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Climate change is a pressing global issue. Mathematical models and global
climate models have traditionally been invaluable tools in understanding the
Earth’s climate system, however there are several limitations. Researchers are
increasingly integrating machine learning techniques into environmental science
related to time-series data; however, its application in the context of climate
predictions remains open. This study develops a baselinemachine learningmodel
based on an autoregressive recurrent neural network with a long short-term
memory implementation to predict the climate. The data were retrieved from the
ensemble-mean version of the ERA5 dataset. The model developed in this study
could predict the general trends of the Earth when used to predict both the
climate and weather. When predicting climate, the model could achieve
reasonable accuracy for a long period, with the ability to predict seasonal
patterns, which is a feature that other researchers could not achieve with the
complex reanalysis data utilized in this study. This study demonstrates that
machine learning models can be utilized in a climate forecasting approach as
a viable alternative to mathematical models and can be utilized to supplement
current work that is mostly successful in short-term predictions.
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1 Introduction

From 1983 to 2012, the Northern Hemisphere likely experienced the warmest 30-year
period of the last 1,400 years. Furthermore, the globally average combined land and ocean
surface temperature data predicts an approximate total warming of 0.85°C (Pachauri et al.,
2015). Climate change is not new, and every inhabited region on Earth is currently
experiencing climate change that has not been observed for a long time (Gale, 2022;
Lerner, 2023). The general scientific consensus is that human activity has contributed
significantly to accelerating climate change beyond what would occur naturally
(Lerner, 2023).

Extensive research has been conducted to predict the extent of climate change and
estimate the magnitude of the challenges that humanity will ultimately face. Climate scientists
have relied on traditional methods, such as forecasting and pattern recognition. Developments
have beenmade in bothmulti-and univariate statistical forecasting techniques, but they do not
fully match the accuracy of numerical prediction models (Stern and Easterling, 1999).
Atmospheric general circulation models (AGCM), a type of numerical model, consist of a
system of equations describing the large-scale atmospheric balances of momentum, heat, and
moisture, with schemes that approximate small-scale processes such as cloud formation,
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precipitation, and heat exchange with the sea surface and land
(Hurrell, 2003). AGCMs can predict over multiple months and
years in the future. In particular, several different models have
emerged over time, such as those of the National Aeronautics and
Space Administration and the University of California, Los Angeles
(Stern and Easterling, 1999; Edwards, 2010).

These models have its limitations. Numerical weather forecasts
are computationally expensive and forecast quality reduces
significantly already after a couple of days even in the best
models available (Düben and Bauer, 2018). They also have
decreasing predictive ability of the model outside tropical regions
(Kumar and Hoerling, 1995). The added spatial complexity for more
accurate predictions increases the computational complexity of
global climate models (GCMs), making them difficult and
expensive to train (Collins et al., 2012).

To address these limitations, the advent of artificial intelligence (AI)
and machine learning (ML) has prompted numerous efforts to
investigate their potential applications in climate and weather
prediction. This is primarily driven by the scientific community’s
recognition that AI possesses the capability to discern patterns that
were previously elusive to human observation. Climate prediction
involves forecasting atmospheric conditions t days into the future
based on the current or recent atmospheric conditions. This
characteristic makes supervisedmachine learning well-suited for the task.

Studies utilizing Convolutional Neural Networks to predict the
climate over specific regions have been reported (Scher and Messori,
2019; Weyn et al., 2019). Regression models and the random forest
algorithm were implemented to predict the weather predictions
(Herman and Schumacher, 2018; Mansfield et al., 2020). In
particular, the models utilized for weather predictions have been
regressively trained to generate climate predictions, and researchers
have been able to obtain stable climate predictions from relatively
simple data obtained from GCMs (Scher, 2018). However, when
training on more complex data, models struggle with climate
predictions, not predicting seasonal patterns correctly or
predicting unrealistic patterns (Weyn et al., 2019).

Autoregressive long short-term memory (LSTM) network, a
type of recurrent neural network, can recognize the behavioral
patterns of time-series data and utilize them to predict. For
example, these methods have been used to predict air pollution
(Kulkarni et al., 2018) and rainfall (Razak et al., 2016). This study
develops a baseline model for characterizing long-term temperatures
of the Earth using LSTM networks.

2 Methods

2.1 Model setup

The ML model considered comprises a deep autoregressive neural
network that utilizes a convolutional long short-term memory (LSTM)
layer combining the properties of a convolutional layer with those of an
LSTM layer (Shi et al., 2015). This MLmodel has an increased ability to
handle spatiotemporal data. Convolutional LSTM layers have often
been utilized to predict time-series data, which are helpful in this specific
application (Hewamalage et al., 2021).

The model inputs twenty-four-time steps and outputs the next
twelve-time steps. Therefore, data was split into thirty-six “batches” of

data to be fed into the model at once during training. The first twenty-
three-time steps are “warmups,”where the outputs of the input of this
value are not considered to be the outputs of the model, but simply
used to train the model. The output of the twenty-fourth time step,
however, is utilized to create the first label of the prediction, and this
process is continued twelve times to create the final prediction. This
process is shown in Supplementary Figure S1.

The autoregressive model consists of a single Convolutional LSTM
layer with 16 filters that is connectedwith a series of dense layers, with 8,
4, and 1 neuron. The model itself had a total of 10,003 trainable
parameters. Each dense layer comprises a LeakyRelU activation
function, and the Convolutional LSTM layer had a dropout rate of
0.4. The training loop had a maximum number of epochs of 100 with
EarlyStopping and ReduceLRonPlateau callbacks. The RMSprop
optimizer with a learning rate of 0.001, a decay rate of 0.9, and a
binary cross entropy loss function was utilized. This model was built
using the open-source Keras Library for Python (Collet, 2015) with a
Google 88 TensorFlow backend (Schneider and Xhafa, 2022).

2.2 Data acquisition and processing

The ensemble mean version of the ERA5 reanalysis dataset,
acquired from the Copernicus database, was utilized. ERA5, the fifth
generation of the European Centre for Medium-Range Weather
Forecasts’s reanalysis efforts, offers a comprehensive dataset that
meticulously records Earth’s climate variables over an extensive
timeframe. This dataset is generated through the assimilation of
observational data from diverse sources into a numerical weather
prediction model. Publicly accessible, ERA5 encompasses the entire
globe at a spatial resolution of approximately 31 km. With a temporal
span from 1979 to near real-time and a latency of about 3 months, it is
continuously updated, proving valuable for both historical analyses and
real-time assessments (Hersbach et al., 2023). The dataset has the
advantage that data are available for each grid point at each time
step and are consistent over the entire data window instead of
observations for training (Düben and Bauer, 2018). The temperature
at a two-meter height of the 1st and 15th of eachmonth was considered
during the period 2002–2022, leading to five hundred four-time steps
overall. These temperature data were normalized by adding 80°C to the
temperature and dividing the obtained value by 160°C so that the data
points are between (0, 1). 80°C was chosen based on trial and error. The
latitude and longitude were recorded with a 1° resolution, resulting in a
snapshot of 181 × 360 = 65,160 grid points per time step. Of the five
hundred four-time steps, thus four hundred sixty-eight batches of
thirty-six timesteps to be fed into training, four hundred was used
for training, thirty-four was used for validation and thirty-four was used
for testing. The data were converted from numerical tuples of (latitude,
longitude, temperature, and time) to an image for training with the two-
meter height data as the color value at each latitude and longitude pair.
Latitude-longitude of (90, −180) was set to (0,0) of the image, in the top
left corner.

2.3 Metrics

The performance of the model was evaluated using two values,
the root mean squared error (RMSE) and mean absolute error
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(MAE). These metrics are widely used metrics for calculating the
accuracy of models (Schneider and Xhafa, 2022). Moreover, these
metrics were calculated with the un-normalized data and returned to
their original scale. The RMSE and MAE values were calculated
(Chai and Draxler, 2014).

2.4 Testing conditions

After training the model, its performance was evaluated under
three scenarios. The first scenario considered images generated from
true images. The second scenario considered a model predicting
future images with only the first input image being real and the
model autoregressively feeding the output back as a part of the input.
Finally, the third scenario considers climate predictions performed
20 years into the future using the regressive methodology of the
second evaluation method.

The mean temperature over time, the difference between the real
and generated data, and the RMSE and MAE values were computed.
The results considered the model predictions in specific significant
regions of the Arctic, Antarctic, East Asia, Europe, North America,
North Africa, Northwest Asia, Oceania, South America, South Asia,
and South Africa. These regions were set based on a previous study

(Mansfield et al., 2020). In addition, Antarctica was added because of
its prominence in Earth’s images.

3 Results

3.1 Analysis of the output generated solely
on real images

The proposedmodel performed reasonably well, exhibiting RMSE
and MAE values of 4.642 and 3.296, respectively. Figure 1 shows the
RMSE andMAE values over each time step as a line graph (a) and the
average temperature change of the Earth over time for both the
predicted and real values (b) a certain seasonal pattern is present, even
though the shape of the pattern does not perfectly align with the real
pattern. Additionally, the predicted values generally show a higher
temperature prediction, as indicated by the higher overall mean value.

Figure 2A shows the model prediction of the temperature on
15 December 2022, and the temperature observed on that date. The
predicted image was much more blurred than the observed image.
While the right image shows much more precise delineations of the
color change, the left image has more or less equal colors for regions
where the color should be different. However, differences are present

FIGURE 1
RMSE, MAE, and mean temperature change over the Earth. The RMSE and MAE in each time step based solely on real images (A) the mean
temperature change over the Earth that the model predicted solely on real images (B). RMSE and MAE in each time step by feeding generated images (C)
the mean temperature change over the Earth the model predicted by feeding generated images (D).
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that clearly divide the continental and oceanic regions in the left
image, even though the temperature difference is not well described
in the image. Moreover, the temperatures of the regions closer to the
equator are predicted to be hotter (more yellow), whereas the
regions near the poles are predicted to be colder (more blue).

Figure 3A displays the RMSE/MAE values over every predicted
time step in each major region of Earth. The model was the best at
predicting the temperature in the South African region, with the
lowest RMSE and MAE of 2.222 and 1.822, respectively. The model
was the least effective at predicting the temperature in Northwest
Asia, exhibiting high RMSE and MAE values of 6.829 and 5.657,
respectively. Figure 3B shows the change in the mean temperature of
each region of the predicted versus the actual data. The Arctic and
Antarctic regions can be easily predicted using the model, whereas
regions such as Oceania/Southeast Asia, South America, North
Africa, and South Africa cannot be predicted well using the
model. The remaining regions—Northwest Asia, South Asia, East
Asia, North America, and Europe—appear to have relatively good
accuracy, exhibiting minimal deviation between the predicted mean
temperature and the real mean temperature and little change
between the increase and decrease patterns.

3.2 Analysis of the output generated by
feeding generated images

The model still exhibited reasonable performance with this
approach, with RMSE and MAE values of 5.487 and 3.982,

respectively. However, both MAE and RMSE values increased
when compared with the results in Section 3.1: RMSE and MAE
of 4.642 and 3.296, respectively. Figure 1 shows the RMSE and MAE
values over each time step as a line graph (c) and the average
temperature change of the Earth over time for both the predicted
and real values (d). The temperature pattern slightly increases over
time, greater than the actual data. In addition, the predicted
temperature was higher than the predictions based solely on the
real images.

Figure 2B shows the model predictions of the temperature on
15 December 2022, and the temperature observed on that date. The
left image shows the image generated when the output was generated
on the generated images; the middle image shows the image
generated when the output was generated based on real images;
and the right image shows the image of real data. While the images
look similar, the region around the equator on the left image is the
most yellow, indicating the warmest of the three images. The middle
image has an Arctic and Antarctic region that is the bluest,
indicating the coldest of the three images. The leftmost image is
the blurriest, yet the major delineations (i.e., continents) are still
somewhat recognizable.

Figure 3C depicts all RMSE/MAE values over every predicted
time step and the change in the mean temperature of each region of
the predicted versus the actual data in each major region of Earth.
South Africa remained the region where the model predicted the
best, with the lowest RMSE and MAE values of 2.998 and 2.510,
respectively. The least effective region predicted by the model
remained Northwest Asia, with the highest RMSE values of

FIGURE 2
Predicted temperature on 15 December 2022. (A) Left image is the image generated by the model, and right image is the image derived from real
data solely from real images. (B) Left image generated by themodel when fed autoregressively; middle image generated by themodel when trained on all
real images when fed autoregressively; right image derived from data when fed autoregressively.
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8.304 and 6.957. Figure 3D shows that the model is ineffective in
predicting the mean temperatures in Europe, South Asia, Oceania,
Southeast Asia, South America, North Africa, and South Africa.

3.3 Temperature model prediction

The model’s output of the mean temperature over the next
20 years is shown in Supplementary Figure S2. The prediction
accuracy of the model progressively deteriorates as time
progresses. Predictions get blurrier and blurrier, and while the
Arctic region first turns yellow, the Antarctic region does not
follow this trend and remains cold. Figure 4 shows the mean
temperature of each time step over the next 20 years. The time
was shown per month in order to make the chart clearer. The model
projects that the temperature will reach an average of roughly 18°C
in the next 20 years, roughly an increase of 11°C. However, seasonal
patterns of increase and decrease in temperature can still be
observed in the predictions, although the degree of increase and
decrease varies over time and the small pattern of slight decrease
near July enlarges.

4 Discussion

Based on an autoregressive LSTM network, we developed a
climate predictive model, particularly long-term temperature, with
reasonable performance. Although future climate predictions are
vital for addressing the challenges posed by global warming, only a

few models have been developed to detect long-term climate change.
Future climate predictions can be crucial in decision-making, policy
planning, prevention and response to natural disasters, resource
management, and environmental protection.

The LSTM model, a type of recurrent neural network, is adept
at capturing long-term dependencies in time series data, making it
effective for modeling and predicting complex climate patterns
(Gers and Schmidhuber, 2000). With a memory cell capable of
storing and retrieving information over extended periods, LSTMs
can crucially remember features and patterns from earlier time
steps, enhancing the understanding of climate variable dynamics.
Their ability to handle diverse input types simultaneously is vital
for climate prediction, where various meteorological variables
contribute to the overall system (Wu et al., 2024). LSTMs are
robust against noise and uncertainties in climate data, contributing
to improved prediction accuracy. They excel when trained on large
and complex climate datasets, learning intricate patterns and
dependencies. The adaptive learning capability allows LSTMs to
adjust internal parameters based on input data characteristics,
capturing the non-linear and dynamic nature of climate processes
(Ewees et al., 2022). Configurable for predicting values at multiple
future time steps, LSTMs are suitable for both short-term and
long-term climate predictions, crucial for understanding trends
and variations over different time scales in climate modeling.

GCMs, as complex computer-based models, incorporate various
components of the Earth’s system, providing insights into a wide
range of climate variables such as temperature, precipitation, wind
patterns, atmospheric circulation, and risk of climate change. Owing
to their limitations and uncertainties, exploring more detailed

FIGURE 3
RMSE, MAE (A) and change inmean temperature (B) over each region trained solely on real images. RMSE, MAE (C), and change inmean temperature
(D) over each region trained solely by feeding in generated images.
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relationships between emissions and multiregional climate
responses requires applying GCMs that allow climate behavior to
be simulated under various conditions on decadal to multi-
centennial timescales (Bitz and Polvani, 2012; Nowack et al.,
2017; Hartmann et al., 2019). However, modeling climate at
increasingly high spatial resolutions has significantly increased
computational complexity. Numerous studies have been
conducted to develop AI models to address this issue and
supplement these models.

A study predicting global long-term climate change patterns from
short-term simulations evaluated the performance using Ridge and
Gaussian Process Regression (GPR) at the grid-cell level. Both
approaches predicted broad features such as enhanced warming
over the Northern Hemisphere, like pattern scaling (Mansfield
et al., 2020). The temperature error in this study remains between
one and two degrees, which was significantly lower than that in the
present study. Mansfield et al. also conducted analysis of their results
based on the different regions. The region showing effective prediction
and less effective prediction is somewhat different. than that of our
study. In some regions (e.g., East Asia) the dominant coefficients
appear in regions close to the predicted grid cell, whereas in other
regions (e.g., Europe) predictions are strongly influenced by the short-
term responses over relatively remote areas, such as sea-ice regions
over the Arctic. Our study and Mansfield et al.’s study both predicts
the East Asia region well, which adds value to this study’s model.
However, their study mainly focused on improving the GCMs,
whereas this study aims to replace the GCMs. As a corollary, their
study was pulled from the outputs of GCMs, whereas this study’s

outputs were from reanalysis data. In addition, the errors in that study
were calculated at the grid-cell level, which can be misleading because
they penalize patterns in which broad features are predicted correctly
but are displaced marginally on the spatial grid (Rougier, 2016). This
crucial predicted difference in the data could be the leading cause of
the difference in errors between the present study and those reported
byMansfield et al. The use of differentML algorithms (Autoregressive
LSTM versus Gaussian/Ridge regression) could also have contributed
to this difference.

A study on global mean surface temperature projections employing
advanced ensemble methods and past information has been reported
(Stobach and Bel, 2020). This study did not implement the RMSE as a
metric. The study predicted the change in global mean temperature,
projected to be a maximum of 4°C increase, even though it depends on
the type of algorithm implemented. This value represents a large
difference from the projected increase in temperature in this study,
which could be due to the difference in ML algorithms (Autoregressive
LSTMvs. ensemblemodels) and differences in data. The differences can
also be explained based on the same reasons as those regarding
Mansfield et al. reported in the previous paragraph.

Large-scale spatial patterns of precipitation across the western
United States were forecasted by training on thousands of seasons of
climate model simulations and testing on the historical observational
period (1980–2020). The results were similar to or outperformed
existing dynamical models from the North American Multi-Model
Ensemble (Gibson et al., 2021). The study implemented numerous
ML models, such as LSTM, NN, XGBoost, and Random Forest
algorithm, to predict the precipitation of North America. Their

FIGURE 4
Temperature progression versus time into the future. The time spans from 1/1/2022 to 31/12/2041.
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LSTM model was a consistent performer, with an accuracy score of
roughly 0.5 for all categories. This prediction is higher than in the
other models tested in the study. Our model has relatively reasonable
errors, similar to this previous study. Nevertheless, we explored the
feasibility of training various ML approaches on a large climate model
ensemble, providing a long training set with physically consistent
model realizations.

Previous researchers have also utilized Convolutional Neural
Networks for weather prediction (Scher and Messori, 2019; Weyn
et al., 2019). The error in Weyn’s study increased rapidly, increasing
every 12 h, compared to the longer rate in ours. This is mainly
because the data in the study were taken every 6 h. In contrast, in this
study, we obtained data effectively every 2 weeks. Nevertheless, our
prediction length with a relatively low RMSE (sixty-time steps) is
much longer than that reported by Weyn et al. It is important to
note, however, that Weyn et al.’s study attempted to predict the 500-
hPa geopotential height, which could change the entirety of the
study’s result. Moreover, the modeling approach used by Scher and
Messori was limited in that a poor seasonal cycle and unrealistic
predictions were considered when trained for long periods. In this
study, although still producing unrealistic predictions, seasonal
cycles were successfully predicted for up to 20 years, improving
the results reported by Scher and Messori. Similarly, Scher and
Messori predicted the 500-hPa geopotential height, which makes a
direct comparison of the error values meaningless. The reason is the
different model architectures utilized (i.e., autoregressive LSTM,
Convolutional Neural Network) because the data used are both
ERA5 reanalysis.

This study showed that an autoregressive LSTM architecture
improved the long-term climate predictions of ML models.
However, there are several limitations. The proposed model can
be seen as underfitting. Although the model succeeds in learning the
general patterns in the climate, the model cannot learn the smaller
patterns within the continents effectively. The flattening of oceans
and land can be shown. The predictions turn out to be somewhat
unrealistic when repeated for long durations of time. However, these
limitations might be overcome by increasing the complexity of the
model, such as by using denser layers, more filters, and increasing
the amount of training data. More realistic predictions can be made
in the future if more complex models and sufficient computational
processing to accommodate them are reflected. In addition, the
reasoning behind why the model made these predictions cannot be
easily distinguished. Utilizing Explainable AI tools to understand the
reasoning behind such predictions would also be helpful.

This study’s model served solely as the baseline model. With
several improvements, the model could reach its full potential. The
ability of this architecture to make it successful compared with other
architectures (i.e., the possibility of predicting global patterns over a
long period) was demonstrated in this study, providing a novel
insight of a novel AI model that can be utilized for climate
prediction purposes.

In conclusion, the potential of using autoregressive LSTM
models for climate prediction was considered in this study. The
model outputted reasonable predictions of the global temperature at
2 m for a long period of time. The model successfully predicted the
global mean temperature progression of multiple regions. This
feature has not been achieved in previous studies based on
Neural Networks, making this study practical. The model

developed in this study should be used as a baseline for further
development with increased computing power and data availability.
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A video showing temperature progression into the future. The time spans
from 31/12/2022 to 31/12/2041.
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