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Floods are a widespread natural disaster with substantial economic
implications and far-reaching consequences. In Northern Pakistan, the
Hunza-Nagar valley faces vulnerability to floods, posing significant
challenges to its sustainable development. This study aimed to evaluate
flood risk in the region by employing a GIS-based Multi-Criteria Decision
Analysis (MCDA) approach and big climate data records. By using a
comprehensive flood risk assessment model, a flood hazard map was
developed by considering nine influential factors: rainfall, regional
temperature variation, distance to the river, elevation, slope, Normalized
difference vegetation index (NDVI), Topographic wetness index (TWI), land
use/land cover (LULC), curvature, and soil type. The analytical hierarchy
process (AHP) analysis assigned weights to each factor and integrated with
geospatial data using a GIS to generate flood risk maps, classifying hazard
levels into five categories. The study assigned higher importance to rainfall,
distance to the river, elevation, and slope compared to NDVI, TWI, LULC,
curvature, and soil type. The weighted overlay flood risk map obtained from
the reclassified maps of nine influencing factors identified 6% of the total area
as very high, 36% as high, 41% as moderate, 16% as low, and 1% as very low
flood risk. The accuracy of the flood risk model was demonstrated through the
Receiver Operating Characteristics-Area Under the Curve (ROC-AUC)
analysis, yielding a commendable prediction accuracy of 0.773. This MCDA
approach offers an efficient and direct means of flood risk modeling, utilizing
fundamental GIS data. The model serves as a valuable tool for decision-
makers, enhancing flood risk awareness and providing vital insights for
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disaster management authorities in the Hunza-Nagar Valley. As future
developments unfold, this study remains an indispensable resource for
disaster preparedness and management in the Hunza-Nagar Valley region.
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analysis (MCDA), Hunza Nagar Valley, floods

1 Introduction

Floods are an inherent component of the hydrological cycle, and
their occurrence can lead to loss of life, population displacement,
and environmental devastation, significantly jeopardizing economic
progress (European Union, 2007). Certain human activities
contribute to an elevated likelihood of flood events and their
adverse consequences. Anthropogenic influences can diminish the
natural retention and transformation capacities of basins (Fohrer
et al., 2001; Wooldridge et al., 2001). Irresponsible and negligent
actions within the basin frequently lead to a surge in economic
losses. Consequently, we become susceptible to flooding risks, either
willingly or due to societal demands for development. It is essential
to recognize that complete protection against floods is unattainable.
Therefore, adopting a comprehensive and integrated approach to
flood protection becomes necessary (Plate, 2002; Werritty, 2006).
When it comes to mitigating flood damage, the application of
conventional flood protection measures remains crucial.
However, equal emphasis should be placed on flood prevention
and flood risk management, as their roles are progressively
becoming more significant (Management, 2006; Apel et al., 2009).

Floods are one of the most destructive natural disasters on Earth,
impacting around a billion people who live in areas that could flood
(Di Baldassarre et al., 2013). Climate change projections indicate a
significant increase in extreme hydrological events and flood risks in
the future (Arnell and Gosling, 2016). Both industrialized and
developing nations face growing concerns over natural hazards,
with natural disasters accounting for 40% of global socioeconomic
losses (Yahaya, 2008). Global warming alters rainfall patterns,
leading to intensified and extreme rainfalls, and causing severe
floods and extensive damage (Robert and Brown, 2004). These
floods result in significant socioeconomic losses, loss of lives, and
property destruction (Chen et al., 2015). During the summer
monsoon season, South Asian countries experience significant
impacts from floods, resulting in extensive devastation to both
human lives and livelihoods. This region bears a higher burden
of flood-related consequences compared to other parts of the world
(Almazroui et al., 2020). Over the last 2 decades, flood events have
impacted over 1 billion individuals in the South Asian region
(EM-DAT - The International Disaster Database, 2023). The
frequency of extreme floods is increasing in South Asian
countries, and future projections suggest that these events are
likely to occur even more frequently due to the warming climate
(Hirabayashi et al., 2021). Over the past century, the average annual
temperature in Pakistan has risen by 0.6°C in line with the global
trend. Nonetheless, there was considerable variance in the pace and
kind of change both temporally and spatially. The increase in
temperature over northern Pakistan was greater than that over
southern Pakistan (0.8°C vs. 0.6°C) (Khan et al., 2016). Climate

change affects the northern areas of Pakistan by causing variations in
stream flows, seasonal snowfall, and glacier ablation, all of which
have an impact on the amount of water available downstream
(Adnan et al., 2022).

Pakistan is a country that experiences considerable vulnerability
to natural hazards (Ahmad et al., 2011). Pakistan faces various
natural disasters, including floods, earthquakes, landslides, and
droughts, making it vulnerable to such hazards. Among these,
floods have become a significant and urgent concern, resulting in
considerable damage to livelihoods and human life (Atta-ur-
Rahman et al., 2011; Atta-ur-Rahman and Khan, 2011). The
catastrophic flood that struck Pakistan in August 2022, preceded
by a severe heat wave in May, has disproportionately affected the
southern provinces of the country (Otto et al., 2023). Different
scientific methods are used to predict flooding and its impacts,
namely, hydrological models, monitoring river gauge data, satellite
imagery and remote sensing technologies, information gathering on
precipitation, river flow, soil moisture, and snowpack, reliable
weather forecasts, and advanced meteorological models, can be
used to predict the amount, intensity, and duration of rainfall or
snowfall in a particular region these techniques can be used in flood
prediction (Munawar et al., 2022). The massive flood impacted
approximately one-third of the world’s fifth-largest populous
country, leading to the internal displacement of around
32 million people and resulting in 1,486 fatalities, including
530 children (Region AJ and K, 2022). The flood-induced
economic losses are projected to exceed $30 billion. Beyond the
direct impacts, the widespread devastation of agricultural fields has
raised concerns about famine, while the conditions in temporary
shelters may give rise to potential disease outbreaks (Baqir et al.,
2012; Sarkar, 2022). The causative factors behind the devastating
flood in Pakistan in August 2022 remain a significant question for
investigation. Various reasons have been identified as potential
triggers for the flood event, including heavy rainfall, glacial melt
contribution, and the development of an intense low-pressure
system over the land area due to the summer heatwaves observed
from May to June (Mukherjee et al., 2018; Hirabayashi et al., 2021).
Furthermore, Pakistan ranks among the top 10 countries in the
global climate risk index due to the climate deluges witnessed
between 2000 and 2019. This underscores the country’s
vulnerability to extreme events caused by climate variability
(OECD, 2023).

The Hunza-Nagar Valley in Pakistan has a significant historical
record of flood events, with widespread consequences for the region
(KOONS, 2021). Located in the northern part of the country, the
valley is susceptible to flooding during the summer monsoon season
when intense rainfall occurs in the river catchments. The
combination of melting snow from alpine regions and the
monsoonal rains can lead to substantial floods, posing risks to
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human lives, infrastructure, and agricultural lands (Yaseen et al.,
2022). Over the years, the valley has witnessed several devastating
floods that have caused extensive destruction and forced
communities to be displaced. Particularly, flash floods triggered
by intense localized rainfall in hilly and semi-hilly areas have been
extremely destructive, resulting in loss of lives and property damage
(Awan, 2002). The unpredictability and severity of these floods
highlight the urgency to implement effective flood risk management
and mitigation strategies to protect the valley’s population and
infrastructure. Hunza Valley experiences the largest variations in
relative humidity between 59% in March and 91% in August, while
the lowest variations occur between 23% in March and 52% in
December, based on data recorded between 1998 and 2012. Large
amounts of solar radiation (5,148 W/m2) are received by the basin in
May, whereas small amounts (2563 W/m2) are received in
December (M. Adnan et al., 2022).

Flood risk, also known as susceptibility, is the probability that a
certain location may be impacted by a flood event. Conversely, flood
vulnerability evaluates the possible degree of destruction and
adverse outcomes that could occur following a flood. This
assessment takes into account a number of variables, including
the likelihood of flooding, the susceptibility of populations and
infrastructure to flooding, and the possible effects on the
environment, the economy, and society (Valjarević et al., 2022).
Flood risk is a comprehensive evaluation of the potential for loss and
damage due to flooding and goes beyond simple vulnerability. It
considers hydrodynamic, ecological, social, economic, and physio-
climatic variables (Quagliolo et al., 2021). Combining hazard and
vulnerability assessments, either by adding or multiplying their
respective numbers, is a common method of evaluating flood risk
(Rinc et al., 2018). Analyzing flood risk can be a complex and
challenging task, mainly due to limitations in data availability. To
overcome these challenges, numerical modeling and index-based
analyses have gained popularity as effective alternatives for flood risk
assessments. These approaches facilitate the development and
implementation of disaster mitigation strategies (Hapciuc
et al., 2016).

Flood risk maps play a crucial role in urban planning for future
development, helping to identify vulnerable areas at risk of flooding
(Awan, 2002). Creating these maps involves considering multiple
criteria factors and their spatial correlation (Minea, 2013; Lin et al.,
2020). Three primary approaches are commonly used for mapping
flood-prone areas (Teng et al., 2017). Physical modeling involves
experiments to validate predictive models, while numeric models
like Delft3D simulate flooding processes in various dimensions (Haq
et al., 2020). Though providing precise predictions, physical-based
approaches require extensive data input, including hydrological,
topographic, morphological, and remote sensing data, processed in a
Geographic Information System (GIS) (Ji et al., 2012). The empirical
approach consists of three classes: Multi-criteria decision analysis
(MCDA) (Bengal et al., 2019; Mujib et al., 2021), statistical methods
for flood analysis and prediction (Youssef and Hegab, 2019;
Costache et al., 2021), and machine learning and artificial
intelligence models (Shafizadeh-Moghadam et al., 2018; Eini
et al., 2020). Other popular methods include the frequency ratio
(FR) method (Pradhan, 2011), analytical hierarchy process (AHP)
(Yalcin, 2008; Stefanidis and Stathis, 2013; Papaioannou et al., 2015),
and logistic regression (LR) (Pradhan, 2009; Tehrany, et al., 2014a).

The multi-criteria decision analysis model, specifically using the
analytical hierarchy process (AHP) as an empirical approach, holds
significant recognition and widespread adoption in flood risk
assessment (Saaty, 1990). AHP involves a weighted evaluation
process based on pairwise comparisons of each parameter,
leading to the identification of optimal solutions for specific
problems. This method has proven successful in flood analysis
and mapping of flood-prone areas, particularly when integrated
with Geographic Information Systems (GIS) and remote sensing
(Das and Pardeshi, 2018). The combination of GIS with the AHP
presents a dependable, efficient, and precise approach applicable to
various regions worldwide (Chakraborty and Mukhopadhyay,
2019). Nonetheless, the AHP method’s reliance on expert
opinions for determining indicator weight values introduces
subjectivity and cognitive limitations (Danumah et al., 2016). To
address this, the consistency of the ratio is assessed to ensure
coherence in the weighted variables. Setting a threshold for the
ratio’s consistency below 10% ensures meaningful and consistent
values, reducing the impact of subjectivity and enhancing the
reliability of the AHP method in flood analysis and mapping
(Rahim et al., 2018). Flood-prone area mapping necessitates the
integration of diverse datasets, encompassing topographic
characteristics extracted from Digital Elevation Models (DEMs),
hydrological data like rainfall and river discharge, and
geomorphological information. These vital datasets are
commonly obtained through remote sensing techniques and
subsequently analyzed using Geographic Information Systems
(GIS) to create comprehensive flood-prone area maps. (Arseni
et al., 2020). The flood risk assessment for the proposed site
incorporates various essential factors, including precipitation,
distance to the river, elevation, slope, topographic wetness index
(TWI), normalized difference vegetation index (NDVI), land use
land cover (LULC), curvature, and soil type. These criteria and their
respective significance have been carefully determined through a
thorough analysis of existing research and relevant studies (Aydin
and Sevgi Birincioğlu, 2022; Osman and Das, 2023; Waseem et al.,
2023). The proposed research aims to create a comprehensive flood
risk map for the Hunza-Nagar Valley in Pakistan. The study’s
primary objective is to assess and analyze flood risk,
susceptibility, and risk in the region by integrating various data
sources, including topographic maps, hydrological data,
geomorphological information, and climate data. Through the
application of advanced Geographic Information Systems (GIS)
techniques and multi-criteria analysis, the study intends to
provide decision-makers and disaster management authorities
with crucial insights for effectively developing and implementing
flood risk reduction measures. This flood risk map is anticipated to
serve as a valuable tool in understanding the vulnerability of the
Hunza-Nagar Valley to floods, enabling proactive measures to
minimize potential damages and safeguard the community and
its assets. By considering the foremost purpose of this
investigation, the following objectives are taken.

a) To assess climatic parameters and regional land use patterns
using selected remote sensing data records.

b) To identify potential flood hazard zones using integration of
multi-criteria decision-making and AHP techniques.

c) To measure spatial flood intensity using previous geo-hazards.
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2 Materials and methods

2.1 Study area

The Hunza-Nagar Valley in Pakistan is located within the
geographical coordinates of approximately 35° 45′15″to 37° 00′N
latitude and 74° 0′00″to 76° 5′25″E longitude as represented in
Figure 1 (Bacha, 2018), and is nestled amidst the breathtaking
landscapes of the northern region, surrounded by the majestic
Himalayas. The geographic extent of the Hunza-Nagar Valley
encompasses an estimated area of 14,440 square kilometers. The
elevation within the Hunza-Nagar Valley varies, ranging from
approximately 1,640 to 7,896 m above sea level (Hyder et al.,
2013). During the summer months, the valley receives monsoon
rains, which significantly contribute to its annual precipitation. The
valley is traversed by the Hunza River, a vital water source
originating from melting glaciers and monsoonal rainfall. The
river plays a crucial role in supporting local communities and
sustaining agricultural activities in the region. Hunza-Nagar
Valley is renowned for its lush greenery, diverse forests, and
fertile agricultural fields, all of which influence the hydrological
processes and flood dynamics. Due to its unique topography and the
presence of the Hunza River, the valley faces potential risks of urban
flooding during intense rainfall or snowmelt events. The Valley has
experienced significant flooding events throughout its history. One

notable disaster was the 2010 Attabad Lake incident, triggered by a
massive landslide that blocked the Hunza River, leading to
catastrophic flooding downstream. Additionally, the valley faces
the risk of glacial lake outburst floods (GLOFs) due to the presence
of numerous glaciers, which the Badswat GLOFs event is a recent
catastrophe. These GLOFs can occur when glacial lakes formed by
the melting glaciers suddenly breach their natural dams, releasing
large volumes of water downstream. Hence, a comprehensive
evaluation of flood risk in the area becomes essential to minimize
potential harm to communities and infrastructure (Muneeb
et al., 2021).

2.2 Collection and processing of data

The methodology employed in this research is structured into
five main sections:

1) The initial stage involved data collection
2) Factors contributing to flood risk were identified
3) Data processing was conducted using GIS to obtain reclassified

maps for these contributing factors.
4) Reclassified maps were overlaid using the AHP method to

produce the flood risk map.
5) The achieved result was then validated.

FIGURE 1
Study area map. (A) Location of Hunza basin, (B) Land use and land cover map of Hunza Nagar, (C) Distribution of stream networks.
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In this study, the data collection process played a crucial role in
evaluating urban flood risk for the current study area. The
acquisition of diverse and reliable datasets was vital for
developing a comprehensive flood risk assessment model.
Reputable sources were utilized to obtain data related to key
factors influencing flood risk. Table 1 shows the data acquired
for the current study with their proper description. The Digital
Elevation Model (DEM) from Aster Global Digital Elevation Model
(ASTER GDEM) at 30 m resolution provided essential topographic
information for identifying flood-prone areas based on elevation
and slope. Soil data was obtained from theWorld Digital Soil Map in
high-resolution ESRI Shapefile format (5′ × 5′) sourced from the
Food and Agricultural Organization of the United Nations (FAO)
Map Catalog, contributing critical information about soil types
affecting flood risk analysis (FAO Map Catalog, 2023). The High-
Resolution Land Use/Land Cover Map from Sentinel-2, accessed
through Esri Land Cover - ArcGIS Living Atlas, was instrumental in
analyzing land use patterns and identifying areas vulnerable
to flooding.

Vegetation analysis was done by Level-1 Satellite Imagery
(Landsat 8–9) obtained from the USGS Earth Explorer, providing
insights into vegetation health and its impact on flood risk
assessment (EarthExplorer, 2023). Rainfall data, a significant
determinant of flood hazard, was sourced from the Monthly
High-Resolution Precipitation Data (CRU TS) at 0.5 ×
0.5 Degree Resolution, provided by the Climate Research Unit
(CRU) UAE Data (Crudata and Crudata, 2023). All these
datasets were integrated into a Geographic Information System
(GIS) to facilitate the Multi-Criteria Decision Analysis (MCDA)
approach. The selection of the nine parameters was based on an
extensive literature review on flood risk assessment. The acquired
data was then processed using ArcGIS version 10.8 to generate
reclassified maps for each factor. In the reclassified map for each
criterion, the flood risk level was classified into five classes, each
assigned a number. With increasing values, the flood risk increases.
Level 1 represents “Very Low,” Level 2 represents “Low,” Level
3 represents “Moderate,” Level 4 represents “High,” and Level
5 represents “Very High” flood hazard levels. The flood risk level
for each criterion with the corresponding covered area is shown in
Table 2. A combination of the Spatial Analyst tool and the analytical
hierarchy process (AHP) was applied for a weighted overlay
analysis, resulting in the final flood risk map. The current work’s

methodological framework is depicted in Figures 5C, D performed
using the Normalized Difference Vegetation Index (NDVI) data
derived from Landsat.

2.3 Analytical hierarchy process (AHP)

The AHP is a highly effective method used in a variety of
decision-making situations in a wide range of industries, such as
business, finance, education, politics, and engineering. A variety of
multi-criteria decision-making techniques (MCDM) exist, one
method that holds significant prominence is the AHP, originally
devised by Saaty (Saaty and Saaty, 2013). AHP represents a versatile
mathematical model that takes into account the preferences of
individuals or groups, facilitating the evaluation of both
quantitative and qualitative criteria in decision-making situations
(Saaty, 1990). This study aimed at developing flood-prone regions
for Hunza-Nagar, a total of nine factors influencing floods were
identified. Utilizing Saaty’s scale of preference ranging from 1 to 9,
and drawing insights from literature reviews, field expertise, and
studies conducted in analogous geographical areas, the relative
weight of each layer has been established. The scale of relative
importance is shown in Table 2 below. The scale of relative
importance supports the decision-making process.

TABLE 1 Data sources of the remote sensing data.

Sr.
No.

Data type Description Resolution Source

1 Digital Elevation
Model (DEM)

Essential topographic information based
on elevation and slope

30 m Aster Global Digital Elevation Model (ASTER GDEM))

2 Soil Data Information about soil types 5′ × 5’ (Arc-
minutes)

World Digital Soil Map from the Food and Agricultural
Organization of the United Nations (FAO) Map Catalog

3 Land Use/Land
Cover Map

Land use in addition to land cover patterns 30 m Sentinel-2, accessed through Esri Land Cover—ArcGIS Living Atlas

4 Vegetation Analysis
(NDVI)

Insights into vegetation health 30 m USGS Earth Explorer, United States Geological Survey

5 Precipitation Data High-resolution precipitation Monthly
data

0.5 × 0.5 (degrees) CRU CAE Data, Climate Research Unit

TABLE 2 The scale of relative importance for developing a pairwise
comparison matrix.

Scale of importance (intensity) Definition

1 Equal Importance

2 Relative Importance

3 Moderate Importance

4 Relative Importance

5 Strong Importance

6 Relative Importance

7 Very Strong Importance

8 Relative Importance

9 Extreme Importance
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2.3.1 Pairwise comparison matrix
After selecting the flood-contributing criteria, a pairwise

comparison matrix table was constructed to facilitate the
assessment process. Through this matrix, each aspect was
systematically compared by the Expert to determine their
respective importance (Rinc et al., 2018). The scale of relative
importance was employed to assign relevant values to each
comparison. Subsequently, using the comparison matrix table,
various crucial parameters were determined, including the factor
weight and class weight. The CR (Consistency Ratio) value was also
computed as part of the evaluation process. The CR value plays a
vital role in assessing the consistency of the pairwise comparisons
made by the Expert, ensuring that the decision-making process
remains robust and reliable. To calculate the CR value, a specific
mathematical expression (Eq. 1) was utilized, considering the data
obtained from the pairwise comparisons. The equation utilized is
shown below. This value helps in gauging the consistency of the
judgments and ensures that any inconsistencies or discrepancies are
minimized during the decision-making process. The resulting CR
value serves as an indicator of the matrix’s consistency. A CR value
greater than zero implies an unreliable matrix, while a CR value of
0 indicates a reliable matrix. If the CR value is greater than 10, the
result should be discarded, the and pairwise comparison matrix
should be re-established so that the hat CR value is less than
10 which is considered as of viable consistency (Osman and
Das, 2023).

CR � CI
RI

(1)

The pairwise comparison matrix obtained for the current study
is shown in Table 3, with a consistency ratio (CR) equal to 3.5% <
10%, which is of viable consistency.

2.3.2 Consistency index (CI)
Consistency Index (CI) is a metric in the analytical hierarchy

process (AHP) that evaluates the reliability of pairwise
comparisons made by decision-makers. It quantifies the level of
inconsistency in the comparison matrix, ensuring more
dependable and robust decision-making. A lower CI value
indicates higher consistency, which is crucial in AHP to

produce meaningful and reliable results. The expression used
for calculating CI is given below in Eq. 2.

CI � λmax − n
n − 1

(2)

After applying the AHP process, percentage weights were
assigned to each criterion, with greater emphasis placed on the
first four criteria: rainfall, distance to rivers, slope, and elevation,
compared to the remaining five criteria. These weights are presented
in Table 4 below in the order of their priority.

3 Results and discussion

3.1 Distribution of physical parameters

Low-lying areas in the Hunza-Nagar Valley are vulnerable to
flooding due to the natural flow of water from higher to lower
elevations. To assess the flood risk, a detailed elevation map was
generated by reclassifying the Digital Elevation Model (DEM) data.
The valley’s topographic elevation spans from 1,646 to 7,846 m, with
upstream regions exhibiting notably higher elevations compared to
downstream areas as shown below in Figure 2A). This combination
of high elevation and steep slopes in the upstream regions
contributes to significant runoff during heavy rainfall, thereby
elevating the flood risk downstream. Conversely, the relatively
flat land slope in lower regions allows the river to overflow
during flood events. To quantify the flood risk probability, the
Digital Elevation Model (DEM) was further classified into five
distinct classes, each representing a specific flood risk zone.
These classes are categorized as follows: “Very High”
(1,646–3,348 m), “High” (3,349–4,223 m), “Moderate”
(4,224–4,928 m), “Low” (4,929–5,658 m), and “Very Low”
(5,659–7,846 m). Each elevation class was assigned a
corresponding flood risk intensity scale, with values of 5, 4, 3, 2,
and 1 respectively, represented in Figure 2B and Table 4. The
analysis of the elevation data reveals a clear trend: as elevation
increases, the probability of flood risk decreases, and vice versa.

The topographical slope of the terrain is a critical factor
significantly influencing flood risk. Its direct and pivotal impact

TABLE 3 Pairwise comparison matrix.

Criteria Rainfall Distance to river Slope Elevation LULC TWI NDVI Soil type Curvature

Rainfall 1 2 3 3 4 5 6 7 9

Distance to River 0.50 1 2 3 4 5 7 8 7

Slope 0.33 0.50 1 1 3 6 7 7 9

Elevation 0.33 0.33 1 1 2 3 4 5 7

LULC 0.25 0.25 0.33 0.50 1 2 3 4 6

TWI 0.20 0.20 0.17 0.33 0.50 1 4 5 6

NDVI 0.17 0.14 0.14 0.25 0.33 0.25 1 2 3

Soil type 0.14 0.12 0.14 0.20 0.25 0.20 50 1 3

Curvature 0.11 0.14 0.11 0.14 0.17 0.17 0.33 0.33 1

CR: % 3.5
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TABLE 4 Factors and sub-factors weightage for flood risk map development.

Flood Criteria’s Unit Class Flood probability/Class
ranges

Class ratings Percentage
weight

Wetness Index
(Topographically)

Level 2.5–3.2 Ver Low 1 5

3.2–8.9 Low 2

8.9–14.6 Moderate 3

14.6–20.3 High 4

20.3–26 Very High 5

Slope % 0–13.70 Very High 5 16

13.70–27.40 High 4

26.40–41.10 Moderate 3

41.10–61.25 Low 2

>61.25 Very Low 1

Elevation Meter 709–1,596 Very Low 1 13

1,596–2,443 Low 2

2,443–3,310 Moderate 3

3,310–4,117 High 4

4,117–5,852 Very Low 5

Distance from Rivers Meter 0–140 Very High 5 23

140–290 High 4

290–430 Moderate 3

430–570 Low 2

570–720 Very Low 1

Soil Type Clay percentage 5 Very High 5 3

23 High 4

26 Moderate 3

30 Low 1

LULC Level Waterbody Very High 5 9

Trees High 4

Crops High 4

Built Area Moderate 3

Range Land Moderate 3

Snow Ice Low 2

Flooded
Vegetation

Low 2

Bare Land Very Low 1

NDVI Level −0.167–0.02 Very High 5 3

0.02–0.046 High 4

0.046–0.129 Moderate 3

0.129–0.218 Low 2

0.218–0.540 Very Low 1

(Continued on following page)
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on drainage and surface runoff accessibility cannot be overstated.
Steeper slopes facilitate faster surface runoff, resulting in increased
volumes and velocities of water flow during heavy rainfall events.
This amplified surface runoff, coupled with reduced groundwater
infiltration, intensifies the potential for flooding in the area. In the
specific context of the Hunza-Nagar study area, the slope map
exhibits diverse variations, ranging from 0 to 81° as shown in
Figure 2C. The variation in slope plays a crucial role in the
assessment of flood risk. Regions with steeper slopes, particularly
in the upstream areas, experience rapid rainwater runoff, thereby
contributing to increased flood risk downstream. Such terrain
characteristics heighten the vulnerability of low-lying areas to
flooding, especially during intense rainfall events. To facilitate
flood risk assessment, the terrain’s slope in the study area was
classified into five distinct classes based on degree measurements:
“0–15°,” “16–27°,” “28–38°,” “39–49°,” and “50–81°.” Each slope class
corresponds to a specific flood risk intensity level in the reclassified
slope map, with “Very High” assigned 5 points, “High” assigned
4 points, “Moderate” assigned 3 points, “Low” assigned 2 points, and
“Very Low” assigned 1 point, representing the flood risk. Areas with
steeper slopes (higher degrees) are associated with lower flood risk
intensity points, indicating an elevated risk of flooding. Conversely,
regions with flatter slopes (lower degrees) receive higher risk hazard
intensity points, signifying a reduced susceptibility to flooding, as
described in Figure 2D and Table 4.

The Curvature feature in this study characterizes the slope’s
curvature and contour, using its second derivative to determine the
surface’s concavity or convexity. Within the Hunza-Nagar study
area, the terrain’s curvature significantly influences flood risk. Three
curvature types have been identified: flat, concave, and convex as
shown in Figure 3A. Flat curvature areas are associated with a “Very
High” flood risk, with an intensity of 5 points assigned on the flood
risk scale. Conversely, convex curvature areas have a “Moderate”
flood risk, assigned three points on the intensity scale. For concave
curvature regions, the flood risk is considered “Very Low,” with
1 point assigned on the intensity scale. These classifications are
clearly illustrated in the reclassed curvature map in Figure 3B. The
impact of curvature on flood risk is considerable. Flat curvature
areas tend to retain water, increasing the risk of flooding. In contrast,
convex curvature promotes better drainage, resulting in a more
moderate flood risk. Concave curvature, characterized by inward-
sloping terrain, exhibits a lower susceptibility to flooding, indicating
a very low flood risk.

The accurate assessment of flood risk zones and the
computation of the flood risk index crucially depend on the
proximity to the river network component. Areas near river
networks are most susceptible to severe flood risks, while the
impact of this parameter diminishes with increasing distance
from the riverbed. Evaluating the distance between a specific area
and nearby rivers provides valuable insights into the level of flood
risk posed by that area. By applying the STRAHLERmethodology to
the extracted stream network within the study area, we can
effectively identify and analyze different stream orders and their
spatial distribution. This valuable information not only offers
insights into the river system’s drainage pattern and connectivity
but also aids in identifying areas at higher vulnerability to flooding
due to their proximity to higher-order streams. In our research, the
STRAHLER technique played a pivotal role in analyzing the river
network and categorizing streams based on their respective orders.
This classification of streams by order significantly contributes to the
overall flood risk assessment. By identifying areas close to higher-
order streams, where the river network displays increased
complexity and a greater potential for water flow during flood
events, we can better assess regions at heightened risk of
flooding. The distance to the river is a critical factor in flood risk
assessment, and we observe an inverse relationship between distance
and flood risk probability, as evident in Figures 3C, D. To facilitate
flood risk categorization, the distance to the river map was classified
into five distinct classes: “0–2,731 m,” “2,732–5,462 m,”
“5,463–8,193 m,” “8,194–10,924 m,” and “10,925–13,655 m” These
distance classes were further associated with flood risk levels, where
“Very High” receives five points, “High” receives four points,
“Moderate” receives three points, “Low” receives two points, and
“Very Low” receives 1 point, as illustrated in Table 4.

3.2 Spatial characteristics of geo-physical
and climate attributes

Considering the role of land use/land cover in flood risk
assessment is essential. Areas covered with vegetation exhibit
lower susceptibility to flooding due to the negative correlation
between flooding and vegetation density. Vegetated regions
facilitate rainwater absorption and slow its flow, thus reducing
the risk of runoff and flood incidents. Besides this, roads and
residential areas characterized by impervious surfaces, as well as

TABLE 4 (Continued) Factors and sub-factors weightage for flood risk map development.

Flood Criteria’s Unit Class Flood probability/Class
ranges

Class ratings Percentage
weight

Curvature Level Flat Very High 5 1

Convex Moderate 3

Concave Very Low 1

Rainfall mm/year 225–418 Low 1 27

418–612 Moderate 3

612–805 High 4

805–1,007 Very High 5
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bare lands, contribute to heightened stormwater runoff (Tehrany
et al., 2014b). Consequently, these factors elevate the likelihood of
flooding in those particular areas. In our study area, a
comprehensive analysis identified eight distinct land use types:
waterbodies, trees, snowfall areas, rangelands, flooded vegetation,
croplands, and built areas. The various land use types are visually
represented in Figure 4A. To effectively assess flood risk levels, we
employed the reclassified land use/land cover map, which
established five classes representing flood risk intensity.
Waterbodies and areas near them were categorized as having a
“Very High” flood risk level, receiving five points on the intensity
scale. “High” flood risk was assigned to build areas and croplands, as
demonstrated in Figure 4B and Table 4. This classification allows for
the prioritization of areas at higher risk of flooding due to their

association with waterbodies, enabling a comprehensive evaluation
of their vulnerability.

The geological composition of the study area plays a crucial role
in influencing flood occurrences, representing a significant factor
that impacts the speed of flooding. Moreover, local geology provides
essential insights into past paleo-flood events, enabling the
estimation of historical flash flood frequencies. The permeability
of various lithological units is a critical determinant during the
infiltration phase, as increased permeability promotes faster
infiltration, whereas impermeable layers contribute to heightened
surface runoff, potentially leading to floods. The rate of infiltration
shares a close correlation with the rocks’ permeability. Porous
formations like coarse sand and conglomerates facilitate
rainwater infiltration, effectively reducing flood risk. Conversely,

FIGURE 2
Distribution of Physical Parameters. (A) Elevation map; (B) Reclassed Elevation map (C) Slope map; (D) Reclassed slope map.
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the presence of impermeable deposits such as marly, clay, and
gypsum can elevate runoff rates, thereby increasing the risk of
flooding. In the current study, the soil map was classified based
on the percentage of clay content, as clay is known to be highly
impermeable, resulting in substantial runoff during rainfall and
increased flood risk. The distribution of clay percentages across the
entire study area ranges from 5% to 26%, and we categorized it into
four classes: “5% or less,” “6%–15%,” “16%–23%,” and “24%–26%"
as shown in Figure 4C The reclassified soil map provides valuable
information regarding flood susceptibility, with each class
corresponding to specific flood risk levels: “Very Low” (1 point),

“Moderate” (three points), “High” (four points), and “Very High”
(five points) respectively, as indicated in Figure 4D and Table 4.

The Topographic Wetness Index (TWI) plays a crucial role in
characterizing the spatial distribution of wet and dry areas within the
watershed. It provides insights into flow direction and accumulation
at specific locations, offering valuable information for flood
susceptibility assessment. High TWI values indicate areas that are
particularly vulnerable to flooding, with a TWI value greater than
16 and a TWI value greater than 14, as reported by Ahmed M.
Youssef and Hegab, signifying high flood susceptibility. In our study,
the variation of TWI values spans from 1.58 to 24.94, which we

FIGURE 3
Spatial distribution of selected physical parameters. (A)Curvaturemap; (B) Reclassed curvaturemap; (C)Distance to the river; (D) Reclassed distance
to the river.
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categorized into five classes: “1.58–4.61,” “4.62–6.35,” “6.36–8.64,”
“8.65–12.39,” and “12.40–24.94″as shown in Figure 5A. Each class
corresponds to specific flood risk levels on the intensity scale: “Very
Low” (1 point), “Low” (two points), “Moderate” (three points),
“High” (four points), and “Very High” (five points), as illustrated in
Figure 5B and Table 4. The analysis reveals that TWI values
indicating high flood susceptibility, exceeding 14, only cover
approximately 9.5% of the research area. Conversely, areas with
low TWI values (<9) exhibit the widest distribution, accounting for
about 83.5% of the study area. Understanding the distribution of
TWI values across the study area is instrumental in formulating
targeted flood preparedness strategies, thereby enhancing the
resilience of the community and its assets.

The Normalized Difference Vegetation Index (NDVI) serves as a
remote sensing technique employed to evaluate the health of
vegetation by analyzing light reflectance in visible and near-
infrared (NIR) wavelengths. Its applications span across diverse
fields, including agriculture, forestry, and ecology, providing
valuable insights into vegetation growth, health, and stress
monitoring. NDVI values offer valuable data for vegetation cover
classification and detecting changes in plant health over time. The
fundamental principle behind NDVI is that healthy green vegetation
absorbs visible light and reflects NIR light, while non-vegetated areas
exhibit different patterns of reflectance. The computation of NDVI
involves subtracting the NIR reflectance from the red reflectance and
then dividing the result by the sum of the NIR and red reflectance

FIGURE 4
Spatial distribution of geo-physical attributes. (A) LULC map; (B) Reclassed LULC map; (C) Soil map; (D) Reclassed soil map.
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values. This calculation yields NDVI values ranging from −1 to 1,
where negative values indicate non-vegetated areas, 0 represents
bare soil or water, and values closer to 1 signify healthier and more
abundant vegetation. Regarding flood risk assessment, NDVI and
flood risk demonstrate an inverse relationship. Higher NDVI values
are indicative of lower flood risk, whereas lower NDVI values are
associated with higher flood risk. To effectively assess flood risk
probability, we have classified the NDVI map into five distinct
classes: "−0.577–0.038,” “−0.037–0,” “0.001–0.067,” “0.068–0.21,”
and “0.211–0.639”as shown in Figure 5C. Each class corresponds
to a specific flood risk probability on the intensity scale: “Very High”
(five points), “High” (four points), “Moderate” (three points), “Low”
(two points), and “Very Low” (1 point) as shown in Figure 5D
and Table 4.

Rainfall plays a pivotal role in exacerbating flood risk within the
study area, significantly influencing the potential for river overflow
and subsequent flooding occurrences. The intensity of rainfall directly
correlates with the extent of flooding, as heightened precipitation
levels can exceed the river’s capacity to accommodate the increased
water volume. This results in overflow and the inundation of adjacent
regions. Conversely, instances of lower rainfall are associated with less
severe flooding, as the river system can manage the relatively reduced
influx of water without breaching its banks. For an accurate appraisal
of flood risk and the formulation of flood risk maps, a profound
comprehension of the spatial dissemination of rainfall patterns is
imperative. In this endeavor, the study draws upon the Inverse
Distance Weighted (IDW) methodology. The IDW technique
serves as an interpolation approach, facilitating the estimation of

FIGURE 5
Distribution of geo-physical outcomes. (A) TWI map; (B) Reclassed TWI map; (C) NDVI map; (D) Reclassed NDVI map.
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values at unsampled locations by considering nearby data points.
When applied to the collected rainfall data, the IDW method offers a
holistic depiction of the dispersion of rainfall across the study area.
The resulting rainfall map offers insights into areas susceptible to
heavy rainfall, indicating regions at higher risk of flooding due to
potential river overflow. The acquisition of rainfall data for this
assessment was facilitated through the utilization of Monthly
High-Resolution Precipitation Data (CRU TS) at a resolution of
0.5 × 0.5°, sourced from the Climate Research Unit (CRU) UAE
Data. The data incorporated spanned from 2001 to 2022. Given the
spatial nature of this dataset, the ISOHYETALMethodwas adopted to
craft comprehensive and informative rainfall maps. The Isohyetal
Method typically involves the incorporation of cumulative (collective)
rainfall data to create isohyetal lines on a map. These lines connect
points of equal cumulative rainfall within a given period. This method
is commonly used to represent spatial patterns of rainfall across an
area and can provide valuable insights into areas that have received
similar amounts of rainfall. The ISOHYETAL Method is particularly

well-suited for delineating areas of equal precipitation intensity across
an expanse, effectively aiding in the representation of varying rainfall
depths within the Study area. The rainfall values in the Hunza-Nagar
Study area vary spatially, ranging from 246 to 307 mm as shown in
Figure 6A. There is a direct relationship between precipitation and
flood risk, where an increase in rainfall intensity leads to higher flood
risk, and vice versa, this can be confirmed by Figure 6B. In this study,
the rainfall map was categorized into five segments, representing a
progression from lower to higher rainfall depths. The corresponding
reclassified map demonstrates the increasing flood risk level with the
rise in rainfall depth.

3.3 Regional flood hazard zonations and
related geo-hazards

The flood risk map was created by incorporating nine primary
flood-influencing parameters: rainfall, distance to rivers, slope,

FIGURE 6
Spatial scenario of climate factors and associated flood hazard zones. (A) Rainfall map (B) Reclassed Rainfall map (C) Weighted Overlay (D) Hunza
River, Before Landside (2009) (E) Hunza River, After Landslide (2010) (F) Flood Inventory Map of Attabad Lake with its location in the study area (G) ROC-
AUC Curve for model validation.
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elevation, NDVI, TWI, soil type, LULC, and curvature. The analysis
of the pairwise comparison matrix resulted in a consistency ratio
(CR) value of 3.5%, which falls below the threshold value of 10%,
confirming the credibility of the results obtained through the AHP
process. The findings of this study revealed that elevation, slope,
rainfall, and distance to the river were the dominant factors
influencing flooding in the area. Areas with lower elevations were
more vulnerable to flooding due to water accumulation during heavy
rainfall events. Steeper slopes increased the risk of flash floods.
Significant precipitation during the monsoon season contributed to
flooding in the study area. Parameters like curvature, NDVI, TWI,
LULC, and soil type showed lesser impact on flooding. Flat surfaces
were prone to flooding as they retained water, and areas with
negative NDVI values experienced higher flood risks due to the
absence of vegetation to impede water flow. High TWI values
indicated increased water accumulation capacity, elevating flood
risk. Waterbodies, built-area, and bare lands were more flood-prone
in terms of LULC. Clayey soil’s low drainage rate enhanced flood
risk in areas with this soil type.

The flood risk map as depicted in Figure 6C, for the current
research was developed using nine parameters contributing to flood
risk, similar to a study conducted by a researcher. However, other
researchers utilized varying numbers of parameters. Literature
review reveals that there is no fixed rule for selecting the type
and number of flood-influencing factors; researchers base their
choices on experience, topographical features, and geological
location of the study area. The final flood risk map for the
current study area resulted from the weighted overlay of the
reclassified maps of the nine parameters in “ArcGIS 10.8.” This
flood risk map is classified into five categories for flood risk
assessment: “Very High,” “High,” “Moderate,” “Low,” and “Very
Low.” Figure 6C shows that the flood risk is more significant at the
northwest side of the study area due to the concentrated natural flow
of the Hunza River, elevating the flood risk level in those parts. This
developed flood risk map holds crucial importance for disaster
management authorities where real-time flood risk zonation data
is not available.

Table 5 shows the percentage area each flood risk class covers.
To minimize the adverse effects of flooding, it is essential to adopt
strategic approaches for well-planned construction in these regions
like effective town planning, and defining proper floodplains where
any sort of construction should be prohibited. Eliminating
encroachments, especially near riverbanks, will help mitigate
vulnerability. The construction of flood protection walls is
advised in areas where it can effectively reduce risks, with the
South-West area of Hunza-Nagar being the most viable choice.
The construction of a flood protection wall will divert the flood
water from the areas that come under high risk flood zones due to
haphazard and unplanned construction activities. By implementing
these measures, the potential flood damage can be considerably
reduced, ensuring the safety and protection of both the population
and infrastructure in Very High and High flood-risk zones.

Validating a model entails systematically comparing its outputs
to real-world observations, and gauging prediction accuracy in
quantity and quality. In flood susceptibility assessment, models
evaluate regional vulnerability. Ensuring reliability for future
flood risk evaluations demands validation on, aligning model
outputs with observed or ground truth data through calibration.

The flood risk map for this study was validated by checking its
output with a flood inventory map developed for Attabad Lake
through ROC-AUC (Area Under the Curve-Receiver Operating
Characteristic) which is used to measure the performance of
a model.

One of the biggest disasters that hit Hunza-Nagar on 4 January
2010, was a massive landmass collapse, destroying Attabad village
and forming a natural dam across the Hunza River. The blocked
river stretched around 2 km long and 500 m wide. The landslide also
covered 1.3 km of the KarakoramHighway. By the end of May 2010,
the formed lake had expanded to about 22 km in length and over
100 m in depth. It covered an approximate area of 23.4 square
kilometers. The real-time images of the area before and after the
landslide are presented above in Figures 6D, E, respectively. These
images convey the extensive flooded area, making them an excellent
choice for model validation due to their ability to showcase the
magnitude of the impact.

To validate the model, a flood inventory map of Attabad Lake
was generated using point features within ArcGIS 10.8. The lake’s
polygon feature was extracted from the base map in ArcGIS through
digitization. The map, along with the lake’s position in the study
area, is shown in Figure 6F. The arrangement of flooded points
corresponds with the polygon feature portraying Attabad Lake after
the landslide. Importantly, it should be noted that these points do
not convey the scale or frequency of flood events, potentially
affecting validation outcomes as it is impossible to locate a flood
event by a single point in space. Flooded point features denote the
disaster-affected areas, while non-flooded points indicate regions
unaffected by flooding.

The ROC-AUC (Receiver Operating Characteristics-Area
Under the Curve) curve assesses the performance of a flood risk
model by plotting the true positive rate against the false positive rate.
An AUC value signifies the model’s ability to discriminate between
flooded and non-flooded areas, with higher values indicating better
accuracy. This validation metric confirms the robustness of our
flood hazard map, providing a quantitative measure of its reliability
in predicting and classifying flood risk in the studied region. The
ROC-AUC analysis (Figure 6G) was conducted by comparing the
flood risk map raster layer with flooded and non-flooded point
features, using the ‘ArcSDM’ tool within the ArcGIS software. The
ROC-AUC curve is depicted in the Figure below. The AUC values
are divided into several categories: 0.9–1.0 (Excellent), 0.8–0.9 (Very
good), 0.7–0.8 (Good), 0.6–0.7 (Satisfactory), and 0.5–0.6
(Unsatisfactory). The AUC value for the current model is 0.773
(77.3%), placing it in the good category and nearly approaching the

TABLE 5 Classification of flood risk zones in the study area.

Criteria (flood risk) Area (km2) Percentage (%)

Very High 866.4 6

High 5,198.4 36

Moderate 5,920.4 41

Low 2,310.4 16

Very Low 144.4 1

Total 14,440 100
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very good range. This demonstrates the model’s effective
performance in generating the flood risk map, yielding a
favorable outcome.

4 Discussion

The investigation conducted here revolves around the
evaluation of flood risk within the Hunza-Nagar Valley, Pakistan,
utilizing the GIS-based AHP technique (Print et al., 2011; Patrikaki
et al., 2023). The primary objective entailed delineating regions
susceptible to flooding by dissecting nine core parameters with
pronounced effects on flood occurrences: precipitation patterns,
proximity to water bodies, terrain elevation, slope, vegetation
health, topographic wetness index, land use/land cover, land
curvature, and soil composition (Mitra and Das, 2023). A
comprehensive assessment of these parameters involved
determining their respective priority through pairwise
comparisons and employing the AHP methodology. By
combining these elements, a flood risk map was formulated,
where a natural breaking approach segregated the landscape into
five distinct categories, ranging from very high to very low-risk zones
(Youssef and Pradhan, 2011; Janizadeh et al., 2021; Yilmaz, 2022).
The resulting hazard map highlighted that approximately 6% of the
total area exhibited a very high flood risk, 36% was designated as
high risk, 41% lay within the moderate risk bracket, and 16% and 1%
corresponded to low and very low flood risk categories, respectively
(Norman et al., 2010; Olii et al., 2021). The outcomes underscored
the paramount role played by factors such as elevation, slope,
precipitation levels, and proximity to water bodies in influencing
flood occurrences (Fernández and Lutz, 2010; Tehrany et al., 2014b).
Areas characterized by lower elevations were discerned to be more
susceptible to inundation during intense rainfall, while steeper
terrains amplified the potential for rapid flash floods (Bonacci
and Ljubenkov, 2006; He et al., 2007; Hüseyin et al., 2012; Zhu,
2016; Das, 2020). Moreover, the study identified significant
monsoonal precipitation as a contributing factor to flooding
events. Conversely, parameters such as land curvature, vegetation
health, topographic wetness index, land use/land cover, and soil type
exhibited comparatively diminished influence on flood risk. For
instance, flat terrains were found to exhibit increased vulnerability
due to water retention, and areas featuring negative normalized
difference vegetation index (NDVI) values indicated heightened
flood risks attributable to a lack of obstructing vegetation
(Chakraborty and Mukhopadhyay, 2019). Likewise, locations with
elevated topographic wetness index values posed an escalated flood
threat due to enhanced water accumulation capacity, further
accentuating the risk (Adnan et al., 2019). Aspects of land use/
land cover were identified wherein water bodies, built-up areas, and
barren land displayed a greater susceptibility to flooding. Clayey soil,
characterized by its diminished drainage capacity, was also
discerned as a contributing factor to augmented flood risk in
regions with such soil composition. The Hunza-Nagar River
basin has experienced a surge in catastrophic floods, notably the
devastating 2010 landslide that obstructed the Hunza River and
subsequently triggered extensive upstream flooding (Hayat et al.,
2010; Abbas et al., 2016). Correspondingly, other studies have
emphasized the necessity of prioritizing vulnerable populations,

including children, the elderly, and disadvantaged households, for
comprehensive flood impact assessments and responsive strategies
(Ullah and Id, 2020; Shah and Rana, 2023). The investigation’s
findings hold considerable significance for policymakers, offering
insights crucial to flood risk mitigation strategies (Osman and Das,
2023; Waseem et al., 2023). By effectively identifying areas prone to
flooding, authorities can implement preemptive measures to
minimize potential damage and protect lives and assets during
flood events. The Multi-Criteria Decision Analysis (MCDA)
framework integrated within this study aids in formulating
nuanced flood vulnerability assessments that encompass various
dimensions such as economics, environment, and societal wellbeing
(Management, 2006; Paquette and Lowry, 2012; Rahmati et al., 2016;
Aydin and Sevgi Birincioğlu, 2022; Osman and Das, 2023). In
summation, this research contributes to informed disaster
planning, bolstering community resilience, and facilitating
disaster response mechanisms in flood-prone regions. It furnishes
a valuable tool for disaster management and planning entities to
strategically allocate resources and establish preemptive measures in
areas predisposed to flooding (Al-Abadi and Pradhan, 2020).

5 Limitations

Discussing study limitations is crucial as it provides
transparency about potential weaknesses and constraints in the
research approach. Acknowledging these limitations enhances the
credibility of the findings, helps interpret results more accurately,
and guides future research improvements, ensuring a balanced and
realistic understanding of the study’s scope and implications.

• Reliance on diverse input data, with potential inaccuracies or
data gaps impacting predictive precision.

• Temporal constraint due to reliance on historical and present
data; future land use, climate trends, and infrastructure
developments not considered, limiting long-term flood risk
assessment.

• Utilization of Multi-Criteria Decision Analysis (MCDA)
involves simplifications and assumptions, introducing
uncertainties, especially for complex interactions.

• Results may not be directly applicable to other regions due to
the uniqueness of Hunza-Nagar’s geography, requiring
customization and validation.

• Assumption of stationarity, assuming past flood patterns
remain consistent, without accounting for potential changes
in climate, land use, or other dynamic factors.

• Limitations in spatial resolution of input data might
compromise precision, especially for smaller-scale features.

• Potential for improved accuracy by incorporating high-
resolution data to enhance results.

6 Conclusion

This study used the GIS-based AHP technique to create a flood
risk map for Pakistan’s Hunza-Nagar Valley. Using ArcGIS
10.8 software, the flood risk map was created by analyzing
important flood-triggering elements such as rainfall, river
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distance, elevation, slope, curvature, NDVI, TWI, LULC, and soil
type. The aforementioned layers were integrated to build a full flood
risk map by assigning weights to these elements using the AHP
approach. The generated map shows the various levels of flood risk
in the research area: 16% is classified as low risk, 1% as very low risk,
36% as high risk, 41% as moderate risk, and 6% as very high risk.
This map of flood danger has important ramifications. It can serve as
a valuable tool for policymakers and planners to make informed
decisions regarding climate change adaptation, land use planning,
and flood risk management. The study emphasizes the significance
of combining diverse geographic information sources to improve the
accuracy of risk assessment. Furthermore, regions classified as high-
and extremely high-risk should be examined more thoroughly using
higher-resolution satellite images. This research underlines the
potential of geospatial approaches in disaster analysis and the
vital significance of precise data integration. In the context of an
increasingly vulnerable world, the flood risk map contributes to
better risk mitigation strategies, ensuring the safety of communities
and their assets. As future developments unfold, this study remains
an indispensable resource for disaster preparedness and
management in the Hunza-Nagar Valley region.
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