability.

5.2 Results of the AI’s CRE test

5.2.1 Results of baseline regression
Table 5 shows the results based on Formula 1. Three findings

can be obtained. First, it can be found from the model 5A-5C that
when adopting different dependent variables, the AI coefficients are
highly significant and exhibit negative values. The results imply that
although AI can exert both positive and negative impacts on CES,
the CRE of AI is more substantial. In other words, the net effect of AI
on CES is negative, and the Hypothesis 1 can be supported. This
finding aligns with the conclusion in existing research (Ding et al.,
2023). Second, when replacing the core explanatory variable, related
coefficients in model 5D-5I also exhibit negative values although
some coefficients are insignificant. The results can provide support
for Hypothesis 1 again. Third, the CRE of AI in model 5A-5C is
greater than that in model 5D-5I. The results indicate that
measuring the AIDL based on Formula 2 would underestimate
the CRE of AI. Instead, employing the quantity of AI patents to
gauge the AIDL can provide a more scientifically accurate

TABLE 3 (Continued) The results of descriptive statistics and the data sources of variables.

Variables Observations Mean Standard
deviation

Min Max Data source

hcapital 690 0.0139 0.0080 0.0011 0.0389 State Statistics Bureau (https://data.stats.gov.cn/easyquery.htm?
cn=C01)

digital 570 1.0946 0.7146 0.0803 3.7877 China Research Data Service Platform (https://www.cnrds.com/
Home/Login)

EPS database (https://www.epsnet.com.cn/index.html#/Index)

State Statistics Bureau (https://data.stats.gov.cn/easyquery.htm?
cn=C01)

lnmarket 690 1.8155 0.3685 0.3097 2.4418 China Provincial Marketization Index Database (https://cmi.ssap.
com.cn/)
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measurement of the AI’s CRE. Therefore, in the following sections,
we will continue our analysis by using AI patent data.

5.2.2 Results of endogenous processing
Endogeneity issue may be present in this study for several

reasons. Firstly, there could be a reverse causality relationship
between AI and CES. For instance, AI can reduce CES, and
regions with higher CES may have a stronger incentive to adopt
AI for carbon reduction. Secondly, errors may arise due to missing
variables. Although the current model incorporates some control
variables, certain factors influencing CES may not have been
included. Lastly, measurement errors may exist in the model
because some variables used in this study may not have been
precisely measured due to data availability. Consequently, this
paper aims to address the endogeneity problem using the
instrumental variable (IV) method.

The IV chosen must exhibit a strong association with AI while
being unrelated to the error term. In this research, we utilize a lagged
phase of AI as the IV for endogeneity testing (Liu et al., 2022; Wang
et al., 2023b). Table 6 presents the results of the endogeneity
treatment. Model 6A details the first-stage empirical outcomes of
the 2SLS method, and the second-stage empirical results provided in
model 6B. Firstly, the null hypothesis regarding the IV’s
identifiability can be rejected because the Anderson canon. corr.
LM statistic is significant. The null hypothesis of weak IV can also be
rejected since the Cragg-Donald Wald F statistic is significant.
Because the model 6A passes the Anderson-Rubin Wald test, the
null hypothesis that the sum of endogenous regression coefficients
equals zero can be rejected. The above tests indicate that the IV we
selected is appropriate. Secondly, in model 6B, the AI coefficient is
significantly negative, reaffirming AI’s capacity to decrease CES.
This outcome aligns with the results in Table 5. Thirdly, the results
in model 6C and 6D are similar to the results in model 6B. The
results imply that when adopting different dependent variables, the
results of the endogeneity treatment are robust.

5.2.3 Results of spatial heterogeneity analysis
Variations in AIDL and CEL exist among different regions in China

due to disparities in resource endowments, developmental phases, and
national policies (Ding et al., 2023). To investigate whether there is
spatial heterogeneity in the CRE of AI, this research classifies the
30 provinces into eastern, central, and western regions. Table 7
shows related results. Two findings can be obtained. Firstly, it is
evident that when adopting different dependent variables, most of
the coefficients of AI are highly significant and exhibit negative
values although some of the coefficients of AI in the western region
are insignificant. The results imply that the net effect of AI on CES is
negative in three regions, reaffirming the validity of Hypothesis 1. This
finding aligns with the conclusion of existing research (Ding et al., 2023).
Secondly, the absolute value of the AI coefficient inmodel 7A is less than
that inmodel 7B and 7C, the absolute value of theAI coefficient inmodel
7D is greater than that in model 7E and 7F, and the absolute value of the
AI coefficient in model 7G is greater than that in model 7H, and 7I. The
results indicate that, relative to the central and western regions, AI has
significant achievement in reducing carbon intensity and per capita CES
in the eastern region. However, there is still room for improvement in
terms of reducing the total CES in the eastern region. The eastern region
has been the most active in technological innovation in China, with a
significant advantage in the innovation and application of AI
technologies. Therefore, AI can effectively reduce carbon intensity
and per capita CES in the eastern region. The eastern region has also
experienced the fastest economic and population growth in China,
leading to continuous growth in CES. Thus, AI has limited impact
on reducing the total CES in the eastern region.

5.2.4 Results of time heterogeneity analysis
Figure 1 indicates that China has experienced rapid growth in AI

patent counts since 2012. Given this, we hypothesize that there may
be temporal heterogeneity in the impact of AI on CES in China.
Therefore, we will use 2012 as a temporal dividing point to
investigate the temporal heterogeneity of AI’s influence on CES.

FIGURE 1
The chronological evolution of the number of AI patents in China from 1997 to 2019.
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Table 8 presents the results of our model estimations. Two key
findings emerge from Table 8. First, the coefficients for AI in models
8A-8F are all negative, indicating the consistent existence of a CRE
attributed to AI development. Second, compared to the AI
coefficients in models 8B, 8D, and 8F, the coefficients in models
8A, 8C, and 8E are not only highly significant but also have absolute
values much larger than those in models 8B, 8D, and 8F. This
suggests that the CRE of AI was greater during the period from
1997 to 2011 than during the period from 2012 to 2019. We can
interpret this phenomenon from two perspectives. First, while AI
development does lead to a CRE, this effect may require a longer
period to be observable. Second, the rapid growth of AI may lead to

carbon emission increases through increased electricity
consumption, consumer rebound effect, and other channels,
thereby reducing the CRE attributed to AI development.

5.3 Results of the nonlinear CRE test of AI

5.3.1 The nonlinear CRE of AI development
We can analyze the nonlinear impact of AI on CES based on the

marginal effect of AI on CES, and the marginal effect of AI on CES
can be estimated through the econometric model. Figure 2 shows
related results based on Formula 3. Two findings can be obtained.

TABLE 4 The spatial distribution of the number of AI patents in China’s provinces in some years.

Year provinces 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2006 1997

Beijing 21,756 15,462 11,662 8,372 5,946 4,510 3,564 2,893 2054 1,608 410 27

Tianjin 3,321 2,922 2,306 2018 1,257 737 600 479 285 223 61 2

Hebei 1811 1,659 1,054 906 490 306 260 187 86 94 13 2

Shanxi 738 538 342 245 171 133 118 84 46 26 7 1

Inner Mongolia 334 247 236 122 151 40 25 22 15 19 3 0

Liaoning 3,090 2,401 1862 1,422 1,241 768 659 425 392 283 105 5

Jilin 1,253 904 664 468 291 230 191 143 113 66 15 0

Heilongjiang 1803 1,479 1,396 1,017 855 546 540 371 258 217 57 8

Shanghai 9,980 7,021 5,612 3,763 2,579 1889 1,662 1,472 1,047 866 302 5

Jiangsu 18,029 15,027 9,949 7,450 5,531 3,817 3,612 2,566 1,364 872 130 2

Zhejiang 11,257 9,511 5,821 3,899 2,940 1712 1,591 1,210 751 580 110 8

Anhui 5,428 6,610 3,769 2,686 1,656 727 581 316 177 100 44 3

Fujian 3,703 3,440 2043 1,166 805 423 349 274 153 94 21 5

Jiangxi 1,228 938 607 438 255 120 111 70 44 48 6 0

Shandong 6,598 5,209 4,117 3,113 2,362 1,193 1,153 798 439 350 58 7

Henan 3,203 2,896 1833 1,041 803 362 328 259 141 87 16 5

Hubei 5,386 3,809 2,737 1,699 1,167 717 625 444 320 246 38 6

Hunan 2,988 2,622 1754 1,099 763 368 405 285 182 178 28 5

Guangdong 32,776 25,743 15,920 9,877 5,590 3,559 3,038 2,286 1,482 1,067 257 15

Guangxi 1,344 1,266 1,281 849 587 322 165 117 51 24 5 2

Hainan 217 175 110 68 61 21 12 12 8 3 0 0

Chongqing 2,935 2,289 1,689 1,329 823 500 401 258 174 131 33 1

Sichuan 6,054 6,218 4,008 3,011 2,278 1,083 908 523 319 211 39 3

Guizhou 743 603 384 281 265 88 60 35 22 12 3 1

Yunnan 1,034 800 498 334 231 122 110 65 51 45 11 2

Shaanxi 4,834 3,067 2,372 1,626 1,373 1,160 1,106 666 394 274 65 7

Gansu 494 350 236 156 140 84 111 64 27 23 6 0

Qinhai 99 65 91 84 6 10 5 2 1 3 0 0

Ningxia 189 250 180 109 47 19 16 8 8 1 0 0

Xinjiang 261 246 177 95 94 44 47 20 18 15 5 2
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Firstly, As illustrated in Figure 2, the marginal effect of AI on CES
consistently remains below zero and passes the significance test in
each subplot. The results mean that the net effect of AI on CES is
negative, and Hypothesis 1 can be supported again. Secondly, it can
also be observed that with increasing AIDL, the absolute value of the

marginal effect in each subplot grows. The results mean that the CRE
of AI follows a nonlinear trend, and a higher AIDL correspond to a
more significant CRE. In other words, improving the AIDL can
magnify the marginal CRE of AI and lead to a nonlinear CRE of AI.
Thus, Hypothesis 2 can be supported.

TABLE 5 The results of baseline regression.

Models variables 5A 5B 5C 5D 5E 5F 5G 5H 5I

lncb lndcb lnpcb lncb lndcb lnpcb lncb lndcb lnpcb

lnAI −0.0975*** −0.0896*** −0.0888***

(0.0256) (0.0257) (0.0257)

lnstock −0.0222 −0.0460* −0.0459*

(0.0260) (0.0269) (0.0269)

lninstall −0.0249 −0.0421* −0.0418

(0.0246) (0.0255) (0.0255)

Observations 690 690 690 420 420 420 420 420 420

R2 0.8459 0.6215 0.8255 0.8405 0.8278 0.8049 0.8407 0.8277 0.8047

*, **, *** represent the significance of parameter values at the 10%, 5%, and 1% levels, respectively. The same applies to the following tables. The values in parentheses represent t-values, and the

same applies to the following tables. The econometric models include all the control variables listed in Equation (1), as well as provincial fixed effect and time fixed effect. The same applies to the

following.

TABLE 6 The results of endogenous processing.

Models variables 6A 6B 6C 6D

lnAI lncb lndcb lnpcb

lnAI −0.2965*** −0.2796*** −0.2746***

(0.0646) (0.0645) (0.0646)

L.lnAI 0.3965***

(0.0347)

Observations 660 660 660 660

R2 0.9741 0.8305 0.5884 0.8116

Anderson canon. corr. LM statistic 112.92*** 112.93*** 112.92***

Cragg-Donald Wald F statistic 130.38*** 130.38*** 130.38***

Anderson-Rubin Wald test 23.00*** 20.34*** 19.50***

TABLE 7 The results of spatial heterogeneity analysis.

Models
variables

Eastern
region

Central
region

Western
region

Eastern
region

Central
region

Western
region

Eastern
region

Central
region

Western
region

7A 7B 7C 7D 7E 7F 7G 7H 7I

lncb lncb lncb lndcb lndcb lndcb lnpcb lnpcb lnpcb

lnAI −0.0911*** −0.0972*** −0.0963* −0.1074*** −0.0990*** −0.0886 −0.1131*** −0.1008*** −0.0803

(0.0284) (0.0364) (0.0539) (0.0284) (0.0367) (0.0542) (0.0287) (0.0367) (0.0543)

Observations 253 184 253 253 184 253 253 184 253

R2 0.9517 0.9380 0.8302 0.8966 0.8380 0.5555 0.9369 0.9353 0.8128
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5.3.2 The nonlinear CRE of AI due to changes in
other factors

Even if the AIDL remains constant, improving the level of
marketization, human capital, digital infrastructure, economic
development, openness, and government intervention can also
amplify the marginal CRE of AI and lead to a nonlinear CRE of

AI. Figure 3 presents related results based on Formula 4–9. Three
valuable discoveries can be gleaned. Firstly, as illustrated in Figure 3,
within the range of distributions for other factors, the marginal effect
of AI on CES is significantly negative in each subplot. The results
mean that the net effect of AI on CES is negative, and Hypothesis
1 can be supported again. Secondly, it can also be observed from

TABLE 8 The results of time heterogeneity analysis.

Models variables 1997–2011 2012–2019 1997–2011 2012–2019 1997–2011 2012–2019

8A 8B 8C 8D 8E 8F

lncb lncb lndcb lndcb lnpcb lnpcb

lnAI −0.1270*** −0.0126 −0.1220*** −0.0215 −0.1211*** −0.0226

(0.0334) (0.0227) (0.0334) (0.0228) (0.0335) (0.0228)

Observations 450 240 450 240 450 240

R2 0.7625 0.6035 0.4306 0.9010 0.7414 0.5616

FIGURE 2
(A–C) respectively show the marginal effect of AI on the total CES, carbon intensity, and per capita CES. The blue line in each picture describes the
trend of the marginal effect of AI on CES, and the red curve in each picture represents a 95% confidence interval.
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Figure 3 that with the improvement in the level of these factors, the
absolute values of the marginal effect of AI on CES demonstrate a
rising pattern. The results imply that these factors can magnify the
marginal CRE of AI and lead to a nonlinear CRE of AI. Thus,
Hypothesis 3 can be supported. Thirdly, it is important to highlight
that the absolute values of the marginal effect of AI on CES in

Figures 3B, C escalate more rapidly in comparison to Figure 3A,
D–F. The outcomes imply that, among these factors under
examination, human capital and digital infrastructure exert a
more pronounced influence on magnifying the marginal CRE of
AI. One possible reason is that innovation capability and data can
play crucial roles in the innovation and application of AI

FIGURE 3
(A–F) respectively show themarginal effect of AI on carbon intensity when improving the level ofmarketization, human capital, digital infrastructure,
economic development, openness, and government intervention. The blue line in each picture describes the trend of the marginal effect of AI on CES,
and the red curve in each picture represents a 95% confidence interval. The bell-shaped curve in each picture depicts the distribution density of
each variable.
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technologies. Compared to other factors, human capital serves as a
significant support for technological innovation, and digital
infrastructure is a critical foundation for data collection and
processing.

5.4 Discussion

The above results can be discussed from two perspectives. The first
perspective is the CRE of AI. The findings in this study indicate that AI
can reduce CES, further confirming existing research viewpoints (Li
et al., 2022). However, in contrast to existing research, this study also
reveals that using the quantity of industrial robots to measure AIDL
might underestimate the CRE of AI. The second perspective is the
nonlinear CRE of AI. There has been limited focus in existing research
on the nonlinear CRE of AI, whereas this paper places particular
emphasis on this aspect. The results in this study suggest that
increasing AIDL can amplify the marginal CRE of AI and lead to a
nonlinear CRE of AI. However, some scholars have proposed that the
impact of industrial robots on CES exhibits an inverted U-shaped
relationship (Liu et al., 2024). This result indicates that increasing AIDL
will first raise the CES before eventually reducing CES. This result differs
somewhat from the findings of this paper. The discrepancy may be due
to the different methods used to measure AIDL in the two studies.
Additionally, the results in this study suggest that even if the AIDL
remains constant, changes in other factors can also amplify themarginal
CRE of AI and lead to a nonlinear CRE of AI. While existing research
has indicated that enhancing technological absorption capacity can
strengthen the CRE of AI (Li et al., 2022), this study suggests that there
are additional factors, including marketization, human capital, digital
infrastructure, economic development, openness, and government
intervention, can amplify the marginal CRE of AI and lead to a
nonlinear CRE of AI. Another novel finding relative to existing
research is human capital and digital infrastructure can play the
most significant role in amplifying the CRE of AI.

6 Conclusion and implications

6.1 Conclusion

The principal findings are as follows. Firstly, during the study
period, the number of AI patents in China has shown a continuous
growth trend. Since 2012, the growth of AI patents in China has
accelerated, especially after 2014, when the number of AI patents in
China entered a stage of rapid growth. Secondly, the provinces with a
high level of economic development and technological innovation
capability, such as Beijing, Tianjin, Liaoning, Shanghai, Jiangsu,
Zhejiang, Anhui, Fujian, Shandong, Guangdong, Henan, Hubei,
Hunan, Shaanxi, Sichuan, and Chongqing, possess a larger number
of AI patents. Thirdly, although AI can exert both positive and negative
impacts on CES, the CRE of AI is more substantial. This conclusion
holds true even after considering robustness, endogeneity, and spatial
heterogeneity. It is worth noting that employing the quantity of AI
patents to gauge the AIDL can provide a more scientifically accurate
measurement of the AI’s CRE. Fourthly, relative to the central and
western regions, AI has significant achievement in reducing carbon
intensity and per capitaCES in the eastern region. However, there is still

room for improvement in terms of reducing the total CES in the eastern
region. Fifthly, the CRE of AI was greater during the period from
1997 to 2011 than during the period from 2012 to 2019. Sixthly,
improving the AIDL can magnify the marginal CRE of AI and lead to a
nonlinear CRE of AI. Lastly, even if the AIDL remains constant,
changes in other factors such as marketization, human capital,
digital infrastructure, economic development, openness, and
government intervention can also amplify the marginal CRE of AI
and lead to a nonlinear CRE of AI.

6.2 Implications

Based on the aforementioned conclusions, the following policy
recommendations can be formulated. Firstly, facilitating AI
technology innovation and leveraging AI for carbon reduction.
AI can reduce CES, and improving the AIDL can magnify the
marginal CRE of AI. Thus, the government should prioritize the
development and utilization of AI. The enterprises should expedite
the application of AI in various activities, including green energy
production, the production of environmentally friendly products
and services, carbon emission monitoring, carbon market trading,
carbon sink management, and carbon capture technology
innovation. Secondly, when assessing the CRE of AI, it is
essential to utilize AI patent data and take into account the
nonlinear CRE of AI. Employing the quantity of AI patents to
gauge the AIDL can provide a more scientifically accurate
measurement of the AI’s CRE, and the CRE of AI exhibits a
nonlinear characteristic. Thus, government and research
institutions should take these influences into account when
assessing the CRE of AI. Lastly, optimizing the economic and
social environment is crucial to fully unleash the carbon
reduction potential of AI. Even if the AIDL remains constant,
changes in other factors such as marketization, human capital,
digital infrastructure, economic development, openness, and
government intervention can also amplify the CRE of AI. Thus,
the government, in the process of utilizing AI for carbon reduction,
should not confine its focus solely to the development of AI but also
consider the impact of other factors. For example, the government
and other relevant stakeholders should refine the marketization,
human capital, digital infrastructure, economic development,
openness, and government intervention to amplify the CRE of AI.

The main potential challenges and practical considerations in
implementing the recommended policies are follows: first,
promoting AI development requires ensuring data security.
However, managing and protecting data securely is a challenge. The
government can introduce strict data privacy and security laws to
ensure the protection of data. Second, as AI technology becomes more
advanced, ethical and moral questions arise, such as the use of AI in
decision-making processes that affect human lives. The government
should establish ethical frameworks and guidelines for AI use. This can
ensure that AI is used responsibly and does not harm human interests.

6.3 Limitations

The limitations in this study are as follows. Firstly, the research
conclusions are drawn based on Chinese data, and the processes of CES
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and AI development in China may differ from other countries.
Therefore, some research findings may not be applicable in other
nations. Secondly, this paper only considers the roles of some
factors, including marketization, human capital, digital infrastructure,
economic development, openness, and government intervention, in
amplifying the CRE of AI. There may be additional factors that can
amplify the CRE of AI. Lastly, this article analyzes the impact of AI on
CES using traditional panel econometric models. However, the impact
of AI on CES may exhibit a spatial spillover effect, which suggests that
the models used in this article still requires further improvement. In the
future, a spatial panel econometric model will be employed to analyze
the spatial spillover effect of AI on CES.
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