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With heightened concern over carbon neutrality and increased energy market
fluctuations against the backdrop of increasing global uncertainty, it becomes
imperative to thoroughly investigate the information transmission and risk
contagion between carbon and energy markets. This paper empirically
explores the return and volatility connectedness among carbon and energy
markets (electricity, natural gas, crude oil, and coal) from April 2008 to
September 2021 by employing the time-frequency domain connectedness
approaches. This paper indicates: i) the return connectedness exceeds
volatility connectedness, and extreme events can intensify the dynamic
changes; ii) the return connectedness is predominantly concentrated at high-
frequency, while the volatility connectedness is concentrated at medium- and
low-frequency. Net volatility connectedness maintains a consistent direction
across all markets in the time-frequency domain. In contrast, net return
connectedness exhibits an opposing direction at high-frequency and
medium- and low-frequency. iii) the natural gas and coal markets
predominantly act as net transmitters in both return and volatility
connectedness, while the electricity, crude oil, and carbon markets operate as
net receivers. Moreover, during the COVID-19 pandemic, the carbon market
emerged as an information receiver in time-frequency domains and acted as a
risk transmitter, exporting risk, particularly to the electricity market. These
conclusions help investors, high-carbon enterprises, and policymakers to
comprehensively understand the carbon-energy relationships, thereby
supporting sustainable energy development and low-carbon economic goals.
Simultaneously, this paper provides insights for enhancing carbon markets in
emerging markets like China.
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1 Introduction

In recent years, the global warming issue has garnered increasing
attention. The carbon market, a pivotal market mechanism for climate
change mitigation, was established and underwent rapid development
following the enactment of the Kyoto Protocol in 2005 (Wang andGuo,
2018; Gong et al., 2021). To aid European Union member states in
meeting emission reduction obligations mandated by the Kyoto
Protocol and to accumulate expertise in employing the cap-and-
trade scheme for greenhouse gas reduction, the European Union
instituted the European Union Emissions Trading System (EU ETS).
The design of the EU ETS aims to motivate companies to decrease
reliance on fossil fuel-based energy, boost investments in clean and low-
carbon technologies, and embrace more significant use of renewable
energy. This framework facilitates shifting from carbon-intensive
energy sources to cleaner, low-carbon alternatives (Arabi et al., 2021;
Gong et al., 2021; Zhang et al., 2022). Presently, the EU ETS stands as
the world’s inaugural and largest carbon trading market (Ji et al., 2018;
Wang and Guo, 2018). In tandem, the carbon market has witnessed
swift growth and consistent expansion concerning scale, liquidity,
trading volume, and complexity. Its connectedness with energy
markets has progressively deepened (Tan and Wang, 2017).

Recent studies have revealed a connection between carbon and
energy markets from two perspectives: supply-demand shocks and the
financialization of commodity markets (Zhang and Sun, 2016; Tan and
Wang, 2017). On the one hand, in terms of supply-demand shocks,
energy markets can directly influence the carbon market through three
channels. First, a total demand effect exists. The increase in carbon
emissions is primarily attributed to the combustion of fossil fuels (Sun
et al., 2023). Therefore, businesses increase energy consumption when
energy prices decrease, stimulating demand for carbon allowances and
driving up carbon prices. Second, there is a substitution effect. Shifts in
energy prices can influence energy consumption patterns, and the fuel-
switching behavior of power generation companies can consequently
induce fluctuations in carbon prices. Third, there is a production
suppression effect. Elevated energy prices typically lead to reduced
production and energy consumption, leading to a decrease in carbon
prices (Tan and Wang, 2017; Duan et al., 2021). On the other hand,
owing to the advancement of commodity financialization, the carbon
and energy markets exhibit specific financial attributes. The cross-
market flow of speculative capital is anticipated to heighten further the
connectedness between carbon and energy markets (Ortas and Álvarez,
2016;Wang and Guo, 2018). Moreover, the correlation between carbon
price and energy prices is expected to undergo dynamic changes (Ji
et al., 2018; Wang and Guo, 2018; Tan et al., 2020; Gong et al., 2021).
This characteristic becomes particularly pronounced during extreme
events, such as the Eurozone debt crisis and the global COVID-19
pandemic (Tan andWang, 2017; Ding et al., 2022). In order to elucidate
the dynamic relationship between carbon and energy markets more
clearly, this paper seeks to analyze their connectedness from a more
detailed and comprehensive perspective.

Existing literature suggests varied patterns of connectedness
between return and volatility within carbon and energy markets.
This connectedness plays a crucial role in evaluating market
efficiency and can offer investors and policymakers nuanced
economic and managerial insights at multiple levels (Attarzadeh
and Balcilar, 2022; Gyamerah et al., 2022; Hoque et al., 2023). To be
specific, return connectedness involves the price discovery process,

primarily measuring the transmission of cross-market information
(Lu et al., 2023). Volatility connectedness serves as an indicator of
risk contagion, where shocks in one market may adversely affect the
willingness of market participants to hold risks in any other market
(Acharya and Pedersen, 2005; Tan et al., 2020). By comprehensively
examining the return and volatility connectedness between carbon
and energy markets, investors can better understand these markets’
impact on portfolio diversification and investment opportunities.
From a hedging perspective, return connectedness empowers
market participants to optimize their investment choices by
designing more effective hedging strategies. Meanwhile, from a
risk management standpoint, volatility connectedness enables
market participants to adjust their asset allocation choices
(Toyoshima and Hamori, 2018; Umar et al., 2022).

Moreover, the combined analysis perspective of time-frequency
domains is equally crucial for understanding the connectedness
between carbon and energy markets. On the one hand, an integrated
view across time and frequency domains can assist market
participants in identifying the frequency origins of the
connectedness between carbon and energy markets (Baruník and
Křehlík, 2018; Wan et al., 2024). Indeed, at various time scales or
frequency bands, both carbon and energy markets are influenced by
distinct dominant factors (Yu et al., 2015; Ji et al., 2018). Market
sentiment plays a significant role in the short-term, while in the
medium- and long-term, fundamental factors such as supply and
demand become the primary influencers (Dai et al., 2021). Sousa
et al. (Sousa et al., 2014) and Ortas and Alvarez (Ortas and Álvarez,
2016) assert the importance of analyzing frequency connectedness
between carbon and energy markets, emphasizing that energy
markets display stickiness in the short-term and relative
flexibility in the long-term (Ding et al., 2022). On the other
hand, analyzing the connectedness in the frequency domain
among markets allows tailoring recommendations for market
participants with different preferences (Jiang and Chen, 2022a).
Speculators, oriented toward short-term returns, may utilize these
commodities to enhance the financial performance of their
investment portfolios (Hoque et al., 2023). In contrast,
institutional investors and policymakers operate with long-term
objectives, such as achieving the goals of the European Union
Emissions Trading Scheme (Ortas and Álvarez, 2016). Therefore,
analyzing the time-frequency domain connectedness between
carbon and energy markets not only allows speculators to refine
their portfolios and uncover potential diversification opportunities
but also aids policymakers in more accurately assessing the spillover
scale of energy on the carbon price, ensuring the sustainable
development of the carbon market.

The motivation of this paper can be summarized as follows. On the
one hand, previous research on the connectedness between carbon and
energy markets has primarily focused on the time domain perspective
(Ji et al., 2018; Tan et al., 2020; Dai et al., 2021). However, there is limited
investigation into the connectedness from the frequency domain
perspective (Ding et al., 2022). On the other hand, although there
exists literature that has delved into the connectedness between carbon
and energy markets from the frequency domain. These studies have
predominantly focused on either return connectedness (Jiang and
Chen, 2022a; Ding et al., 2022) or volatility connectedness (Adekoya
et al., 2021). Addressing these research gaps, this paper aims to
comprehensively consider the return and volatility connectedness
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between carbon and energy markets from both time and frequency
domains. The paper addresses the following inquiries: what are the
commonalities and differences in return and volatility connectedness
between carbon and energy markets? What are the time-varying
characteristics among these commonalities and differences? In
addition, the EU ETS has undergone three phases: the initial phase
(2005–2007), the second phase (2008–2012), and the third phase
(2013–2020). Currently, it is in the fourth development phase
(2021–2030) (Hanif et al., 2021). Indeed, carbon price exhibits
substantial fluctuations over time, influenced by different stages of
the EU ETS (Fang et al., 2018). It is noteworthy that, since entering the
fourth phase, global uncertainty events occur frequently, such as the
COVID-19 pandemic and the Russia-Ukraine conflict. Both carbon
and energy markets experience severe shocks (Zhang et al., 2021; Liu X.
et al., 2023; Wu et al., 2023). Simultaneously, during the fourth phase,
many countries, especially China, adopt carbon neutrality strategies and
actively formulate low-carbon development policies (Sun et al., 2023).
These policies, aimed at restricting high-carbon energy sources, may
also contribute to fluctuations in both carbon and energy markets (Wei
et al., 2022a; Tan et al., 2022). Unfortunately, existing literature has
primarily focused on the connectedness between carbon and energy
markets during the second and third phases (Adekoya et al., 2021; Dai
et al., 2021), with a notable gap in exploring the fourth phase. Therefore,
this study selects data from the second phase to the fourth phase to
analyze the return and volatility connectedness under combined time-
frequency domains. Additionally, despite many studies analyzing the
impact of the COVID-19 pandemic on the energy markets (Wang and
Su, 2020; Wang and Huang, 2021; Wang et al., 2022a), these studies
primarily focus on investigating the changes in energy markets demand
during the pandemic (Wang and Su, 2020; Wang and Zhang, 2021),
subsequently affecting the carbon market (Jiang and Chen, 2022b). On
the other hand, existing studies predominantly focus on analyzing the
impact of the pandemic on individual markets or risk contagion
between pairs of markets (Wang et al., 2022a; Wang et al., 2022b).
However, there is a lack of comprehensive analysis regarding
information transmission and risk contagion between carbon and
multiple energy markets. Therefore, based on the existing literature,
this paper comprehensively analyzes the time-frequency domains
return and volatility connectedness between carbon and energy
markets. This paper addresses the research gap in current literature
and provides insights into patterns during crisismoments, enriching the
understanding of the connectedness between carbon and
energy markets.

To comprehensively investigate the return and volatility
connectedness between carbon and energy markets in time-
frequency domains, this paper uses a combination of the time-
domain connectedness method proposed by Diebold and Yilmaz
(Diebold and Yilmaz, 2014) and the frequency-domain
connectedness method proposed by Baruník and Křehlík
(Baruník and Křehlík, 2018)1. The integration of these methods is
motivated by the following reasons. First, the DY model facilitates

time-varying estimates of connectedness by employing a rolling
window technique, representing a significant advancement in such
research (Diebold and Yilmaz, 2014). The BKmodel, an extension of
the DY model, integrates the frequency-domain method to evaluate
connectedness across different frequency ranges. This approach
captures the impact of shocks over various time horizons,
including short-term, medium-term, or long-term (Baruník and
Křehlík, 2018; Yang et al., 2021). The combined time-frequency
domains analysis is well-suited for addressing the heterogeneity
among market participants (Asadi et al., 2022; Wan et al., 2024).
Second, compared to other frequency-domain analysis methods, like
the wavelet methods, the BK model not only characterizes bivariate
relationships but also captures the connectedness of the overall
system (Pal andMitra, 2020; Wan et al., 2024). Hence, the BKmodel
can be viewed as a frequency-related network analysis. Third, the
combined time-frequency domain analysis method has been widely
applied across various fields, including stock markets (Dai and Zhu,
2022; Wan et al., 2024), currency markets (Ding et al., 2022), and
commodity markets (Pal and Mitra, 2020; Wu et al., 2023).
Therefore, this paper integrates the DY and BK models to
analyze the static and dynamic connectedness in return and
volatility between carbon and energy markets. The time domain
is decomposed into short-term (1–5 days), medium-term
(5–22 days), and long-term (more than 22 days), allowing an
analysis of the connectedness characteristics across different
time horizons.

A comprehensive investigation into the return and volatility
connectedness between carbon and energy markets in time-
frequency domains holds significant implications for investors,
energy-consuming enterprises, and policymakers. For investors,
this paper provides insights into information transmission and
risk contagion between carbon and energy markets, enabling a
more thorough understanding of the connectedness. The
conclusions will empower investors to make informed choices in
crafting optimal portfolios to mitigate risks and achieve excess
returns (Crossland et al., 2013). The costs of high-energy-
consuming enterprises are closely linked to carbon and energy
prices (Gong et al., 2021; Liu Y. et al., 2023). Therefore,
investigating the dynamic connectedness between carbon and
energy markets across different phases of the EU ETS can
contribute to refining enterprises’ carbon asset management
(Gong et al., 2021). Lastly, the outbreak of uncertainty events
such as the COVID-19 pandemic and the Russia-Ukraine conflict
profoundly impact macroeconomics and financial markets (Zhang
et al., 2021; Liu X. et al., 2023). Against this backdrop, a thorough
investigation into the information transmission and risk contagion
between carbon and energy markets can assist policymakers in
better understanding the influence of uncertainty on
connectedness. This can improve the transparency of future
policies and provide support for achieving carbon neutrality goals
(Jiang and Chen, 2022a).

This paper contributes to three main aspects. First, this paper
enriches relevant literature (Ji et al., 2018; Wang and Guo, 2018;
Gong et al., 2021; Ding et al., 2022) based on an in-depth discussion
of the connectedness between carbon and energy markets by
introducing the data of phase fourth of carbon market and the
time-frequency connectedness approaches. Meanwhile, this paper
helps better understand the interactive relationships between carbon

1 For simplicity, the following text will use the DY model to replace the

Diebold and Yilmaz time-domain spillover index model, and use the BK

model to replace the Baruník and Křehlík frequency-domain spillover

index model.
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and energy markets and provides practical policy tools for
improving the operation mechanisms of the carbon market.
Moreover, this paper can help to support the accelerated
realization of carbon peak and carbon neutrality goals (Wang
and Su, 2020; Zhao et al., 2023). Second, this paper gets some
thought-provoking conclusions based on distinguishing the return
and volatility connectedness between carbon and energy markets.
Specifically, the information transmission between carbon and
energy markets is more potent than their risk contagion. Extreme
events can intensify information transmission and risk contagion,
but risk contagion changes more frequently. Information
transmission is primarily concentrated at high-frequency, while
risk contagion is mainly at medium- and low-frequency. These
findings support the conclusions of Adekoya et al. (2021) and Ding
et al. (2022). Moreover, the natural gas and coal markets primarily
act as net transmitters in both return and volatility connectedness. In
contrast, the crude oil, electricity, and carbon markets mainly serve
as net receivers. These findings help investors and policymakers
adopt more appropriate strategies to avoid risks. Third, this paper
provides new lessons for the dynamic interplay between carbon and
energy markets in times of crisis by discussing the return and
volatility connectedness during the COVID-19 pandemic. During
the pandemic, the carbon market received information spillovers
from the electricity, natural gas, and coal markets. Conversely, the
carbon market primarily acted as a source of risk transmitter,
transmitting risk to the electricity market. Therefore, in the post-
pandemic scenario, it is necessary to remain vigilant about the
complex linkages between carbon and energy markets, especially the
electricity market. To some extent, this conclusion supports Ding
et al. (2022), who indicate that the carbon market experienced
significant disruptions during the COVID-19 pandemic.
Simultaneously, this paper supports the viewpoint of Wang and
Huang (2021) that the pandemic severely leads to a significant
imbalance between supply and demand in the energy markets. This
may further result in changes in the connectedness between carbon
and energy markets. Therefore, there is a need to establish long-term
regulatory rules to avoid abnormal fluctuations in energy prices.

The rest of the paper is organized as follows. Section 2 presents
the methodology and data used in this study. Section 3 reports the
empirical findings and robustness tests. Section 4 concludes with a
summary of the main conclusions of this paper.

2 Data and methodology

2.1 Data

In light of the EU ETS being the largest and most mature global
carbon trading market, this paper chooses to explore the ICE-EUA
futures contracts (EUR/ton of CO2) as representatives of the carbon
market, serving as a crucial constituent of the European carbon
market. This choice is based on the extensive acknowledgment of the
European carbon market and the paramount role played by the ICE-
EUA futures in revealing the dynamic characteristics of the carbon
market. Following Tan et al. (2020) and Lovcha et al. (2022), this
paper focuses on four energy markets: electricity, natural gas, crude
oil, and coal. The reason is that the close correlation between these
traditional energies’ consumption patterns and the carbon market’s

evolution (Tan et al., 2020). The EEX-Phelix Electricity Baseload
future (EUR/MWh) represents the electricity market. This choice is
because the EEX-Phelix Electricity future is recognized as the
benchmark contract for European electricity, boasting the most
liquid contract in the European electricity market. For the
natural gas, the ICE-UK Natural Gas future (GBP/Therm) is
selected since it is prevalent as a liquefied natural gas derivative
in pricing the European natural gas market. Referring to Vellachami
et al. (2023), the crude oil market is captured through the ICE-Brent
Crude Continuous futures (USD/barrel). It is selected as a reference
benchmark for two-thirds of the global trade of crude oil supply,
particularly in the European crude oil supply. Additionally,
following Zhou et al. (2022), this paper chooses the ICE-
Rotterdam Coal futures (USD/ton) to represent the coal market
since the price of Rotterdam coal futures is regarded as a primary
reference for Northwest European coal prices.

This study chooses futures prices, given their higher trading
activity and lower susceptibility to short-term noise than spot prices
(Sadorsky, 2001). This paper converts various currencies to the US
dollar to ensure uniform currency representation for the
abovementioned assets. The commodities’ data and the exchange
rates are obtained from the Datastream database. The sample period
is selected from 3 March 2008, to 27 September 2021. The
availability of ICE-EUA futures data influences the sample period
selection. Notably, Phase I is excluded from the analysis, as
numerous studies have shown that price fluctuations during this
phase were predominantly driven by EU policy adjustments rather
than market fundamentals (Sousa et al., 2014; Ortas and Álvarez,
2016). Subsequently, this paper calculates the continuous
compounded return of the five markets (carbon, crude oil,
natural gas, electricity, coal) using the logarithmic difference
method. The absolute values of returns are employed to calculate
volatility (Zheng et al., 2014; Tan et al., 2020). Descriptive statistics
for the return and volatility of the five markets are shown in Table 1.

In Panel A, it is evident that the average values span
from −0.01% to 0.03%. The unconditional volatility, measured by
standard deviation, ranges from 2% to 3%. Notably, coal and crude
oil exhibit the lowest standard deviation, signifying relatively stable
investment markets. In contrast, the electricity market emerges as a
highly volatile asset, with the most comprehensive range between
the maximum and minimum daily returns reaching 25% and −42%,
respectively. At the same time, the carbon, crude oil, and coal
markets exhibit negative skewness and have more significant
downside risks. As shown in Table 1, both the return and
volatility series display the characteristics of “high peak and fat
tails" since all market returns have skewness values that are not equal
to zero and kurtosis values greater than three. Additionally, the
Jarque-Bera statistic indicates that each market’s return and
volatility series do not follow a normal distribution. Furthermore,
both the DY model and the BK model are grounded in the vector
autoregressive (VAR) model framework, which requires stationarity
for all involved variables. The Augmented Dickey-Fuller (ADF) test
was utilized in this paper to evaluate the stationarity of the variables.
The ADF stationarity test indicates that each market’s return and
volatility series are stationary, facilitating the subsequent application
of the DY and BK modeling.

Figure 1 presents the Pearson correlation heatmap that depicts
the correlation between carbon and energy markets. The heatmap
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illustrates a positive correlation in the returns of all markets. The
most robust correlation is observed between the electricity and
natural gas markets. This observation highlights a correlation
between carbon and energy markets, warranting further
investigation into their connectedness.

2.2 Methodology

This paper uses the DY model and the BK model to examine the
time-frequency domain connectedness between carbon and energy
markets. The DY model, grounded in a VAR model, employs a

generalized forecast error variance decomposition (GFEVD)
technique to derive spillover effects. This method facilitates a
nuanced understanding of the connectedness among variables
(Diebold and Yilmaz, 2014). This method allows simultaneous
measurement of connectedness between any two markets, between
one market to any set of markets, or one market and overall markets.
Therefore, it provides a more comprehensive and intuitive assessment
of the connectedness between carbon and energymarkets. Additionally,
incorporating rolling window technology, the DY model facilitates a
dynamic observation of the connectedness between carbon and energy
markets. Currently, thismethod has beenwidely adopted in research on
the connectedness between carbon and energy markets (Wang and
Guo, 2018; Dai et al., 2021). The BK model, on the other hand, is built
upon the DY model by constructing a spectral representation
framework for GFEVD (Baruník and Křehlík, 2018). This method
has gained widespread acceptance among scholars, who have employed
it to investigate connectedness in various contexts (Ding et al., 2022;
Wan et al., 2024). It measures the differential connectedness generated
by heterogeneous frequency shocks, enabling the identification of
whether shocks induce connectedness between markets in high-
frequency (short-term) or low-frequency (long-term) (Yang et al.,
2021). Therefore, employing the BK method to study the frequency
connectedness between carbon and energy markets can help market
participants with diverse time horizon objectives to make more
informed decisions.

Specifically, the total connectedness index (TCI) can be defined
as Eq. 1:

S H( ) �
∑
N

j,k�1,j ≠ k

~θjk H( )

∑
N

j,k�1
~θjk H( )

× 100 �
∑
N

j,k�1,j ≠ k

~θjk H( )
N

× 100 (1)

where ~θjk(H) represents the normalized GFEVD. ~θjk(H)means the
pairwise connectedness from market k to market j. By construction,

TABLE 1 Descriptive statistics.

Mean Max Min Std. Dev Skewness Kurtosis Jarque-bera ADF

Panel A: Return

Carbon 0.0002 0.25 −0.19 0.03 −0.64 15.43 23,056.37*** −44.41***

Electricity 0.0002 0.25 −0.42 0.03 0.48 14.03 18,085.91*** −42.47***

Natural gas 0.0003 0.08 −0.11 0.03 1.59 20.06 44,439.54*** −42.34***

Crude oil −0.0001 0.19 −0.28 0.02 −0.70 17.89 32,997.88*** −42.58***

Coal 0.0001 0.36 −0.17 0.02 −0.41 8.11 3,956.34*** −36.80***

Panel B: Volatility

Carbon 0.0224 0.25 0.00 0.02 3.65 38.52 3,956.34*** −31.00***

Electricity 0.0176 0.42 0.00 0.02 3.44 19.66 46,892.34*** −36.61***

Natural gas 0.0207 0.11 0.00 0.02 4.28 40.58 219,286.23*** −31.66***

Crude oil 0.0158 0.28 0.00 0.02 3.95 37.06 180,501.04*** −30.28***

Coal 0.0111 0.36 0.00 0.01 2.57 12.89 18,318.22*** −30.51***

Notes: This table reports the descriptive statistics of carbon and energy markets’ returns and volatilities, respectively. Jarque-Bera statistic is used to test whether a sequence follows a normal

distribution. ADF, stands for the Augmented Dickey-Fuller test, which tests whether the sequence is stationary. *** indicates significance at the 1% level.

FIGURE 1
Correlations matrix.
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∑
N

k�1
~θjk(H) � 1 and ∑

N

j,k�1
~θjk(H) � N. The TCI can assess the

contribution of shocks from all markets to the total forecast error
variance. A higher TCI indicates closer market connectedness
(Diebold and Yilmaz, 2014).

The directional connectedness index Sj→•(H) (To spillover) and
Sj←•(H) (From spillover), in which respect market j sends out its
shock to other markets and market j receives shocks from other
markets, respectively, can be expressed as Eqs 2, 3.

Sj→• H( ) �
∑
N

k�1,j ≠ k

~θkj H( )

∑
N

j,k�1
~θkj H( )

× 100 �
∑
N

k�1,j ≠ k

~θkj H( )
N

× 100 (2)

Sj←• H( ) �
∑
N

k�1,j ≠ k

~θjk H( )

∑
N

j,k�1
~θjk H( )

× 100 �
∑
N

k�1,j ≠ k

~θjk H( )
N

× 100 (3)

Then, the net connectedness index Sj(H) (Net spillover) is
calculated as Eq. 4.

Sj H( ) � Sj→• H( ) − Sj←• H( ) (4)

If Sj(H) is positive, it means that the shocks of market j
transmitting to other markets are more significant than that
received from other markets. On the contrary, if Sj(H) is
negative, it means other markets influence market j in net terms.

Following Baruník and Křehlík (2018), this paper can describe
the connectedness in the frequency domain. The total frequency
connectedness index on frequency band d can be defined as Eq. 5:

S d( ) �
∑
N

k,j�1;k ≠ j

~θd( )
j,k

N
× 100 (5)

where the frequency band d � (a, b): a, b ∈ (−π, π), a< b. (~θd)j,k
represents the spectral representation of the normalized GFEVD on
frequency band d, which means the pairwise connectedness from
market k to market j on a given frequency band d. The frequency-
domain TCI can assess the contribution of shocks from all markets
to the total forecast error variance on the given frequency band d.

The directional connectedness index Sj→•(d) (To spillover),
Sj←•(d) (From spillover), and the net connectedness index Sj(d)
(Net spillover) on frequency band d can be expressed as Eqs 6–8.

Sj→• d( ) �
∑
N

k�1;k ≠ j

~θd( )
k,j

N
× 100 (6)

Sj←• d( ) �
∑
N

k�1;k ≠ j

~θd( )
j,k

N
× 100 (7)

Sj d( ) � Sj→• d( ) − Sj←• d( ) (8)

Sj→•(d) (To spillover) and Sj←•(d) (From spillover) means that
market j sends out its shock to other markets and market j receives
shocks from other markets on the given frequency band d,
respectively. Meanwhile, the positive (negative) Sj(d) indicates
that the market j is a net transmitter (receiver) on the frequency
band d. According to Zhu et al. (2023a) and Wan et al. (2024), this

paper sets three frequency bands. The high-frequency band
d1 � (π

5, π), the medium-frequency band d2 � ( π
22,

π
5) , and the

low-frequency band d3 � (0, π
22) represent the short-term

(1–5 days), medium-term (5–22 days), and long-term (more than
22 days), respectively.

3 Results

3.1 Return connectedness

3.1.1 Static connectedness
Table 2 illustrates the static return connectedness between

carbon and energy markets in both time and frequency domains.
First, the total connectedness index is 17.62%, indicating that system
variables account for 17.62% of the variation in the forecast error
variance. This denotes a moderate return connectedness between
carbon and energy markets. This finding is supported by Ji et al.
(2018) and Su et al. (2023), who affirmed the presence of
informational connectedness between carbon and energy markets.
Simultaneously, the high-frequency connectedness (13.08%,
constituting 74.23% of the total connectedness) surpasses both
medium- and low-frequency connectedness, implying that the
return connectedness is predominantly concentrated at high-
frequency. It suggests that most information is absorbed within
5 days of a specific shock (Hoque et al., 2023). The findings of Ding
et al. (2022) also support this notion. Their research indicates that
the high-frequency connectedness between carbon and energy
markets is significantly greater than the low-frequency
connectedness. According to Dai et al. (2021), this phenomenon
means that the return connectedness between carbon and energy
markets is primarily influenced by market sentiment.

Secondly, the electricity and coal markets are the primary
markets influencing the return connectedness of the carbon
market. Notably, the directional spillover from the energy
markets to carbon is as follows: coal (2.77%), electricity (2.68%),
natural gas (1.30%), and crude oil (0.95%). The electricity and coal
markets also receive the most substantial directional spillovers from
the carbon market. This conclusion holds in the frequency-domain
as well. However, it contrasts with the findings of Zhao et al. (2023),
who suggest no significant return connectedness between carbon
and electricity markets. The different conclusions may be ascribed to
the intermediary role of the energy markets, which indirectly
facilitates the connectedness between carbon and electricity markets.

Thirdly, the directional return connectedness between carbon
and energy markets predominantly concentrates on high-frequency,
underscoring the importance of heightened vigilance towards high-
frequency information transmission for investors. We focus on the
markets exhibiting the most pronounced connectedness with the
carbon market. Specifically, the time-domain connectedness
received by the coal and electricity markets from other markets
are 4.93% and 4.67%, respectively. And their high-frequency
connectedness are 3.56% (accounting for 72.27%) and 3.15%
(accounting for 67.56%), respectively. The time-domain
connectedness of the coal and electricity markets transferred to
other markets are 5.43% and 4.20%, respectively. And the high-
frequency connectedness are 4.08% (75.25%) and 3.24% (77.13%),
respectively.
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Table 3 summarizes the net return connectedness among different
markets in both time and frequency domains. Notably, the net return
connectedness across various markets generally exhibits consistent

direction in the time-domain and at high-frequency. However, it
takes an almost opposite direction at medium- and low-frequency.
Hence, it becomes imperative to decompose the return connectedness

TABLE 2 Return connectedness (%).

Carbon Electricity Natural gas Crude oil Coal From spillover

Panel A: Time-domain connectedness

Carbon 92.31 2.68 1.30 0.95 2.77 1.54

Electricity 2.21 76.66 10.77 1.71 8.64 4.67

Natural gas 1.09 8.53 78.42 2.01 9.94 4.32

Crude oil 0.91 1.89 2.29 89.13 5.79 2.17

Coal 2.21 7.90 9.62 4.91 75.36 4.93

To spillover 1.29 4.20 4.80 1.92 5.43 TCI

Net spillover −0.25 −0.47 0.48 −0.26 0.50 17.62

Panel B: High-frequency (1 day–5 days) connectedness

Carbon 74.90 2.37 1.18 0.80 2.42 1.36

Electricity 1.63 61.02 6.92 1.24 5.97 3.15

Natural gas 0.79 6.53 62.48 1.62 7.33 3.25

Crude oil 0.74 1.53 1.82 72.53 4.69 1.76

Coal 1.63 5.77 6.79 3.62 55.80 3.56

To spillover 0.96 3.24 3.34 1.46 4.08 TCI

Net spillover −0.40 0.08 0.09 −0.30 0.52 13.08

Panel C: Medium-frequency (5 days–22 days) connectedness

Carbon 12.79 0.25 0.10 0.11 0.27 0.14

Electricity 0.42 11.65 2.70 0.34 1.89 1.07

Natural gas 0.22 1.45 11.77 0.29 1.86 0.76

Crude oil 0.12 0.27 0.34 12.24 0.81 0.31

Coal 0.42 1.54 2.03 0.94 14.27 0.99

To spillover 0.24 0.70 1.03 0.34 0.97 TCI

Net spillover 0.09 −0.37 0.27 0.03 −0.02 3.27

Panel D: Low-frequency (more than 22 days) connectedness

Carbon 4.56 0.08 0.03 0.04 0.09 0.05

Electricity 0.16 4.22 1.01 0.13 0.71 0.40

Natural gas 0.08 0.53 4.25 0.11 0.69 0.28

Crude oil 0.04 0.10 0.12 4.37 0.29 0.11

Coal 0.16 0.58 0.77 0.35 5.32 0.37

To spillover 0.09 0.26 0.39 0.12 0.36 TCI

Net spillover 0.04 −0.14 0.10 0.01 −0.01 1.21

Notes: This table reports the return connectedness of the network composed of carbon, electricity, natural gas, crude oil, and coal in time-domain, high-frequency (1–5 days), medium-frequency

(5–22 days), and low-frequency (more than 22 days). Based on the BIC, criteria, VAR’s optimal lag is set as 1. The (j, k)-th element represents market j’s contribution to the forecast error

variance of market k. The total connectedness index (TCI), denoted by Eq. 1, reflects the connectedness amongmarkets, portraying the overall connectedness in the entire system. “To spillover”,

denoted by Eq. 2, signifies the extent to which market k transmits its information to all other markets, while “From spillover”, denoted by Eq. 3, indicates the extent to which market j receives

information from other markets. “Net spillover”, denoted by Eq. 4, is defined as the column sum minus the row sum, where a positive (negative) value indicates that the market is a net

information transmitter (receiver). Lastly, the implications of “TCI”, “To spillover”, “From spillover”, and “Net spillover” at the frequency-domain, denoted by Eqs 5–8, are similar to those in

the time-domain.
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in the frequency-domain, ensuring that investors adopt amore scientific
investment strategy (Mensi et al., 2021; Li et al., 2022). Specifically, in
the time-domain, the natural gas market (0.48%) and the coal market
(0.50%) act as net transmitters. Conversely, the crude oil market
(−0.26%) and the carbon market (−0.25%) are net receivers, which
remains consistent at high-frequency. This conclusion, to some extent,
aligns with the viewpoint of Hoque et al. (2023), asserting that the
carbon market operates as a net receiver of return connectedness
between carbon and energy markets. However, except for the
natural gas market, the net connectedness at medium- and low-
frequency exhibits an opposite direction compared to high-
frequency. This finding is consistent with Ding et al. (2022), who
suggest that the carbon market acts as a net receiver of return
connectedness in the short term. Conversely, the carbon market
transforms into a transmitter of return connectedness in the long-
term. This phenomenon further underscores the heterogeneity of
connectedness across different frequency domains.

3.1.2 Dynamic connectedness
Figure 2 illustrates the dynamic return connectedness between

carbon and energy markets in time and frequency domains. The return

connectedness is predominantly concentrated at high-frequency, and
extreme events exacerbate this dynamic connectedness. Both Naeem
et al. (2020) and Zhou et al. (2022) indicate that under the backdrop of
increasing global uncertainty, the connectedness between carbon and
energy markets is more sensitive to the impacts of extreme events.

First, the total return connectedness ranges from 5% to 45%,
indicating that the connectedness between carbon and energy
markets exhibits time-varying characteristics. Second, the
dynamic return connectedness is predominantly concentrated at
high-frequency. Specifically, the range of dynamic connectedness at
high-frequency fluctuates between 5% and 35%, exhibiting a
noticeable variability. In contrast, the dynamic connectedness at
medium-frequency remains relatively stable, fluctuating around 5%.
Furthermore, the dynamic connectedness at low-frequency shows a
minimal variation, with the highest reaching only 2.5%.
Additionally, the trend of the high-frequency connectedness
aligns with the time-domain connectedness, whereas the time-
varying characteristics of medium- and low-frequency
connectedness are not evident. Third, the occurrence of extreme
events leads to an increase in the return connectedness. Specifically,
due to the severe economic recession in the Eurozone in 2009 and

TABLE 3 Summary for net return connectedness in the time and frequency domains.

Carbon Electricity Natural gas Crude oil Coal

Time-domain -min -max +min - +max

High-frequency -max +min + -min +max

Medium-frequency + -max +max +min -min

Low-frequency + -max +max +min -min

Notes: Symbol ‘+’ (or ‘-‘) denotes the net spillover is positive (or negative) in return connectedness, indicating the market is the net transmitter (or receiver). Moreover, ‘max’ and ‘min’ refer to

the most significant and minor net spillover in the same frequency-domain.

FIGURE 2
The dynamics of total return connectedness in the time and frequency domains. Notes: This figure shows the dynamics of total return
connectedness between carbon and energy markets in the time-domain and at high-frequency, medium-frequency, and low-frequency. This figure is
based on the 100-step-ahead forecast horizon and 200-day rolling window size (around 1 year covered by each window).
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the subsequent European debt crisis that worsened from late 2009 to
mid-2011 (Tan et al., 2020), the return connectedness consistently
maintained a high level (above 25%). In 2015, the connectedness
index exhibited an upward trend, possibly attributable to heightened
global uncertainty from the deceleration of the Chinese economy in
2015. It coupled with the Federal Reserve’s interest rate hike (Tan
et al., 2020). In 2016, the connectedness index experienced another
increase attributed to the plunge in oil prices. Subsequently, the
surge of the connectedness index in 2018–2019 may be linked to the
Sino-U.S. trade friction and the signing of the oil production
reduction agreement (Jiang and Chen, 2022a). In January 2020,
the outbreak of the COVID-19 pandemic shook market sentiment,
resulting in a significant spike in the connectedness index. In
December 2020, the emergence of “variant strains" (specifically,
Alpha (B.1.1.7) and Beta (B.1.351)) influenced market sentiment,
leading to a further escalation in the connectedness index and
reaching its peak.

Figure 3 shows the dynamic net return connectedness between
carbon and energy markets in time-frequency domains. Throughout
the sample period, the natural gas and coal markets primarily act as
net transmitters, whereas carbon and crude oil markets

predominantly act as net receivers. The electricity market exhibits
alternating positive and negative net connectedness. This finding
somewhat aligns with Naeem et al. (2020), who suggest that natural
gas is the primary net transmitter. Furthermore, the net return
connectedness for individual markets is concentrated at
high-frequency.

First, the carbon market primarily acted as a net receiver in the
time-domain and at high-frequency, with prominent periods
observed in 2010 and 2020. However, the carbon market is
primarily a net transmitter at medium- and low-frequency.
Second, the electricity market was a net receiver before 2016 in
the time-domain. However, post-2016, the net connectedness of the
electricity market exhibited an alternating pattern of positive and
negative values. This shift might be attributed to Germany’s
electricity reform in 2016, introducing Electricity Market 2.0,
abandoning capacity markets, and implementing a more efficient
and flexible electricity supply system (Tan et al., 2020). At medium-
and low-frequency, the electricity market predominantly operated as
a net receiver, while it changed to mainly a net transmitter at high-
frequency after 2016. Third, the natural gas market serves as the
primary net transmitter, mainly attributable to the distinctive

FIGURE 3
The dynamics of net return connectedness in the time and frequency domains: (A) Carbon, (B) Electricity, (C) Natural gas, (D) Crude oil, (E) Coal.
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pricing mechanism of natural gas in Europe (Tan et al., 2020).
Additionally, the natural gas market is generally a net transmitter in
different frequency domains, with high-frequency connectedness
being predominant. Fourth, the crude oil market predominantly acts

as a net receiver, and the net connectedness maintains a consistent
direction in the time-domain and at high-frequency. Fifth, the coal
market is primarily characterized as a net transmitter in the time-
domain. The net connectedness at high-frequency exhibited an

TABLE 4 Volatility connectedness (%).

Carbon Electricity Natural gas Crude oil Coal From spillover

Panel A: Time-domain connectedness

Carbon 98.45 0.39 0.28 0.39 0.49 0.31

Electricity 0.30 85.79 8.22 0.89 4.80 2.84

Natural gas 0.21 3.67 90.08 0.60 5.45 1.98

Crude oil 0.29 1.27 1.40 92.69 4.36 1.46

Coal 0.36 4.17 4.80 4.26 86.40 2.72

To spillover 0.23 1.90 2.94 1.23 3.02 TCI

Net spillover −0.08 −0.94 0.95 −0.23 0.30 9.32

Panel B: High-frequency (1 day–5 days) connectedness

Carbon 61.40 0.23 0.25 0.19 0.25 0.18

Electricity 0.24 63.72 2.58 0.37 2.50 1.14

Natural gas 0.18 2.40 58.36 0.13 1.96 0.93

Crude oil 0.22 0.32 0.17 56.26 1.26 0.39

Coal 0.18 2.32 1.84 1.55 54.28 1.18

To spillover 0.16 1.05 0.97 0.45 1.19 TCI

Net spillover −0.02 −0.08 0.03 0.05 0.02 3.82

Panel C: Medium-frequency (5 days–22 days) connectedness

Carbon 21.41 0.08 0.03 0.09 0.09 0.06

Electricity 0.04 14.59 2.91 0.18 1.03 0.83

Natural gas 0.02 0.61 17.81 0.12 1.32 0.41

Crude oil 0.05 0.42 0.38 19.88 1.00 0.37

Coal 0.09 0.88 1.11 0.83 16.81 0.58

To spillover 0.04 0.40 0.89 0.24 0.69 TCI

Net spillover −0.02 −0.43 0.47 −0.12 0.11 2.25

Panel D: Low-frequency (more than 22 days) connectedness

Carbon 15.64 0.09 0.00 0.11 0.15 0.07

Electricity 0.02 7.48 2.73 0.34 1.27 0.87

Natural gas 0.01 0.66 13.90 0.35 2.17 0.64

Crude oil 0.03 0.53 0.85 16.55 2.10 0.70

Coal 0.09 0.97 1.85 1.88 15.32 0.96

To spillover 0.03 0.45 1.09 0.54 1.14 TCI

Net spillover −0.04 −0.42 0.45 −0.16 0.18 3.24

Notes: This table reports the volatility connectedness of the network composed of carbon, electricity, natural gas, crude oil, and coal in time-domain, high-frequency (1–5 days), medium-

frequency (5–22 days), and low-frequency (more than 22 days). Based on the BIC, criteria, VAR’s optimal lag is set as 4. The (j, k)-th element represents market j’s contribution to the forecast

error variance of market k. The total connectedness index (TCI), denoted by Eq. 1, reflects the connectedness among markets, portraying the overall connectedness in the entire system. “To

spillover”, denoted by Eq. 2, signifies the extent to which market k transmits its risk to all other markets, while “From spillover”, denoted by Eq. 3, indicates the extent to which market j receives

risk from other markets. “Net spillover”, denoted by Eq. 4, is defined as the column sum minus the row sum, where a positive (negative) value indicates that the market is a net risk transmitter

(receiver). Lastly, the implications of “TCI”, “To spillover”, “From spillover”, and “Net spillover” at the frequency-domain, denoted by Eqs 5–8, are similar to those in the time-domain.
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alternating pattern between positive and negative values from 2016,
while medium- and low-frequency net connectedness kept positive
values. Sixth, during the COVID-19 pandemic, the net return
connectedness of all markets increased in both time and
frequency domains. The crude oil and carbon markets act as net
receivers with a heightened level of net inward spillover. However,
the net return connectedness of the electricity and coal markets
undergoes a directional transformation in the time-domain and at
high-frequency, shifting from net receivers to net transmitters.

3.2 Volatility connectedness

3.2.1 Static connectedness
Table 4 shows the static volatility connectedness between

carbon and energy markets in time-frequency domains. Notably,
volatility connectedness is evident, primarily concentrated at
medium- and low-frequency. This implies that fundamental
factors, such as supply and demand, influence the risk contagion
between carbon and energy markets. Consequently, investors
should give increased attention to medium- and low-frequency
risk contagion (Dai et al., 2021). Our conclusion aligns with the
findings of Adekoya et al. (2021), who indicate that the volatility
connectedness between carbon and energy markets is primarily
concentrated in the medium- and long-term. This finding differs
from the conclusion of Hoque et al. (2023), whose research suggests
that the volatility connectedness between carbon and energy
markets is concentrated in the short-term. Moreover, unlike the
net return connectedness, the net volatility connectedness between
carbon and energy markets exhibits a consistent direction in both
time and frequency domains.

First, the volatility connectedness between carbon and energy
markets amounts to 9.32%, with high-frequency connectedness at
3.82% (accounting for 41.03% of the time-domain connectedness)
and medium- and low-frequency connectedness at 5.49%
(accounting for 58.97% of the time-domain connectedness).
Second, in line with the return connectedness, the coal and
electricity markets primarily influence the carbon market.
Specifically, the directional connectedness of the carbon market
received from the coal and electricity markets are 0.49% (accounting
for 31.45%) and 0.39% (accounting for 25.30%), while the
directional connectedness of the carbon market transmitted to
the coal and electricity markets are 0.36% (accounting for
31.21%) and 0.30% (accounting for 25.81%). This conclusion
remains true at medium- and low-frequency. Third, the
directional volatility connectedness is mainly concentrated at
medium- and low-frequency. Specifically, taking the markets with
the most prominent directional volatility connectedness to the entire
system as the sample, the time domain volatility connectedness
transmitted by the coal and natural gas markets to other markets are
3.02% and 2.94%, respectively. In contrast, the medium- and low-
frequency connectedness are 1.83% (accounting for 60.50%) and
1.97% (accounting for 67.12%), respectively. Meanwhile, the time
domain volatility connectedness received from other markets by the
coal and electricity markets are 2.72% and 2.84%, respectively. In
contrast, the medium- and low-frequency connectedness are 1.54%
(accounting for 56.72%) and 1.70% (accounting for 59.94%),
respectively.

Table 5 summarizes the net volatility connectedness between
carbon and energy markets in both time and frequency domains.
Notably, the net volatility connectedness remains consistent in both
time and frequency domains, except for the crude oil market at high-
frequency. Regarding time-domain net connectedness, the net
volatility connectedness maintains an entirely consistent direction
with the net return connectedness. However, it is worth noting that
the natural gas market becomes the largest net volatility
connectedness transmitter. The electricity market emerges as the
highest net receiver in return and volatility net connectedness at
medium- and low-frequency. Furthermore, the net volatility
connectedness of carbon, crude oil, and coal markets is opposite
to their net return connectedness. Specifically, the carbon and crude
oil markets shift from the net return transmitters to the net volatility
receivers, while the coal market shifts from the net return receiver to
the net volatility transmitter. This conclusion aligns with Adekoya
et al. (2021), who indicate that carbon and crude oil markets act as
the net receivers in medium- and long-term volatility
connectedness.

3.2.2 Dynamic connectedness
Figure 4 presents the dynamic volatility connectedness between

carbon and energy markets in both time and frequency domains.
First, the dynamic volatility connectedness in the time-domain
varies from 2% to 25%. High-frequency volatility connectedness
exhibits similar fluctuating trends with the time-domain volatility
connectedness, fluctuating between 2% and 20%. Meanwhile, the
medium-frequency (low-frequency) volatility connectedness
fluctuates between 1% and 5% (1% and 4%). Furthermore, the
volatility connectedness was concentrated at high-frequency
before 2013. However, from 2013 to 2019, the volatility
connectedness was mainly concentrated at medium- and
low-frequency.

Second, extreme events can also lead to substantial shifts in
volatility connectedness. In contrast to the dynamic return
connectedness, the dynamic volatility connectedness undergoes
more frequent variations. It suggests that volatility connectedness
is more sensitive to shocks from extreme events than return
connectedness (Ding et al., 2022). Specifically, the severe
economic recession in the Eurozone in 2009 resulted in a high
level of volatility connectedness, exceeding 15%. The outbreak of the
European debt crisis at the end of 2009 and its subsequent
deterioration in mid-2011 contributed to a continuous increase
in volatility connectedness, surging from 3.8% to 20.5% (Tan
et al., 2020). In early 2013, the EU ETS entered its third phase,
accompanied by the implementation various related policies. This
increased market uncertainty and expectations’ instability,
consequently enhancing the connectedness between carbon and
energy markets and causing a rapid increase in volatility
connectedness (Dai et al., 2021). In 2016, the sharp decline in
crude oil prices led to a rapid increase in volatility
connectedness, maintaining a high level. In 2017, the
United States withdrew from the Paris Agreement, presenting
substantial challenges to global environmental governance’s
fairness, efficiency, and effectiveness. Consequently, the
connectedness index once again showed an upward trend. It is
worth noting that the medium- and low-frequency volatility
connectedness increased significantly during 2016 and even
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surpassed the high-frequency volatility connectedness. It suggests
that this event has a long-term impact on both carbon and energy
markets. The outbreak of the COVID-19 pandemic in 2020 caused a
shock to market sentiment, leading to a continuous increase in
volatility connectedness. Simultaneously, concerns about long-term
macroeconomic performance led to an increase in medium- and
low-frequency volatility connectedness. Furthermore, the
continuous emergence of variant strains from late 2020 to mid-
2021 contributed to the sustained increase in volatility
connectedness, reaching its peak at the end of 2021. This
conclusion supports the findings of Lu et al. (2023). Their
research indicates a sharp increase in the total volatility
connectedness index and the emergence of significant peaks in
both carbon and energy markets since the outbreak of the
COVID-19 pandemic. Therefore, the COVID-19 pandemic has
posed substantial risks to these markets.

Figure 5 presents the dynamic net volatility connectedness
between carbon and energy markets in time-frequency domains.
The natural gas market primarily serves as a net transmitter, while
the electricity market mainly acts as a net receiver. The roles of net

transmitters or receivers in the carbon, crude oil, and coal markets
have undergone several transformations. Additionally, compared to
the net return connectedness, the net volatility connectedness is
mainly concentrated at medium- and low-frequency.

First, in 2014, the carbon market was primarily a risk
transmitter, while the electricity and coal markets were risk
receivers during this period. This was due to the European
Union Environment Committee accelerating the back-loading
process2. Moreover, the unstable expectations for the carbon
market resulted in the dominance of high-frequency
connectedness during this period. Second, the electricity market
primarily acts as a net receiver, which may be attributed to the
significant determinants of production costs for electricity
companies, namely, carbon, coal, and natural gas (Keppler and
Mansanet-Bataller, 2010). Therefore, volatilities in these markets
will be transmitted to the electricity market. Furthermore, the net

TABLE 5 Summary for net volatility connectedness in the time and frequency domains.

Carbon Electricity Natural gas Crude oil Coal

Time-domain -min -max +max - +min

High-frequency -min -max + +max +min

Medium-frequency -min -max +max - +min

Low-frequency -min -max +max - +min

Notes: Symbol ‘+’ (or ‘-‘) denotes the net spillover is positive (or negative) in volatility connectedness, indicating the market is the net transmitter (or receiver). Moreover, ‘max’ and ‘min’ refer to

the most significant and minor net spillover in the same frequency-domain.

FIGURE 4
The dynamics of total volatility connectedness in the time and frequency domains. Notes: This figure shows the dynamics of total volatility
connectedness between carbon and energy markets in the time-domain and at high-frequency, medium-frequency, and low-frequency. The figure is
based on the 100-step-ahead forecast horizon and 200-day rolling window size (around 1 year covered by each window).

2 http://www.tanpaifang.com/tanpaimai/201406/3034403.html.
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volatility connectedness of the electricity market is primarily
concentrated at medium- and low-frequency. Third, the natural
gas market is primarily characterized by a net transmitter during the
sample period, with medium- and low-frequency net volatility
connectedness dominating. This may be attributed to the low
price and abundant reserves of natural gas, which directly
compete with other energies in production activities (Wang and
Guo, 2018). Consequently, volatilities in the natural gas market have
significant impacts on the marginal costs of other fuels (Wang and
Guo, 2018). Fourth, the net connectedness of the crude oil market
exhibits relatively tiny changes during the sample period.
Furthermore, the medium- and low-frequency net connectedness
exhibits consistent direction with time-domain net connectedness.
Fifth, the direction of net volatility connectedness in the coal
market also exhibits an alternated positive and negative
characteristic, opposing that of the carbon market. This may be
attributed to coal being the primary source of carbon emissions,
making it more sensitive to changes in the carbon market (Tan et al.,
2020; Edziah et al., 2022). Sixth, during the outbreak of the COVID-

19 pandemic, the net volatility connectedness of various markets
increased in both time and frequency domains. Notably, the natural
gas market witnessed an intensified net outward spillover at high-
frequency connectedness, while the electricity and coal markets
experienced augmented net inward spillovers. Simultaneously, the
natural gas, crude oil, and coal markets exhibited heightened net
outward spillovers at medium- and low-frequency connectedness. In
contrast, the carbon futures and electricity markets showed
increased net inward spillovers.

3.3 Comparison of return connectedness
and volatility connectedness

We can obtain the following observations by comparing the
results of return and volatility connectedness between carbon and
energy markets. First, the total return connectedness (17.62%)
significantly surpasses the total volatility connectedness (9.32%),
indicating that information transmission among these markets is

FIGURE 5
The dynamics of net volatility connectedness in the time and frequency domains: (A) Carbon, (B) Electricity, (C) Natural gas, (D) Crude oil, (E) Coal.
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stronger than risk contagion. This conclusion aligns with Tan et al.
(2020), who assert that the volatility connectedness between carbon
and energy markets is weaker than the return connectedness.
However, it differs from the findings of Ji et al. (2018), whose
research suggests that the risk contagion between carbon and energy
markets is higher than the information transmission. This
differential conclusion may be influenced by data frequency since
the former uses daily data consistent with the data frequency in this
paper, while the latter employs weekly data. More importantly, the
sampling period of this paper spans Phases II and III and part of
Phase IV in the EU ETS. In contrast, Tan et al. (2020) and Ji et al.
(2018) research sample periods only reach the mid-to-late stages of
Phase III. Consequently, our conclusions better capture the objective
outcomes in the current scenario.

Second, the return connectedness is predominantly
concentrated at high-frequency, representing over 77% of the
total connectedness. This suggests rapid information transmission
across markets, with most information absorbed within 5 days
following a specific shock. Moreover, the return connectedness is
primarily influenced by market sentiment (Wang, 2020). As for the
volatility, connectedness is mainly concentrated at medium- and
low-frequency, indicating that market risk contagion is primarily
influenced by long-term fundamental factors such as supply and
demand (Dai et al., 2021; Wu et al., 2023).

Third, both return and volatility dynamic connectedness exhibit
similar fluctuating trends, and extreme events can cause significant
changes. Moreover, the dynamic return connectedness
demonstrates a higher degree of fluctuation in the face of
extreme events, while the dynamic volatility connectedness
experiences more frequent variations. This conclusion, to some
extent, supports the viewpoints of Ji et al. (2018), who indicate
that the risk contagion between carbon and energy markets exhibits
more pronounced dynamic changes than information transmission.

Fourth, high-frequency connectedness dominates total and
directional return connectedness, while medium- and low-
frequency connectedness dominates total and directional
volatility connectedness. This is consistent with the results
observed in the static connectedness in time-frequency domains.
This conclusion aligns with the findings of Ding et al. (2022) since
they indicate that the return connectedness between carbon and
energy markets is concentrated at high-frequency. Simultaneously,
our findings are consistent with those of Adekoya et al. (2021), who
suggest that volatility connectedness is concentrated at medium-
and low-frequency. However, the abovementioned research only
considers return connectedness or volatility connectedness. Given
the distinct transmission channels for return and volatility
connectedness (Wan et al., 2024), this paper comprehensively
addresses both return and volatility connectedness, shedding new
light on the connectedness between carbon and energy markets.
Moreover, this paper indicates that risk contagion between carbon
and energy markets can last over a month. This aligns with practical
reality, given that volatility exhibits persistence (Wei et al., 2022b).

Fifth, the net return connectedness in each market maintains a
consistent direction in the time-domain and at high-frequency. In
contrast, the direction at medium- and low-frequency is opposite to
the time-domain. Moreover, the net volatility connectedness
maintains a generally consistent direction in both time and
frequency domains. This suggests that information transmission

and risk contagion among different markets exhibit noticeable
differences in time-frequency domains, highlighting the
complexity of the connectedness between carbon and energy
markets (Hoque et al., 2023). Furthermore, both in terms of
return and volatility connectedness, the markets most strongly
correlated with the carbon market are the electricity and coal
markets. This conclusion aligns with Zhang and Sun (2016) since
they indicate that the coal market transmits volatility connectedness
to the carbon market through its effect on the carbon emission
demands of power companies. This is supported by Giorgio (2014),
who indicates a bidirectional causal relationship between carbon and
electricity prices.

Sixth, during the COVID-19 pandemic (from 1 January 2020, to
27 September 2021), all markets’ net return and volatility
connectedness increased in both time and frequency domains.
Figures 6, 7 present the return and volatility connectedness
networks between carbon and energy markets in time-frequency
domains during the COVID-19 pandemic. Overall, the return
connectedness is notably stronger than the volatility
connectedness during this period. This means that the level of
information transmission between carbon and energy markets is
higher than that of risk contagion during the pandemic. Meanwhile,
both return connectedness and volatility connectedness are
primarily concentrated at high-frequency. Regarding return
connectedness, the carbon market primarily acts as an
information receiver, mainly receiving spillovers from the
electricity market, followed by the natural gas and coal markets.
This conclusion supports Ding et al. (2022), who pointed out that
during the COVID-19 pandemic, the carbon market primarily acted
as a receiver. However, in the volatility connectedness, the carbon
market transforms into a risk transmitter, mainly transmitting risks
to the electricity market. This conclusion, to some extent, supports
the findings of Tan et al. (2020), who point out that the volatility
spillover from the carbon market to the electricity market can help
predict volatility in the electricity market via the carbon market.
Lastly, the focus of this paper differs in several ways. First, different
from previous research (Wang and Guo, 2018; Naeem et al., 2020;
Tan et al., 2020; Dai et al., 2021), this paper investigates the
connectedness between carbon and energy markets spanning
from 2008 to 2021, covering the period of the COVID-19
pandemic. This helps to reveal the influence of the pandemic on
the connectedness between carbon and energy markets, enriching
the investigation of information transmission and risk contagion
during crises. Second, while Ding et al. (2022), Jiang and Chen
(2022b), and Su et al. (2023) examined the return connectedness
between carbon and energy markets pre and post-pandemic, they
neglected to consider the volatility connectedness amid the
pandemic. This paper comprehensively contrasts the return and
volatility connectedness between carbon and energy markets during
the pandemic, addressing the research gap in the existing literature.

3.4 Robustness check

To ensure the robustness of our findings, this paper conducts
examinations using two distinct configurations to assess the stability
of the time-frequency domains’ connectedness calculated earlier.
First, setting a higher forecast horizon can help better separate the
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connectedness into long-term and short-term components (Baruník
and Křehlík, 2018; Zhu et al., 2023b). Referring to Zhu et al. (2023b),
this paper adjusts the forecast horizon to 100 days and 150 days to
ensure the robustness of the results. Figure 8 shows that neither
return nor volatility connectedness is sensitive to changes in the
forecast horizon.

Second, a smaller rolling window size may make
connectedness sensitive to outliers, thereby obscuring critical
time points in risk transmission (Zhu et al., 2023b). Conversely, if
the rolling window size is relatively large, it may lead to
excessively smooth connectedness, preventing the detection of
its actual dynamic structure (Zhu et al., 2023a). To assess the
sensitivity of the connectedness between carbon and energy
markets to the rolling windows setting, this paper conducts
robustness tests with rolling windows setting at 150, 200, and
250 days while keeping the forecasting horizon unchanged at
100 days by following Zhu et al. (2023a). Figure 9 demonstrates
that both return and volatility connectedness are not sensitive to

changes in rolling window size. Therefore, the findings of this
paper are robust.

4 Conclusion

4.1 Research conclusion

This paper investigates the return and volatility connectedness
between carbon and energy markets fromMarch 2008 to September
2021. The time-frequency connectedness approaches proposed by
Diebold and Yilmaz (2014) and Baruník and Křehlík (2018) are
introduced for the analysis. This paper draws four conclusions. First,
the return connectedness surpasses volatility connectedness.
Moreover, high-frequency connectedness prevails in total and
directional return connectedness, implying that information
transmission in carbon and energy markets is predominantly
concentrated in the short-term (1–5 days). While medium- and

FIGURE 6
The networks of time-frequency return connectedness between carbon and energy markets during the COVID-19 pandemic: (A) Time-domain, (B)
High-frequency, (C)Medium-frequency, (D) Low-frequency. Notes: The diameter of the nodes in this figure denotes the out-degree. The yellow nodes in
this figure represent the net return transmitters in the network, while the blue nodes denote the net receivers. The direction of the arrows shows the net
pairwise spillover direction. The color and magnitude of the lines indicate the strength of the return connectedness (black (spillover level less than
10%), blue-green (spillover level from 10% to 20%), and red (spillover level more than 20%)).
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low-frequency connectedness dominate in total and directional
volatility connectedness, indicating that the risk contagion in
carbon and energy markets is primarily concentrated in medium-
and long-term (5–22 days and more than 22 days). This means that
information transmission is more pronounced than risk contagion
between carbon and energy markets. And information transmission
is primarily influenced by market sentiment, while risk contagion is
more affected by fundamentals. Second, extreme events, such as the
oil price plunge, the Sino-U.S. trade friction, and the COVID-19
pandemic, have heightened dynamic changes in return and volatility
connectedness. In contrast to the return connectedness, changes in
volatility connectedness are more frequent, especially at medium-
and low-frequency. This indicates that extreme events intensify
information transmission and risk contagion between carbon and
energy markets, and risk contagion changes more frequently. Third,
the net return connectedness in all markets remains consistently
oriented in the time-domain and at high-frequency but exhibits an

almost opposite direction at medium- and low-frequency. In contrast,
the net volatility connectedness in all markets maintains a consistent
direction in both time and frequency domains. These findings may
reflect potential differences in the impact of short-term market
sentiment and long-term supply-demand fundamentals on
information transmission. This observation suggests a measure of
synergistic influence in the manifestations of risk contagion across
diverse temporal scopes. Further, the natural gas and coal markets
primarily act as net transmitters in both time-frequency return and
volatility connectedness. In contrast, the crude oil, electricity, and
carbon markets mainly serve as net receivers. This implies that the
natural gas and coal markets exhibit some predictability towards the
movements of the crude oil, electricity, and carbon markets, as
highlighted by Tan et al. (Tan et al., 2020). Fourth, during the
COVID-19 pandemic, all markets’ net return and volatility
connectedness increased in time-frequency domains. Moreover,
during this period, the carbon market acted as a net receiver

FIGURE 7
The networks of time-frequency volatility connectedness between carbon and energy markets during the COVID-19 pandemic: (A) Time-domain,
(B) High-frequency, (C) Medium-frequency, (D) Low-frequency. Notes: The diameter of the nodes denotes the out-degree. The yellow nodes in this
figure represent the net volatility transmitters in the network, while the blue nodes denote the net receivers. The direction of the arrows shows the net
pairwise spillover direction. The color andmagnitude of the lines indicate the strength of the volatility connectedness (black (spillover level less than
10%), blue-green (spillover level from 10% to 20%), and red (spillover level more than 20%)).
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regarding return connectedness, primarily receiving spillovers from
the electricity, natural gas, and coal markets. Meanwhile, regarding
volatility connectedness, the carbon market transformed into a net
transmitter, mainly transmitting risk to the electricity market. This
indicates that the COVID-19 pandemic profoundly affects
information transmission and risk contagion between carbon and
energy markets, highlighting the complexity of the dynamic interplay
between carbon and electricity markets during the crisis period.

This paper enriches the research on the frequency-domain
connectedness between carbon and energy markets (Ding et al.,
2022). Comparing the information transmission and risk
contagion between carbon and energy markets, this paper
addresses the research gap in existing literature (Adekoya
et al., 2021). Furthermore, the paper provides new insights
into the relationship between carbon and energy markets
during the COVID-19 pandemic. This enriches existing
literature (Wang and Huang, 2021; Jiang and Chen, 2022b),
contributing to a new and more comprehensive insight for
investors and policymakers.

4.2 Policy implications

This paper offers the following recommendations. First, it is
crucial to examine both return and volatility connectedness to
analyze inter-market relationships between carbon and energy
markets. It is essential to focus on high-frequency information
transmission and medium- and low-frequency risk contagion. In
particular, investors should concentrate on information releases
within a week and implement risk prevention measures lasting
more than a month to optimize their portfolio returns (Wan
et al., 2024). Policymakers need to focus on the time-varying
characteristics of the connectedness between carbon and energy
markets, adopting a flexible policy framework. This ensures the
effective achievement of sustainable carbon emission goals while
stabilizing the price fluctuations in both the carbon and energy
markets (Wang and Guo, 2018). Second, it is necessary to pay
heightened attention to extreme events and their impacts,
specifically in the context of risk contagion dynamics.
Moreover, investors and policymakers should carefully

FIGURE 8
Robust tests on the forecast horizon: (A) Return connectedness, (B) Volatility connectedness.

FIGURE 9
Robust tests on the rolling window size: (A) Return connectedness, (B) Volatility connectedness.
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consider the distinct impacts of different extreme events,
enabling more effective strategy adjustments (He and Hamori,
2021). Third, it is essential to diligent monitoring of information
transmission and risk contagion between carbon and energy
markets, with a specific focus on the spillovers from the
electricity and coal markets to the carbon market. Specifically,
the carbon market is significantly influenced by the electricity
and coal markets. Investors can leverage changes in electricity
and coal prices to anticipate fluctuations in the carbon market,
allowing for timely adjustments to their investment strategies. It
is advisable to avoid including electricity and coal in diversified
portfolio strategies within the carbon market to prevent the
accumulation of risks. Energy-intensive enterprises should
focus on comprehending the influence of electricity and coal
markets on carbon prices to facilitate the selection of an optimal
energy consumption structure (Gong et al., 2021). Policymakers’
responsibility goes beyond monitoring the spillover effects of
electricity and coal markets on the carbon market. Additionally,
they should closely monitor the information and risk spillover
from the natural gas market to the carbon market amid the
COVID-19 pandemic. Thus, policymakers ought to prioritize
attention to technological advancements within the electricity,
coal, and natural gas markets to guide enterprises in adapting and
managing carbon emissions. Furthermore, this paper offers
valuable insights for formulating suitable carbon trading
mechanisms in emerging markets like China, facilitating their
rapid construction and enhancement of carbon markets for a
more sustainable and low-carbon future.

4.3 Research limitations and future work

There are some limitations to this paper. First, it exclusively
examines return and volatility connectedness, neglecting higher-
order moments (skewness and kurtosis) connectedness. Skewness
and kurtosis precisely capture market crash risk and fat-tail risk.
Transmitting information and risk through the asymmetry of return
distributions and fat tails can significantly impact portfolio strategies
and asset pricing (He and Hamori, 2021). Second, asymmetric
connectedness is not addressed in this paper. However, positive
and negative shocks in the market often lead to different
connectedness characteristics (Apergis et al., 2017). Therefore,
future research could explore time-frequency higher-order
moment connectedness between carbon and energy markets.
Additionally, further investigations may delve into the separation
of connectedness induced by positive/negative shocks and explore
time-frequency asymmetric connectedness between carbon and
energy markets.
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