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Detecting hazardous substances in the environment is crucial for protecting
human wellbeing and ecosystems. As technology continues to advance, artificial
intelligence (AI) has emerged as a promising tool for creating sensors that can
effectively detect and analyze these hazardous substances. The increasing
advancements in information technology have led to a growing interest in
utilizing this technology for environmental pollution detection. AI-driven
sensor systems, AI and Internet of Things (IoT) can be efficiently used for
environmental monitoring, such as those for detecting air pollutants, water
contaminants, and soil toxins. With the increasing concerns about the
detrimental impact of legacy and emerging hazardous substances on
ecosystems and human health, it is necessary to develop advanced
monitoring systems that can efficiently detect, analyze, and respond to
potential risks. Therefore, this review aims to explore recent advancements in
using AI, sensors and IOTs for environmental pollution monitoring, taking into
account the complexities of predicting and tracking pollution changes due to the
dynamic nature of the environment. Integrating machine learning (ML) methods
has the potential to revolutionize environmental science, but it also poses
challenges. Important considerations include balancing model performance
and interpretability, understanding ML model requirements, selecting
appropriate models, and addressing concerns related to data sharing. Through
examining these issues, this study seeks to highlight the latest trends in leveraging
AI and IOT for environmental pollution monitoring.
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1 Introduction

Hazardous substances in the environment are those that pose a
threat to human health, plant, and animal life, or the environment.
These substances include heavy metals, pesticides, herbicides, and
persistent organic pollutants (POPs) that have been introduced into
the environment through various means (Young et al., 2004).
Sources of hazardous substances in soil include industrial
activities, improper disposal of hazardous waste, agricultural
practices, and natural processes such as erosion and weathering.
These substances can persist in the environment for long periods
and can have a negative impact on soil quality, plant growth, and
human health (Bachmann, 2006; Baran et al., 2011; Bolan et al.,
2021; Rani et al., 2021). The effects of hazardous substances in the
environment can vary depending on the type and concentration of
the substance, as well as the duration of exposure. Some hazardous
substances can cause acute health effects, such as respiratory
problems, skin irritation, poisoning, nausea, and vomiting, while
others can lead to chronic health problems, including cancer,
reproductive disorders, and developmental abnormalities (Baran
et al., 2011; Li et al., 2022; Yang et al., 2022).

Effective management of hazardous substances in the
environment requires monitoring, remediation, and prevention
strategies. Monitoring involves regular testing of soil for the
presence of hazardous substances, which allows for early
detection and appropriate management strategies to be
implemented. Remediation involves the removal or treatment of
contaminated sites. Prevention strategies include reducing the use of
hazardous materials (i.e., source control) and implementing best
practices for waste disposal and land use. Effective management is
essential for ensuring the long-term health and sustainability of soil
and its ecosystems (Mansoor et al., 2022; Sharma et al., 2022; Sonne
et al., 2023).

Real-timemonitoring of hazardous materials in soil and plants is
an important task that can help to ensure the safety of food crops,
protect the environment, and prevent human exposure to harmful
substances. The use of artificial intelligence (AI) powered sensors
and devices can greatly enhance the accuracy and efficiency of this
monitoring process. AI-powered sensors and devices can be used to
detect and quantify the presence of various hazardous materials in
soil and plants (Wilson, 2012; Yang et al., 2021). These sensors and
devices can be designed to measure parameters such as pH,
temperature, moisture, conductivity, and various chemical
properties of the soil and plant tissue. Machine learning
algorithms can be used to analyze the data collected by these
sensors and devices, enabling the identification of specific
hazardous materials in real-time (Wilson, 2012; Yang et al.,
2021). These algorithms can also be used to predict the potential
impact of these materials on human health and the environment.
For example, E-nose (olfactory) algorithms are used to analyze data
generated by sensors and identify the presence of hazardous
chemicals based on their unique chemical signature (Jeong and
Choi, 2022). These algorithms can use a variety of techniques, such
as pattern recognition, artificial neural networks, and fuzzy logic.
One of the key advantages of E-nose technologies is their ability to
detect hazardous chemicals in real-time, allowing for immediate
response to potential threats. E-nose technologies can be used for a
variety of applications, such as monitoring air quality in urban areas,

detecting leaks from industrial processes, and detecting explosives
and other hazardous materials (Jeong and Choi, 2022).

The use of AI-powered sensors and devices for real-time
monitoring of hazardous materials in soil and plants has several
benefits (Singh and Kaur, 2022). Firstly, it allows for more accurate
and reliable detection of these materials compared to traditional
laboratory-based methods. Secondly, it provides real-time data,
allowing for quick responses to any potential contamination
events. Finally, it reduces the need for manual data collection
and analysis, reducing the workload and increasing the efficiency
of the monitoring process (Jeong and Choi, 2022). The use of AI-
powered sensors and devices for real-time monitoring of hazardous
materials in soil and plants is a promising approach that can help to
ensure the safety of food crops, protect the environment, and
prevent human exposure to harmful substances. Various
approaches can be used for AI-based toxicity prediction,
including machine learning methods, deep learning methods, and
hybrid approaches that combine both methods. Integrating various
sources of data, such as chemical structures, toxicological and
physiological data, and environmental factors, to improve the
accuracy and reliability of toxicity predictions, is important
(Jeong and Choi, 2022; Chen et al., 2023).

One of the recent advances is the combination of AI and Internet
of Things (IoT) technologies, for particulate matter (PM)
monitoring, which uses low-cost sensors that can be easily
deployed in various environments (Bhagat et al., 2020). These
sensors can collect data on PM levels and send it to a centralized
platform for analysis. AI algorithms can then process these data to
provide real-time information on PM levels and predict future
trends. Heavy metals can also be monitored using AI. Numerous
studies have been conducted over the last 10 years to forecast the
effectiveness of heavy metal removal from soil using machine
learning (Zafar et al., 2017; Zhu et al., 2019). AI models for the
optimization and prediction of heavy metal removal include black
box, fuzzy logic, kernel, evolutionary, and hybrid models.

With the rapid changes that the environment is experiencing,
data sharing and reuse with the help on AI algorithms and
instruments (Shen, 2018), plays an important role in supporting
researchers to safeguard the continuous threatened environment
and ensure the implementation of sustainable environmental
management practices (Aggestam and Mangalagiu, 2020).
Scientists can make use of online data sharing tools and
platforms that comprise vast and intricate Earth and
environmental science data like climatic and atmospheric data,
pedology, hidrology, ecology, and biodiversity data (Crystal-
Ornelas et al., 2022; Basel et al., 2023) for testing, analyzing,
interpretation of theories, prediction models and experimental
data (Kostal et al., 2022) that lead to better undestanding
environmental issues.

In this comprehensive review, we will examine the application of
artificial intelligence (AI) in monitoring hazardous materials across
different environments, namely, soil, air, and water. We will explore
the latest breakthroughs and progress made in this field, which
integrates machine learning algorithms with sensor technologies.
We will also consider the benefits and drawbacks associated with AI-
powered monitoring systems. This new field has revolutionized soil,
air, and water monitoring, enhancing accuracy, efficiency, and
timeliness in detecting and analyzing hazardous substances.
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A literature search was conducted in Web of Science Core
Collections with the following search terms (TS stands for Topic
Searches): TS=(“artificial intelligence” or “AI” or “machine learning”
or “deep learning” or “Internet of Things” or “IoT” or “computer
vision” or “robotics” or “natural language process” or “real-time
monitoring” or “e-nose”) AND TS=(“hazardous substance” or
“hazardous chemical” or “hazardous material” or “pollutant” or
“contamination” or “toxin” or “heavy metal” or “pesticide” or
“herbicide” or “persistent organic pollutants” or “POPs” or

“microplastic”) AND TS=(“environment” or “soil” or “terrestrial”
or “aquatic” or “aqueous” or “freshwater” or “lake” or “river” or
“sediment” or “marine” or “ocean” or “air” or “atmosphere”). A total
of 2828 results were retrieved. The results were visualized using the
VOS (visualization of similarities) viewer software (version 1.6.19).
Figure 1 presents the systematic literature search results covering the
number of publications and the keyword co-occurrence map on the
topic of the review (AI-Driven Technologies for Hazardous
Substance Monitoring).

FIGURE 1
Systematic literature search results on AI-Driven Technologies for Hazardous SubstanceMonitoring topic. (A) The number of publications related to
AI-Driven Technologies for Hazardous SubstanceMonitoring topic in each year following literature screening. (B) A network visualizationmap delineating
keywords within the associated literature is depicted, revealing clusters indicative of distinct research themes. Nodes sharing analogous colors denote
cohesive clusters comprising interrelated terms. This map was generated through the utilization of VOSviewer.

FIGURE 2
AI solutions: making use of Data and AI algorithms for hazardous substance monitoring and containment.
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2 AI solutions for hazardous substance
monitoring in different environments

In recent years, there has been an increase in interest for using
AI to anticipate and predict environmental pollution. We can split
AI solutions into three steps or phases that include inputs (data),
models (AI algorithms), and outputs (monitoring or decision
support) (Figure 2). Data forms the basis of any AI solution.
These models work best when they have a high number of data
points, especially the ones that are coming from environments that
are continually being monitored and expending solutions for
probable actions. Data sources today can be a variety of sensors,
ranging from imaging to non-imaging types or remote to in-contact
sensors that provide large volumes of data. Then there are the
historic or legacy data. AI algorithms can analyse massive amounts
of sensor readings, historical data, and other important information
from monitoring systems. AI can detect hazardous material levels
and contamination events by identifying patterns, trends, and
anomalies in data using machine learning and data mining.
Image analysis can detect hazardous material spills via satellite
photos or drone images. Computer vision algorithms can
recognise chemicals, vegetation changes, and pollution sources.

AI algorithms can be trained on past data to predict hazardous
material releases and environmental pollution. AI solutions for
environmental monitoring, thus, would include early warning
systems for hazardous material release, autonomous pollution
monitoring systems as well as decision support systems. These
models can help authorities and organisations prepare for and
respond to emergencies. These models have proved useful for
multiple environmental conditions, be it soil, air, or water. AI
modellers, however, should offer sufficient details to explain and
support the selection of model parameters, as well as their creation
and assessment.

Many short- and long-term forecasting applications use ANNs
(artificial neural networks). One has created an IoT-enabled
environmental toxicology model to detect air pollution (Asha
et al., 2022). The model uses artificial intelligence to report the
status of the quality of air in real-time utilising a cloud server and
broadcasts alarms when hazardous pollutants are present. The AAA
(artificial algae algorithm)-based ENN (Elman neural network)
model classifies and predicts air quality in future timestamps (a
timestamp is the current time of an event that a computer records).
WiFi gateways send the data collected by sensors to a cloud server.
AAA optimises the ENN model parameters during data processing.
For monitoring and enforcement, mobile electronic-nose (E-nose)
devices and algorithms have been developed to quickly detect
pollution from point sources. Due to their sensitivity, E-nose
devices can detect carbon, GHG emissions, and particle
pollutants emitted into air or water (Wilson, 2012).

Traditional soil mapping entails physically collecting soil
samples and transferring them to a laboratory for additional
analysis (Signes-Pastor et al., 2016; Sharma et al., 2017). The
advent of technologies permitting high-resolution, quick, and
inexpensive mapping of soil pollutants has favourable aspects
over traditional techniques. Jia et al. (2021) created an unique
modelling method that forecasts soil arsenic levels using high
resolution aerial imagery (HRAI) photos. The method makes use
of cameras that are installed on aircraft to take high-resolution

(0.1–0.5 m) pictures of broad areas. The first layer of a model for
displaying soil arsenic levels shows a thorough report on soil
contamination and HRAI. The image is broken down into pixels
in the second layer, and sample points are represented by pixel
features. In order to forecast the risk levels of arsenic, four alternative
machine learning algorithms were constructed. The Extreme
Random Forest (ERF) algorithm had the best prediction and
accuracy (Jia et al., 2021). Remote sensing and aerial imageries
provide continuous spatial data which, coupled with machine
learning models, are providing highly accurate maps of
hazardous substances in the environment that were not possible
with standard geostatistical techniques.

Microplastics in the environment have become a cause for
concern, but their evaluation in soils is a laborious process.
Hyperspectral imaging (HSI) and convolutional neural network
(CNN) technology-based methods have been developed for
identifying microplastic polymers (Ai et al., 2023). The technique
developed by Ai et al. (2023) provides a non-destructive, rapid
approach to detection of microplastics in soils. Microfluidic devices
using machine learning and AI promise to be next-generation
monitoring systems (Pouyanfar et al., 2022). Sensitive
microfluidic devices produce high-quality pollutant data and
reveal important environmental information. Artificial
intelligence can categorize, characterize, and predict data from
microfluidic systems. The two can be easily set up. Ahmadi et al.
(2021) used ANN to predict the concentrations of
organophosphorus pesticides in water. Their model worked best
for prediction ofMalathion (R2 = 0.887), followed by parathion (R2 =
0.711), and Diazinon (R2 = 0.714). However, the R-squared value
was acceptable for all pesticide types (Sarkar and Pandey, 2015).
Used flow discharge data from the Yamuna River in northern India,
as well as biochemical oxygen demand, temperature, pH, and
dissolved oxygen collected on a monthly basis in the vicinity of
Mathura, India, and employed a feed forward, error back
propagation algorithm to develop ANN models. The predictions
from the ANN models were accurate, with correlation values being
as high as 0.9, indicating that ANNs can be efficiently utilized to
predict water quality.

3 AI-powered technologies for
pollution monitoring

3.1 Spectroscopy

Spectroscopy, which involves measuring the functions of energy
with matter, is of preeminent importance in remote sensing. It has
been widely utilized in field of chemistry and astronomy to identify
materials, and advancements in instrumentation have led to its
increasing use in remote sensing studies (Slonecker et al., 2010).
Visible and near-infrared reflectance spectroscopy is an
environmentally friendly and cost-efficient technique that shows
promise for estimating concentrations of various heavy metals in
soil. Additionally, it offers a viable alternative for assessing heavy
metal levels across large areas and for an extended period (Shi
et al., 2022).

For example, Zhao et al. (2022) used visible and near-infrared
spectroscopy with extreme gradient boosting (XGBoost) - as an

Frontiers in Environmental Science frontiersin.org04

Popescu et al. 10.3389/fenvs.2024.1336088

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1336088


effective machine learning technique to create an estimation model
for heavy metal pollution in mangrove sediment sites. Vis-NIR
spectroscopy coupled with partial least squares (PLS) and radial
basis function neural network (RBFNN) prediction models, were
engaged by Sanaeifar et al. (2022) in their study to investigate the
effects of airborne Pb on tea plants. Elevated concentrations of Pb
had deleterious effects on the plant and the results revealed
PLS–RBFNN models to be more accurate and superior to
conventional methods in terms of prediction, giving Vis-NIR
spectral data traits like high speed and simplicity in monitoring
heavy metal pollution.

Lately, there has been significant interest in the development and
application of flexible, surface-enhanced Raman scattering (SERS)
substrates for the detection of hazardous substances. Bharati and
Soma (2021) conducted a comprehensive 4-year investigation into
various flexible SERS substrates, such as paper or cellulose, polymer
nanofibers, 3D sponges, and fabrics. They explored the potential of
these substrates for on-site detection of explosives, pesticides,
chemical warfare agents, and drugs, and the research was related
to fields such as homeland security, food safety, and medicine. The
results of their study highlight the considerable opportunities for
SERS substrates in the detection andmonitoring of hazardous waste.

3.2 Ground-based monitoring sensors

As reported by Pant et al. (Pant et al., 2019), air quality
monitoring mainly employs two types of sensor networks:
manual and automatic monitoring sensors (like wireless or
community sensor networks). According to Kim et al. (Kim
et al., 2008; Kumar et al., 2022), after combining air quality
monitoring sensors with geo-sensor network technologies, the
collection and interpretation of geospatial and pollution data
were transformed. Levy et al. (2010) observed that the
monitoring of pollutants, like particulate matter, nitrite, and
sulphur dioxide, can be achieved using various sensor networks,
including instruments like Met One Instrument BAM-1020 Beta
Attenuation Monitor (Met one instruments ltd. 1,600 Washington
Blvd. Grants Pass, Oregon), Alphasense OPC-N2 Particle Monitor
(Halo labs 1828 Burlingame, CA, 94,010 USA) and Aeroqual Series
500 with NO2 Sensor Head (Aeroqual Limited, London). Ground-
based aerosol optical measurements not only help characterize
ambient aerosols, but also assist in validating satellite retrievals
and numerical modeling algorithms (Levy et al., 2010; Mansoor
et al., 2021). Amado and Cruz (Amado et al., 2018; Naz et al., 2023)
used machine learning to calibrate a predictive model for
monitoring and characterizing air quality. Their methodology
involved creating a prototype with integrated sensors, including
DHT 11 temperature and relative humidity sensors, as well as MQ2,
MQ5, and MQ135 gas sensors (Zhengzhou Winsen Electronics
Technology Co., Ltd.). The study developed five predictive
models: k-nearest neighbors (KNN), support vector machine
(SVM), naïve-Bayesian classifier, random forest, and neural
network. The models demonstrated 99% accuracy.

Artificial intelligence has found its way into agricultural systems,
incorporating various sensors for improved performance. Soil
moisture sensors are used to ensure adequate irrigation, while
temperature sensors monitor the ambient conditions of grain

storage. Manickavasagan et al. (2006) utilized temperature and
humidity monitoring technology to enhance quality control of
stored products by indirectly measuring key parameters. This
approach also enabled the prediction of quantitative and
qualitative losses in stored grains, providing valuable insights for
decision-making in agricultural businesses.

Under field conditions, Liu et al. (2019) explored the application
of acoustic sensors, specifically piezoelectric sensors, for detecting
insect infestation. Piezoelectric crystals, which transform
mechanical stress into electrical charge, are the fundamental
component of an acoustic sensor. By measuring sound waves or
vibrations and transforming them into electronic signals,
piezoelectric sensors can effectively indicate the presence of
insects. To aid decision-making and improve management
practices, Cruz et al. (2018) conducted a study on predicting
flood levels in advance. They put in place a real-time monitoring
system with numerous sensors that can gauge variables including
rainfall volume and intensity, soil moisture, water level, and rate of
water level rise. Using a multi-layered artificial neural network
developed with MATLAB, they created a prediction model based
on the gathered sensor data. The results showed a high level of
accuracy, with goodness-of-fit values of 0.99889 for the training
dataset, 0.99362 for the test dataset, and 0.99764 for the
validation dataset.

3.3 Aerial imaging and unmanned aerial
vehicles (UAVs)

Since the early 1990s, aerial imagery has been employed to
monitor hazardous waste. Aerial photographs have proven useful in
various applications for detecting and analyzing the presence of
hazardous waste, waste-disposal sites, and landfills (Pope et al., 1996;
Wani et al., 2023). Historical aerial photographs provide valuable
documentation for compiling a record of changes occurring at
hazardous sites and are considered reliable for monitoring
changes over time. The U.S. Environmental Protection Agency
(USEPA) has made use of an aerial imagery library that dates
back to the 1930s to retrace the history of waste management
and disposal at hazardous waste sites. Environmental clean-up
programmes have generated more than 4,000 historical aerial
photographic reports on hazardous waste activity and employed
them in clean-up (Benger et al., 2004).

Aerial photography allows for the interpretation of various
objects at hazardous waste sites, including evidence of discarded
materials, barrels and drums, open dumps, spills, and disturbance.
These features enable monitoring and analysis of potential impacts
related to hazardous waste. Aerial imagery facilitates the
identification of vegetation patterns, investigation of local
groundwater movement to assess potential pollutant migration,
determination of drainage routes, examination of hydrological
conditions, and evaluation of subsequent land use on closed
landfills (Slonecker et al., 2002; Garofalo, 2003).

Hyperspectral imagery-based models have proven effective in
predicting heavy-metal distribution in soils. In a study conducted by
Tan et al. (Tan et al., 2021), a competitive adaptive reweighted
sampling (CARS) method was proposed for this purpose. The
researchers compared the accuracy of various models and
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discovered that CARS in combination with a stacking method
exhibited the highest accuracy and stability. This method utilized
the spectrum in the range of 2–2.3 μm, which is a common
characteristic band for heavy metals. Additionally, it effectively
addressed challenges, such as overfitting due to imbalanced data
and limited training sample sets. Importantly, even in the presence
of spatial heterogeneity, the distribution of heavy-metal
concentrations derived from the CARS-stacking method showed
consistency in the verification analysis.

Increased population and industrialization have led to a rise in
hazardous waste spillage or leakage incidents. Detecting and
monitoring toxic, flammable, and inert gas leaks are a global
priority and have been the subject of extensive research. The
emergence of Unmanned Aerial Vehicles (UAVs) or drones has
significantly enhanced the collection of aerial imagery. This
technological advancement has provided a boost in obtaining
high-resolution and up-to-date aerial data for various
applications, including the monitoring and analysis of heavy-
metal distribution in soils. Forward reconnaissance drones,
equipped with sensors, are valuable tools for enhancing
situational awareness in environments that are challenging for
humans. Remote gas detection systems, utilizing mobile robotic
platforms such as drones, have emerged as a promising approach in
this field, especially in environments too hazardous for human
exploration (Gerhardt et al., 2014).

By augmenting drones with sensors, hazardous materials or
spills can be identified, and waste can be monitored to enable
effective planning and management, thereby minimizing the
exposure of first-response teams (Seiber et al., 2018). Also,
integrating sensor-based particulate detection with autonomous
drone flight control enables dynamic identification and real-time
tracking of aerial plume boundaries. The findings of Seiber et al.
(2018) demonstrate that UAVs can precisely recognize and track
contaminant plumes over time, thus providing visual indicators and
aid data collection that can be used to validate and advance the
plume movement models. In synopsis, the utilization of sensor-
equipped drones for forward reconnaissance purposes can
significantly contribute to identifying and monitoring hazardous
materials, spills, and gas leaks in environments where human access
is unsafe. The integration of sensors and autonomous flight control
enhances the capabilities of drones in real-time plume tracking and
provides valuable data for improved modelling and management of
hazardous incidents.

In incidents that involve hazardous materials, drone flights play
a crucial role in promptly and accurately identifying the direction of
spillage or gaseous material dispersion (Restas, 2015). Numerous
studies have highlighted the ability of UAVs to be rapidly deployed
to disaster sites and gather essential data about the extent and impact
of spills. This information is vital for effective planning,
management, and response efforts. Integrating UAVs into the
toolkits of industry and government spill response teams can
greatly enhance response capabilities, mitigation strategies, and
overall accountability (Messinger and Silman, 2016). In summary,
UAVs are indispensable in assessing and managing incidents
involving hazardous materials. Their ability to be quickly
deployed, gather data, and monitor critical areas provides
valuable insights for response teams, enabling them to make

informed decisions, mitigate risks, and safeguard both human
lives and the environment.

3.4 Ground robotics

In recent years, ground robotics have emerged as a technology
with gas-sensitive sensors that can be employed to assess situations
in enclosed and unventilated spaces by detecting gas distributions,
essentially acting as a “sense of smell.”A study conducted byWandel
et al. (Wandel et al., 2003) aimed to develop a unified algorithm for
localizing the source of odors using ground robotics. They
conducted experiments with ethanol as a test substance and
successfully determined its concentration. However, a few
irregularities occurred due to external factors that influenced the
data. For instance, summertime natural convection caused heat
transfer from the glass window in the enclosed space, increasing
the concentration of ethanol. The researchers demonstrated the
advantage of this tool in its ability to monitor suspected areas and
detect the presence of hazardous substances.

Vincent et al. (2019) conducted an experiment in a laboratory
wind tunnel and a real-world environment to study the formation of
gas plumes. Typically, sensors used for gas detection are
characterized using data from controlled gas rigs, where precise
step changes in gas mixtures are produced. However, in real-world
scenarios, such as mobile robot exploration, gas sources do not emit
steady concentrations. Instead, they generate plumes, resulting in
areas of high and low gas concentrations in the surrounding
environment.

An algorithm method to control mobile robots - iRobot Create
was designed by Ahmed et al. (2016). The robotized mobile nodes
are integrated in a WSN structure, have built-in sensors, equipped
with a microprocessor Gumstix Verdex Pro™ XL6P. The real-time
experiments demonstrated the suitability of this wireless sensor
network robotized nodes that enables two robots to receive
information from each other for detecting a pollutea area, based
on pollution searching, reorientation and surveillance parameters.

Haldorai et al. (2024) developed a robot for polluted water
surface cleaning. The autonomus robot is equiped with two Arduino
microcontrollers, powered by a 6 V lead-acid battery, implemented
with SSD real-time object detection deep learning model for the
precise detection of wastes from water surface. The robot reaches
maximum potential, can avoid obstacles and colect by itself the
wastes from the water surface when it gets to 45 and 75 cm from the
floating debris making it an effective tool for waste removal from
water bodies.

As highlighted by Tsitsimpelis et al. (2019), robotic systems offer
an ideal solution for identifying and monitoring extreme radiation
exposure levels, as well as toxic and combustible atmospheres. These
systems address several challenges by eliminating the need for
humans to physically access hazardous locations. Furthermore,
they can provide valuable data on the conditions of these places
that would otherwise remain inaccessible. Ground robotics
equipped with gas-sensitive sensors offer a valuable means of
monitoring and detecting hazardous materials. Despite certain
challenges and external influences on data accuracy, this
technology holds promise in identifying and localizing odour
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sources in enclosed spaces, contributing to the overall effort of
managing and minimizing the presence of dangerous substances.

3.5 Satellite remote sensing

Remote sensing is a scientific and technological approach that
enables the identification and assessment of various characteristics
and properties of Earth’s targets from a distance. On both a global
and local level, it has offered systematic and repeated observations of
numerous features of the Earth’s surface, including the atmosphere,
water, land, living things, vegetation, pollution, and climate. The
utilization of remote sensing has played a crucial role in detecting
and quantifying pollution rates, mapping, monitoring, and
mitigating pollution (Mertikas et al., 2021).

One of many applications of remote sensing is monitoring and
managing hazardous waste and sites. Multispectral sensors (MSS)
mounted on remote sensing platforms are capable of digitally
collecting energy levels of reflectance in specific bands of the
electromagnetic spectrum. These systems offer advantages such
as statistical analysis of data and the ability to extend
observations beyond the capabilities of aerial photography. Land
use, regional risk assessment, and hazardous waste site spectral
characteristics and pollution profiles have been monitored using
multispectral imaging systems mounted on satellites and various
aircraft-based systems. For instance, Bølviken et al. (Bølviken et al.,
1977) demonstrated that MSS data could be employed to identify
heavy metal contamination based on fundamental spectral
characteristics.

Furthermore, multispectral imagery has been used by several
researchers to identify and locate previously unknown as well as
illegal hazardous waste sites. Errico et al. (Errico et al., 2014)
proposed a methodology that combines synthetic aperture radar
(SAR), multispectral data, and GIS-based processing for detecting
environmental hazards. This system yielded satisfactory results and
contributed to countering and controlling environmental crimes.
Additionally, hyperspectral imagery can be employed to identify and
map the spatial distribution of various heavy metals. For instance,
Kemper and Sommer (Kemper et al., 2004) used a HyMap sensor
and utilized airborne hyperspectral images to map lead and arsenic
contamination in the Guadiamar flood plain, Andalusia. Similarly,
Wu et al. (2011) reported satisfactory outcomes in heavy metal
mapping in Nanjing City of China, using simulated HyMap data.
They reported that direct predictions based on hyperspectral images
often require signals from bare soils, which can be achieved during
winter or early spring or when there is low vegetation coverage due
to crop rotation in agricultural areas. Therefore, remote sensing has
been instrumental in monitoring and managing hazardous waste
and sites. Multispectral sensors and airborne hyperspectral images
have provided valuable data for assessing pollution, identifying
contamination, and mapping the distribution of heavy metals.
These technologies offer a non-intrusive and comprehensive
approach to understanding and addressing environmental
concerns related to hazardous waste.

The incorporation of diverse advanced technologies has
significantly improved the field of environmental monitoring,
especially in the identification and control of hazardous waste.
Spectroscopy, rooted in chemistry and astronomy, has been

widely applied in remote sensing. Visible and near-infrared
reflectance spectroscopy is presented as an environmentally
friendly and cost-effective technique for approximating
concentrations of heavy metals in soil. Machine learning
methods, such as extreme gradient boosting and neural networks,
enhance the accuracy of predictions regarding heavy metal pollution
when combined with spectroscopic data. Ground-based monitoring
sensors, encompassing both manual and automatic networks and
utilizing machine learning models, play a role in robust air quality
monitoring. Aerial imaging, covering historical images and
hyperspectral imagery, provides a comprehensive perspective on
hazardous waste sites, aiding in the evaluation of pollution.
Unmanned Aerial Vehicles (UAVs) equipped with sensors are
essential for real-time identification and tracking of contaminant
plumes, thereby improving response capabilities. Ground robotics,
equipped with gas-sensitive sensors, are valuable in enclosed spaces
for the detection of hazardous substances. Ultimately, remote
sensing, facilitated by multispectral and hyperspectral sensors,
serves as a potent tool for systematic Earth observation,
particularly in the identification of heavy metal contamination
and mapping the distribution of pollutants. This holistic
approach underscores the varied strategies employed to tackle
environmental issues and emphasizes the pivotal role of
advanced technologies in preserving ecosystems.

4 Maximizing safety in hazardous
environments with AI-Driven
monitoring

Nowadays awareness of the safety of employees working in the
production and manufacturing operations in different industrial
environments that involve hazardous substances and materials has
become of utmost interest (Farrokhi-Asl et al., 2020). Thus,
monitoring the concentration and leakage of pollutants (Fung
et al., 2019) and development of safe and efficient methods
(Fung et al., 2019) to reduce the exposure of humans and the
detrimental risks for the environment, with fewer accidents
provoked by hazardous substances (Wong et al., 2018; Wang
et al., 2020), are becoming a priority in the implementation of
safety plan management in many sectors of the economy (Binajjaj
et al., 2018). In pollutant discharge events, immediate, precise, and
intelligent intervention is needed to alarm, prevent, and control
hazardous leakage (Mendil et al., 2022; Wang B. et al., 2023). Due to
the fact that humans cannot identify in time possible threats,
because the majority of gases are odorless, colorless, and tasteless
(Visvanathan et al., 2018), implementation in environmental
monitoring and detection of artificial intelligence based devices is
getting more popular (Daam et al., 2019; Emaminejad and
Akhavian, 2022). The popularity of AI and unmanned machines
arises from the effective, real-time, automated solutions that these
technologies provide when placed in hazardous environments. They
can detect and isolate possible threats before they cause harm, with
less or no human involvement (Palacín et al., 2019; Das et al., 2020;
Jiang et al., 2022). Recent advances have been developed for the
combination of autonomous robots with sensors that are flexible and
easily and remotely deployed in unsafe and toxic environments
(Ristic et al., 2017). They can improve the safety of workers and
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neighborhood areas without the risk of involving human life (Fan
et al., 2019). These devices are embedded with systems capable of
exploring, monitoring, detecting, and alarming, in case hazardous
events occur (Maedche et al., 2019). For example, Joshna et al.
(Joshna et al., 2019) developed an independent robot using Arduino
UNO (R3), equipped with sensors that can detect and identify toxic
gases. It can also perform degasification making use of oxidizing
agents that are sprayed on the gases, reducing their deleterious
effects. Fan et al. (Fan et al., 2019) developed a mobile robotic system
equipped with an E-nose that is highly accurate in detecting and
identifying different toxic gases like CO and NO2 present in the
environment. It can be used in fire and emergency response
departments. Gallego et al. (2015) developed an unmanned aerial
vehicle (UAV) equipped with metal oxide semiconductor (MOX)
gas sensors, capable of detection of toxic gas leaks, to monitor gas
pipes in outdoor areas. Novelty traits of the system include improved
velocity and reduced energy consumption and investment costs.

A wireless microcontroller (MCU) offers acquisitions of real-
time data, and a GPS/GSM (Global Positioning System/Global
System for Mobile Communication) modem offers accurate
registration and communication of the location and route in
addition to measuring the gas concentration. With the intention
of maximizing safety for staff workers in factories, Shi et al. (2016)
Burgués et al. (2019) proposed a Crazyflie 2.0 nano-drone assembled
with a MOX gas sensor. This nano-air vehicle (NAV) can accurately
localize the gas source with instantaneous gas distribution mapping,
which requires less time for concentration measurements than other
previous devices. Similarly, Das et al. (Das et al., 2020) proposed a
robot that can be deployed in an unknown and uneven environment
that can recognize hazardous gases (carbon dioxide, vaporized
alcohol, and liquefied petroleum gas) with an average accuracy of
98%. The robot can be operated to avoid collision obstacles and
detect the presence of humans, while mapping in real-time the
locations of the gases detected through a GPS module. A mobile
robot combined with MOX gas sensors to detect early gas leaks in
hazardous events was also developed by Palacín et al. (2019). The
innovative system has 16 E-nose gas sensors that are low-cost. They
can detect two chemicals at low concentrations that are located at
broad distances from the source. In case two gas sources are present
simultaneously, the mobile robot will detect the chemical that has
the highest concentration. To detect and identify possible threats
before damage takes place, Chen et al. (2023) proposed an AI-based
monitoring system using processing parts that were designed to be
simple. It had a 96.1% efficiency of detecting and localizing in real
time external vibrational disturbance of a buried pipeline. Table 1
summarizes some important research studies that have used AI
applications for monitoring and detection of hazardous substances.

Monitoring of hazardous environments to increase safety and to
protect humans while they are operating in them was the goal of the
work of Cheung et al. (2018). These authors developed a wireless
sensor network (WSN) monitoring system with sensor nodes that
can gather information regarding hazardous gases, temperature and
humidity. They are embedded into a building information model
(BIM) that displays the safety status in real-time with colors and
shows the precise location of a possible dangerous event in advance.
When high concentrations of gases are detected, the system is
activated automatically using a flashing alarm that can warn the
staff and workers. A ventilator and other safety devices are enabled

to reduce toxic and flammable gas flow, which will prevent
hazardous accidents. In a similar way, Jualayba et al. (2018)
designed a monitoring and warning system that can display the
safety status with colors when different levels of gases are detected.
An exhaust fan is triggered when a medium level is displayed. At
dangerous levels, an alarm buzzer is activated to inform people of a
gas leakage and the need to decrease the concentration of the
detected gas. The system has sensors for hydrogen, liquefied
petroleum gas, and methane.

Wilson (2012) suggested a multifunctional gas detection system
utilizing an Arduino Uno R3 and an Internet of Things module
equipped with an MQ-6 gas sensor, capable of identifying methane,
propane, and butane. The primary objective is to avert potential
dangers in industrial settings. Upon surpassing predetermined gas
threshold levels, the system activates a combination of a light-
emitting diode (LED), buzzer, and notification message. There
have been additional AI-powered devices devised for identifying
hazardous gases in factories and industrial environments, all geared
towards enhancing employee safety. They can collect data in real-
time and identify the source of the gas leak and map the location
(Manes et al., 2016). They are built with climatic sensors in addition
to the gas sensors. They offer accurate, continuous monitoring of gas
concentrations and are cost-effective (Thomas et al., 2018).
Wearable smart sensing devices attached to workers cloths can
be used for continuous gas monitoring in different industrial and
other toxic areas. They provide accurate and real-time data
acquisition that allows users to take rapid safety measures
(Antolín et al., 2017). For instance, Binajjaj et al. (2018)
proposed a wearable gas sensor network provided with an MQ-7
sensor that can detect both CO and CH4, accurately and rapidly,
using an accelerometer and an on-demand on/off switch that
reduces energy consumption. It has a GPS and communication
module that can transmit messages to other employees.

Wu et al. (2011) developed “WE-Safe”, a wearable IoT sensor
node capable of promptly warning workers in hazardous
environments. This device is based on LoRa wireless technology.
It has one microcontroller unit (MCU) and sensors for detection of
CO, CO2, as well as other sensors for environmental conditions
(temperature, humidity, and UV light). It gives real time data and
has a low energy exhaustion. Other researchers have designed
devices with accurate and real time detection using MQ2,
MQ5 gas sensors, which are capable of detecting hazardous gases
in people’s houses. The devices alarm the users through a buzzer and
a short message service (SMS) notification is sent to tell them that
the gas leakage needs to be controlled (Karthika et al., 2019;
Panganiban, 2019).

Another application based on AI technology, as a strategy to
control indoor ventilation by rapidly getting rid of PM, was
developed by Kim et al. (2021). The ventilation system has a
high removal rate of the hazardous airborne particles, which is
done in a short time with low power consumption. Mendil et al.
(2022) proposed a machine learning (ML)-based surrogate model
for transport and dispersion of air pollutants that can predict, fast
and accurately, the concentration and dose of pollutants in urban
areas. Asha et al. (2022) designed an IoT and ML based model
(ETAPM-AIT) for air quality monitoring that uses a sensor array for
eight pollutants, such as NH3, CO, NO2, CH4, CO2, and PM2.5. It
also measures temperature and humidity. In this model an AAA-
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TABLE 1 Research studies for AI applications in hazardous environments.

Detected parameter Technology/Device used Advantages References

CO, CH4 Wearable gas sensor network, Wireless
sensor network, MQ-7 sensor, Arduino

module with Xbee module

Accurate measurement of toxic gases, in
time warning messages, low cost, low

maintenance, reduced power consumption

Binajjaj et al. (2018)

Ethanol, acetone Assistant Personal Robot (APR-02),
16 MOX gas sensors (e-nose), PLS-DA

classifier

Autonomus, low cost, real-time, early
detection, low gas concentration detection,

two chemicals detection

Palacín et al. (2019)

CO2, liquefied petroleum gas (LPG),
vaporized alcohol (ethanol) gas, ambient gas

Six wheeled rocker-bogie robot, MQ gas
sensors, HC-SR501 passive infrared (PIR)

motion detector, HCSR04 ultrasonic
sensors, Zigbee

98% accuracy for hazardous gases
recognition, real-time gas detection,

remote handling, obstacles avoidance, GPS
location, human detection

Das et al. (2020)

CO, NO2 SmokeBot platform, Mobile Robotic
Olfaction (MRO) system, MOX gas sensors

(UWAR nose)

Gas distribution mapping and navigation
in environments with low visibility,

accuracy of gas discrimination, search and
rescue first responders’ protection, less

computational power

Fan et al. (2019)

Chlorofluorocarbon, CO, CH4 Robotic vehicle, MQ sensors, Arduino
UNO (R3)

Autonomous, obstacle avoidance, gas
detection and degasification

Joshna et al. (2019)

C2H5OH, CO, H2 Quad-rotor Unmanned Aerial Vehicle
UAV, STM32F1 control chip, MQ-2 gas

sensor, communication module
NRF24L01 and SPI protocol

Autonomous navigation in dangerous
environments, real-time detection of
hazardous gases, wireless transmission

Shi et al. (2016)

Hydrogen, methane, Liquefied Petroleum
Gas (LPG)

Hazardous gases detection and notification
system, MQ gas sensors, Arduino, GSM

module, indicator lamps

Gas leak SMS notifications, LCD display of
detected gas level, buzzer alarm, exhaust

fan to lower the gas concentration

JUALAYBA et al. (2018)

VOC, H2S Gas monitoring platform, gas and weather-
climatic sensors, wireless sensor network
(WSN), LAN/Ethernet (IEEE 802.1) with
TCP/IP protocols, ARM Cortex-M3 32-bit

micro-controller

Cost-effective, real-time emission
identification, redeployable monitoring

stations, continuous gas monitoring, rapid
warning of hazardous events

Manes et al. (2016)

Particulate matter, CO, O3 NO2, noise,
temperature, humidity

Monitor sensor network, Dragino WiFi IoT
module HE, microprocessor (ATmega32u4)

Continuous monitoring of multiple
hazards, low cost, accurate measurements

Thomas et al. (2018)

CO2, CO, ultraviolet (UV), temperature,
humidity

WE-Safe Platform, IoT sensor node, LoRa
wireless technology, Arduino Uno,

ATmega328p as MCU

Real-time data acquisition, remote cloud
server, early warnings for workers in
dangerous environments, low power

consumption

Wu et al. (2011)

LPG, CO Smart gas leakage, IoT with Arduino mega
2560, MQ-2 gas sensor, “BLYNK” mobile
app, Wi-Fi module, Node-MCU ESP-8266

Gas leakage notification, gas level
monitoring, automatic safety system, cost-

effective

Zinnuraain et al. (2019)

H2, LPG, CH4, CO, alcohol Gas detection system, Arduino UNO, MQ-5
Sensor

High sensitivity, fast response time,
continuous update, alarm buzzer, LCD

display, low cost

Bazrafshan and Kord Mostafapoor
(2011)

NH3, CO, NO2, CH4, CO2, PM2.5,
temperature, humidity

ETAPM-AIT model based on IoT, ML
techniques, WiFi, Artificial Algae Algorithm
(AAA), Elman Neural Network (ENN)

model

Real-time monitoring, alarm when
hazardous substances are above limit,

sensor array that can detect 8 parameters,
cost-effective

Asha et al. (2022)

Temperature, ph, turbidity, conductivity,
dissolved oxygen

IoT, Raspberry PI B+ core controller, WiFi,
cloud computing, water monitoring sensors

Real-time monitoring, efficient processing,
low cost

Vijayakumar and Ramya (2015)

pH, turbidity, temperature, humidity Water quality monitoring system, IoT,
ESP8266 Wi-Fi module, ThingSpeak mobile

application, Arduino Mega

Efficient, real-time water quality
monitoring, low cost

Pasika and Gandla (2020)

pH, temperature, conductivity Water quality measurement machine, IoT,
ESP8266 Wi-Fi module, ThingSpeak,
Arduino Mega 2560 microcontroller

Real-time monitoring, highly accurate,
track the level of water contamination,

immediate warnings, low cost

Sarkar and Pandey (2015)

pH, dissolved oxygen, temperature,
turbidity, conductivity

unmanned surface vehicle (USV) for water
status monitoring, IoT, Wireless Sensor

Network (WSN), ZigBee, IEEE
802.15.4 transceiver

Real-time data acquisition, remote
handling in unreachable areas, high
accuracy, efficient, reduced power

consumption, cost-effective

Vasudevan and Baskaran (2021)

(Continued on following page)
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based ENN is used to classify air pollutants, and the model provides
real-time detection of the pollutants. It has an alarm option that can
alert people when hazardous pollutants are detected in the air. For
safety purposes, Seo and Lee (2022) used an algorithm based on a
CNN to accurately classify hazardous compounds to avoid
hazardous chemicals being improperly used in laboratory
environments. An intelligent system equipped with different
sensors for CO, CO2, NO2, CH4, and H2S measurements using
an Arduino Uno card and IoTs module monitors landfill biogas to
prevent potential hazardous emissions (Mabrouki et al., 2021).
Oduah and Ogunye (2023) developed a low-cost, smart, remote-
sensing septic tank that can be used onsite to prevent sewage
overflow. It uses an ultrasonic sensor for detection and
monitoring the wastewater level in the septic tank and a GSM
module to send SMS alerts to the users, avoiding spills of
contaminants that can cause health problems.

Seker (2022) developed a real-time smart, cost-effective waste
collection system that employs IoT with technologies like radio
frequency identification (RFID), GIS, and ground penetrating radar
systems (GPRS). It is effective for municipal waste collection and
transportation and has the goal of reducing environmental
pollution. Transportation and storage of hazardous materials can
cause considerable risk to human life and the environment, due to
their toxicity, corrosiveness, explosiveness, and radioactive
characteristics (Mabrouk et al., 2017; Paredes-Belmar et al.,
2017). In this respect, to design of a remote monitoring system
based on a wireless sensor network that can offer real-time
information on the vehicle that is transporting the hazardous
materials. It can report the status of the vehicle (its attitude and
tire pressure) and its location. In addition, the temperature of the
transported hazardous chemicals is reported. This remote
monitoring of hazardous materials during transportation
provides safety measures for the workers and for citizens,
minimizing the occurrence of accidents.

Hosseini and Verma (2021) proposed an analytical method that
can determine the best route for transportation of hazardous
materials, to assure the safety of inhabitants. It can exclude route
zones that have high population density. Over the years, pollution of
water resources has increased, making uncontaminated water bodies
even more scarce all over the globe. The pollution has destroyed
aquatic ecosystems and resulted in health and safety issues for
humanity (Zhai et al., 2021; Yusuf et al., 2023). Protecting water
resources and preventing the release of different pollutants represent
the first steps in ensuring safety for the environment and people
(Berman et al., 2020). Various approaches for monitoring the
physico-chemical parameters of water resources have led to the
implementation of novel smart technologies (Geetha and Gouthami,

2016; Huang et al., 2018). Water-quality smart monitoring systems
using the Internet of Things (IoT) has gained popularity by engaging
WSNs that offer continuous, remote and real-time monitoring and
measurement of different water parameters. They can identify
pollution sources and give the opportunity of early warnings,
when possible threats or hazards are detected, and they can
provide proper safety measures (Pule et al., 2017; Lakshmikantha
et al., 2021).

A low cost system making use of the IoT for detection of water
parameters in real time, like temperature, turbidity, conductivity,
pH, and dissolved oxygen, which uses raspberry PI B+ as a core
controller, has been designed (Vijayakumar and Ramya, 2015).
Subsequently, Pasika and Gandla (Pasika and Gandla, 2020)
proposed a low cost, efficient system based on the IoT using
ThinkSpeak and various sensors to monitor drinking water
quality in real time. In a similar way, Kumer et al. (Kumer et al.,
2021) used ThinkSpeak and an Arduino Mega 2560 microcontroller
in a device to analyze in real-time water parameters to detect levels of
contamination when it happens and to warn inhabitants of
hazardous health risks. It is very accurate and inexpensive.

Khan et al. (2020) developed a system that can monitor water
quality for an industrial effluent treatment plant. It is composed of
wireless sensor networks, a GSM module for notifications in case of
emergency, an Arduino Uno R3 microcontroller, and an IoT-based
cloud server. This system proved to be efficient and cost-effective. It
gives continuous, real-time water quality monitoring, which allows
the local authorities the benefit of supervising and checking to see if
the released water from a specific industry is polluted or not. To tackle
the problem of unreachable water bodies that are in secluded areas,
Vasudevan and Baskaran (2021) proposed an innovative unmanned
surface vehicle (USV) based on the IoT and sensors that provided
control of these waters and diminished water pollution. They
confirmed its efficiency, low investment, reduced energy
consumption, and real-time data acquisition for surface water
quality monitoring. Similarly, Ryu (2022) proposed an unmanned
aircraft system (UAS) for water sampling and monitoring, which can
be used in potentially hazardous environments, minimizing the
involvement of humans. Its UASWQP platform can take water
samples from various points and is effective in presenting real-
time data regarding measurements of water parameters.

Adeleke et al. (2023) developed a highly accurate water quality
monitoring system interfaced with sensors and machine learning
algorithms to predict the level of water pollution. The remote system
gathers water quality data in real-time and is built with an
automated control system that can apply water treatment when
the level of pollutants are above the standard limits, which reduces
the expansion of diseases from contaminated water (Adeleke et al.,

TABLE 1 (Continued) Research studies for AI applications in hazardous environments.

Detected parameter Technology/Device used Advantages References

Temperature, pH, turbidity, conductivity,
DO, TDS, ORP

Water Quality Monitoring System, IoT,
Arduino Nano, ESP8266 Wi-Fi module,

ANN and SVM machine learning
algorithms, ThingSpeak database

Remote monitoring, real-time data
gathering, accurate water monitoring,
automated water treatment corrective

measure

Agrawal et al. (2017)

pH, temperature, turbidity, dissolved
oxygen, conductivity

Smart Water Monitoring System (SWMS),
four sensors, Arduino UNO, Raspberry

Pi (RPi)

Real-time remote monitoring, SMS
notification and alert signal, prevention of

health hazards

Jha et al. (2018)
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2023). A smart water monitoring system that collects real-time data
for water quality and quantity was designed by Jha et al. (2018). The
system uses sensors connected to an Arduino UNOTM and a
Raspberry PiTM(RPi) microprocessor. It can avoid hazardous
events caused by contaminated water seepage into drinking water
sources by sending SMS and e-mail notifications when the
monitored water is contaminated, which gives the opportunity
for authorities and consumers to take rapid safety measures.

5 Advancements and challenges

5.1 BeeTox AI and other models

In a recent study (Moreira-Filho et al., 2021), a novel web
application called BeeToxAI was introduced. It utilizes AI to
assess the acute toxicity of chemicals to Apis mellifera, commonly
known as the honey bee. BeeToxAI offers users a comprehensive set
of features, including the classification as toxic or non-toxic of acute
contact toxicity and acute oral toxicity endpoints. In addition,
confidence scores for the prediction are given along with a visual
representation of the results through maps. These color-coded maps
illustrate the relative contribution of chemical fragments to toxicity.

Since pesticides contain toxic substances that are injurious to health
(Demirel and Kumral, 2021), AI algorithms are needed for
controlling and tracking them, to reduce their toxicity. Because
nitrogen based chemical fertilizers increase the amount of nitrate in
groundwater, AI might be used to control excessive nitrate in soil.

The analysis of water quality as a source of irrigation can be done
using AI-ANNmodels (Ostad-Ali-Askari et al., 2017). Over the past
decade, a multitude of studies have been conducted to forecast the
efficacy of machine learning in removing heavy metals from soil
(Table 2). These investigations have focused on predicting the
effectiveness of various techniques for soil remediation and heavy
metal removal utilizing machine learning methodologies (Zafar
et al., 2017; Zhu et al., 2019; Bhagat et al., 2020). Models used
for optimizing and predicting heavy metal removal have
encompassed black box, fuzzy logic, kernel, evolutionary, and
hybrid models, and each offers distinct advantages.

In a study conducted by Talebkeikhah et al. (2022), which
focussed on the adsorption of Pb (II) on biochar, eleven models
were employed, which included group-data handling methods such
as support vector machines (SVM), radiofrequency (RF), adaptive
neuro-fuzzy interference systems (ANFIS), multilayer perception
(MLP), and Decision Tree. Additionally, to evaluate the significance
of coupling in creating predictive models for estimating adsorption

TABLE 2 AI models for monitoring the environment for hazardous substances.

Environment Approach/Models Utility Authors

Air Hybrid Hidden Markov Model (HMM) - ANN Harmful gas monitoring and error detection in sensor
datasets

Praveenchandar et al.
(2022)

Air Artificial Algae Algorithm (AAA) based Elman Neural
Network (ENN)

IoT enabled environmental toxicology for air pollution
monitoring; classification of air pollutants

Asha et al. (2022)

Air Random Forest (RF), Bagged Classification and Regression
Trees (Bagged CART), and Mixture Discriminate
Analysis (MDA)

Hazard prediction of particulate matter (PM10) Choubin et al. (2020)

Air Spatiotemporal deep learning (STDL)-based method using
Stacked autoencoder (SAE) model

Air quality predictions Li et al. (2016)

Soil ANN, adaptive neuro-fuzzy inference system (ANFIS)
models, multiple linear regression (MLR)

Lead and cadmium estimation from clay, organic carbon, pH,
phosphorus, and total nitrogen

Bazoobandi et al.
(2022)

Soil ANN Determine essential heavy metals based on Ca, K, and Mg
concentrations

Sari et al. (2022)

Soil Hybrid model integrating least absolute shrinkage and
selection operator (LASSO), genetic algorithm (GA) and
error back propagation neural network (BPNN) with remote
sensing imageries

Spatial distribution of heavy metals in soil Shi et al. (2022)

Soil ANN and Support Vector Regression (SVR) Rapid estimation of soil trace/heavy metals and related
decision-making

Tawabini et al. (2022)

Soil SVM with mid-infrared (MIR) laser spectroscopy In Situ detection of petroleum in soils Galán-Freyle et al.
(2020)

Water Artificial neural networks (ANN) Lead removal from aqueous solution Yetilmezsoy and
Demirel (2008)

Water ANN Describe adsorption of benzene, toluene, ethyl benzene, and
xylene on iron nano particles for their effective removal from
aqueous systems

Mahmoud et al. (2018)

Water ANN, Support vector machine (SVM), adaptive neuro-fuzzy
inference system (ANFIS), genetic algorithms (GA)

Modelling and optimization of electrochemical processes for
water and wastewater treatment

Shirkoohi et al. (2022)

Water Logistic regression (LR), random forest classifier, and
K-nearest neighbours (KNN)

Monitoring system for onsite septic systems failure Ravi and Johnson
(2021)
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efficiency, the researchers developed four coupled predictive models
using the grasshopper optimization algorithm (GOA) and the bat
algorithm, and they combined ANFIS and MLP.

Chen et al. (2020) developed a CNN architecture specifically
designed for deep calibration using near-infrared (NIR) spectroscopy
data. Their study focused on assessing the level of water pollution
originating from domestic and industrial sources, with the aim of
enabling suitable agricultural irrigation practices. The researchers
successfully established intelligent spectroscopic models using the
CNN architecture, which could be instrumental in addressing
water recycling and conservation issues in agricultural cultivation.

The field of medicine is experiencing gradual transformations
due to the development of AI. Various medical disciplines, including
clinical, diagnostic, rehabilitative, surgical, and predictive practices,
are being influenced by AI applications (Secinaro et al., 2021). AI
technologies have the capacity to process and analyze large volumes
of data from diverse modalities to aid disease detection and guide
clinical decision-making (Cho et al., 2020).

5.2 Medical waste

Recently, global healthcare advancements have led to an increase
in the generation of medical waste, thereby contributing to a rising
trend in waste production (Bazrafshan and Kord Mostafapoor,
2011). Various types of hazardous waste, such as hospital waste,
dental waste from medical laboratories, blood wastage, and clinical
waste, pose potential risks to both human health and the
environment (Bazrafshan and Kord Mostafapoor, 2011). Medical
waste (MW) encompasses infectious waste, sharp waste, toxic waste,
chemical waste, and pharmaceutical waste. Inadequate management
of medical waste can lead to the transmission of infectious diseases,
including AIDS, hepatitis, typhoid, and many others (Askarian et al.,
2010; Aghapour et al., 2013). These wastes have the potential to
pollute the environment and spread acute and latent viral infections.
They contain significant amounts of bacteria and viruses. If they are
not properly controlled, they have the potential to contaminate the
environment, which includes air, water, plants, animals, and land
(Rajan et al., 2019). This can lead to the spread of disease. The
quality of life, physical and emotional health, and overall health of
medical personnel and patients are all seriously threatened by MW
(Nwachukwu et al., 2013).

In a recent study (Zhou et al., 2022), a novel image recognition
system was introduced called Deep MW for the purpose of sorting
medical waste. Deep MW utilizes a CNN as its underlying
architecture. The system aims to enhance the ease, accuracy, and
efficiency of medical waste sorting and recycling processes, while
also reducing the risk of occupational exposure for workers in
medical waste facilities. Other similar systems exist, like iWaste
(Chen et al., 2020), Deep MW excels in recognizing and sorting
diverse categories of medical waste, showcasing remarkable accuracy
and practicality in classification. Its proficiency makes it adaptable
for expanding its use to other object classifications. Amidst the
ongoing COVID-19 pandemic and other outbreaks, artificial
intelligence has proven pivotal in creating surveillance tools
aimed at identifying individuals not adhering to quarantine
regulations. Monitoring bracelets exemplify one such tool.
Furthermore, AI-enhanced technologies, such as smartphones

and thermal cameras, are utilized for detecting fever and signs of
illness. (Whitelaw et al., 2020).

5.3 Other applications

These advancements in AI have significantly contributed to
improving surveillance and monitoring capabilities in public health
and safety. A country like Taiwan treats coronavirus patients based on
their travel history and symptoms by integrating data from the
immigration and customs database with the national medical
insurance database (Wang J. et al., 2023). Based on research
conducted by Taiwan’s Occupational Safety and Health
Administration (OSHA), a significant number of surgical staff,
approximately 50,000 individuals, face exposure to smoke hazards
during procedures involving the use of lasers and electrocautery (Wang
et al., 2020). This exposure poses potential risks to the health and safety
of surgical personnel. AI can be used for assessing the characterization
of the smoke emitted and also for carrying out an AI-powered air
quality assessment (Kaginalkar et al., 2021).

Industry 4.0 is revolutionizing the way companies manufacture,
improve, and distribute their products, and AI is widely recognized
as a crucial technology for it (Mao et al., 2019). Its incorporation in
these domains has significantly transformed and enhanced various
aspects of industrial processes, enabling advanced automation, data-
driven decision-making, predictive maintenance, and optimization
of manufacturing operations (Figure 3). AI’s capabilities have played
a pivotal role in driving efficiency, productivity, and innovation in
the manufacturing sector, making it a key enabler of the Industry
4.0 paradigm. Industry 4.0 has brought about a number of cutting-
edge technologies, and this new phase of AI development is known
as AI 2.0 (Pan, 2016). The utilization of AI in smart factories and its
application in modern industrial sectors have been acknowledged as
transformative (Mao et al., 2019). It enables efficient decision-
making processes based on real-time and historical data,
minimizing the need for human intervention.

Liu et al. (2019) proposed the integration of intelligent
manufacturing in-shop service modules with Big Data analytics,
to enhance productivity in various industries. For the facial mask
industry, Zhang (2019) suggested a remote design system utilizing
AI for image processing and pattern recognition, coupled with a
client wireless communication. Yan et al. (2018) highlighted the
significance of AI algorithms in forecasting the lifespan of industrial
equipment, particularly in the context of Industry 4.0.

AI, machine learning, and autonomous technologies have
significantly impacted the mining industry by detecting hazards
and reducing risks [136, 137]. The introduction of autonomous
trucks and the utilization of AI and machine learning have brought
cost savings, increased productivity, improved worker safety, and
continuous production (Hyder et al., 2018). AI systems analyzing
geological, topographical, mineralogical, and mapping data can
identify anomalies, locate potential areas of interest, and facilitate
autonomous drilling operations (Hyder et al., 2018).

In the architecture, engineering, and construction (AEC) sector,
AI has been increasingly employed to enhance existing procedures
and address challenges. Applications and algorithms of AI in the
AEC industry have been studied. Virtual reality and augmented
reality have been used for hazard identification and risk assessment
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in construction environments (Von Meding et al., 2009; Perlman
et al., 2014; Abioye et al., 2021).

Advancements in artificial intelligence (AI) and machine learning
(ML) have significantly improved efforts in mitigating pollution
(Chen et al., 2023). State-of-the-art technologies are being utilized
to improve air quality modeling, integrating a variety of data sources
such as satellite imagery and meteorological data for more accurate
predictions. The amalgamation of AI with satellite technology allows
for comprehensive monitoring of environmental shifts, assisting in
the identification of pollution sources. The introduction of edge
computing enables real-time analysis of environmental data at its
origin, facilitating swift responses to pollution incidents. Hybrid
models, which merge physics-based simulations with ML, enhance
the precision of identifying pollution sources (Anthony et al., 2023).
ML-driven predictive analytics forecast pollution levels, enabling
proactive measures to prevent environmental deterioration. In the
energy sector, AI is optimizing smart grids and energy distribution,
reducing the environmental impact (Gautam et al., 2023). AI-guided
robotics are deployed for pollution clean-up, autonomously
recognizing and addressing contaminants. The combination of AI
and block chain technology ensures transparency and traceability in
environmental data (Zhao et al., 2023). ML-powered adaptive
monitoring networks intelligently allocate resources for effective
pollution monitoring. Mobile applications, leveraging AI, empower

citizens to contribute to environmental monitoring, promoting a
decentralized approach to data collection (Sahil et al., 2023). These
recent strides underscore the transformative potential of AI andML in
reshaping pollution mitigation strategies, steering towards a more
sustainable and resilient future (Zahed et al., 2022).

6 Limitations

In recent years, there has been a notable surge in the utilization
of AI as an emerging technology across various sectors, such as
agriculture, medicine and healthcare, mining and manufacturing,
environmental conservation, and numerous other domains
(Trasande et al., 2011; Perez Santin et al., 2021). While AI brings
forth numerous benefits, it is not extempted from challenges and
limitations that require efficient and notable solutions. These issues
encompass the effective execution of tasks and management and
mitigation of risks, as well as the assessment of hazardous materials.
The requirement for significant processing power raises concerns
about environmental impact and energy consumption (Singh and
Kaur, 2022). Developing countries may face infrastructure
limitations that hinder the efficient deployment of AI (Singh and
Kaur, 2022). Data acquisition costs in data-driven agriculture
remain high, limiting the widespread impact of AI on

FIGURE 3
The figure illustrates the advantages and disadvantages associated with AI.
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agricultural productivity (Linaza et al., 2021). Furthermore, issues of
data ownership, privacy, and cybersecurity arise, necessitating
standardized protocols and integration with technologies like
block chain to ensure data integrity and security (Abedjan et al.,
2019; Misra et al., 2020). Block chain is a system in which a record of
transactions is maintained across computers that are linked.

In the manufacturing field, there is a need for further research on
the application of AI in various sub-components, such as design,
machinery used, assembly, and production (Zeba et al., 2021). Ethical
considerations also arise, including concerns about genetic
engineering, moral decision-making by AI systems, and the impact
on jobs, economy, and society (Zeba et al., 2021), including privacy
under surveillance. The AEC industry faces challenges related to
funding, data, ethics, privacy, trust, scalability, and expertise
(Motawa, 2017; Hagendorff, 2020). Resistance to technology
adoption stems from concerns about job displacement, uncertainty,
wealth distribution, and the complex relationship between humans
and technology (Kappal, 2017). Additionally, there are challenges in
understanding how AI can effectively support individual and group
decision-making (Maedche et al., 2019). Overall, the application of
AI in various industries brings about significant opportunities and
challenges, necessitating further research, infrastructure development,
and ethical considerations.

7 Conclusion and future perspectives

The development of artificial intelligence-driven sensors for
environmental monitoring of hazardous substances has the potential
to revolutionize how we detect and respond to environmental threats.
With their ability to process large amounts of data in real-time and
identify patterns and anomalies that may indicate the presence of
hazardous substances, these sensors can greatly improve our ability to
protect public health and the environment.

However, there are still many challenges that must be addressed,
such as ensuring the accuracy and reliability of these sensors and
determining the best ways to integrate them into existing monitoring
systems. Despite these challenges, the potential benefits of AI-driven
sensors make them a promising avenue for future research and
development in the field of environmental monitoring. In the near
future, AI-powered hazardous substance monitoring has the potential
for enhanced automation, the creation of more sophisticated models,
and the fusion of AI with novel technologies like the IoT.

AI could deliver promises about prediction, optimization, and
decision-making in the near future to help the traditional construction
industry keep upwith the rapid speed of automation and digitalization
in a variety of risky and dangerous circumstances (Pan, 2016). It can
offer a wide range of risk identification factors as well as assess and
deliver for prioritization, because it can monitor, recognize, analyze,
and anticipate possible risk in terms of safety, quality, efficiency, and
cost across teams and work areas even in the presence of significant
uncertainty (Afzal et al., 2021). AI-powered monitoring systems can
provide real-time, on-ground detection of potentially dangerous
substances and the location of the incident sites. They may
prevent any serious accidents from happening that would be
harmful to human health. These systems are applicable in the
fields of agriculture, health, mining, manufacturing, and other
industries (Ghayvat et al., 2021; Kim et al., 2021).

AI has the potential to remodel the monitoring and detection of
hazardous substances in various environments by offering real-
time analysis. This can be achieved through the integration of
sensors, data processing capabilities, and machine learning
algorithms. By leveraging these technologies, AI systems can
swiftly and accurately analyse data streams to identify potential
hazards. This application is particularly valuable in industrial
settings or areas susceptible to chemical spills or leaks (Leppert
et al., 2012). Furthermore, AI can contribute to predictive
modelling and risk assessment of hazardous substances. By
examining historical data and considering various environmental
factors, AI algorithms can forecast the probability and severity of
incidents involving hazardous substances. This allows for proactive
mitigation measures to be implemented. AI can also integrate data
from multiple sources, such as sensors, satellite imagery, and public
health records. By combining diverse datasets, AI algorithms
provide a holistic understanding of the distribution, movement,
and impacts of hazardous substances (Wu et al., 2011; Hurlbert
et al., 2019; Shafique et al., 2022; Shi et al., 2022). In addition, AI can
offer decision support tools for human operators engaged in
hazardous substance monitoring. Through user-friendly
interfaces and natural language processing, AI systems can aid
in data interpretation, anomaly detection, and timely decision-
making. These features assist operators in effectively managing
hazardous substance situations.
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Glossary

AAA artificial algae algorithm

AEC Architecture, Engineering, and Construction

AI Artificial Intelligence

ANFIS Adaptive Neuro-Fuzzy Inference System

ANN Artificial Neural Network

CARS Competitive Adaptive Reweighted Sampling

CNN Convolutional Neural Network

ENN Elman Neural Network

ERF Extreme Random Forest

GHG Green House Gas

GIS Geographic Information System

GOA Grasshopper Optimization Algorithm

GPS/GSM Global Positioning System/Global System for Mobile Communication

HIS Hyperspectral imaging

HRAI High Resolution Aerial Imagery

IoT Internet of Things

LED Light-Emitting Diode

MCU Wireless Microcontroller Unit

ML Machine Learning

MLP Multilayer Perception

MOX Metal Oxide Semiconductor

MRO Mobile Robotic Olfaction

MSS Multispectral Sensors

MW Medical Waste

NAV Nano-Air Vehicle

NIR Near-Infrared

PM Particulate Matter

RF Random Forest

RFID Radio Frequency Identification

RNN Recurrent Neural Network

SAR Synthetic Aperture Radar

SERS surface-enhanced Raman scattering

SMS Short Message Service

SVM Support Vector Machine

UAS Unmanned Aerial Systems

UASWQP Unmanned Aerial Systems Water Quality Platform

UAV Unmanned Aerial Vehicles

WSN Wireless Sensor Network
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