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The Middle East has major sources of anthropogenic carbon dioxide (CO2)
emissions, but a dearth of ground-based measurements precludes an
investigation of its regional and temporal variability. This is achieved in this
work with satellite-derived estimates from the Orbiting Carbon Observatory-2
(OCO-2) and OCO-3 missions from September 2014 to February 2023. The
annual maximum and minimum column (XCO2) concentrations are generally
reached in spring and autumn, respectively, with a typical seasonal cycle
amplitude of 3–8 ± 0.5 ppmv in the Arabian Peninsula rising to 8–10 ± 1 ppmv
in the mid-latitudes. A comparison of the seasonal-mean XCO2 values with the
CO2 emissions estimated using the divergencemethod stresses the role played by
the sources and transport of CO2 in the spatial distribution of XCO2, with
anthropogenic emissions prevailing in arid and semi-arid regions that lack
persistent vegetation. In the 8-year period 2015–2022, the XCO2

concentration in the United Arab Emirates (UAE) increased at a rate of about
2.50 ± 0.04 ppmv/year, with the trend empirical orthogonal function technique
revealing a hotspot over northeastern UAE and southern Iran in the summerwhere
anthropogenic emissions peak and accumulate aided by low-level wind
convergence. A comparison of the satellite-derived CO2 concentration with
that used to drive climate change models for different emission scenarios in
the 8-year period revealed that the concentrations used in the latter is
overestimated, with maximum differences exceeding 10 ppmv by 2022. This
excess in the amount of CO2 can lead to an over-prediction of the projected
increase in temperature in the region, an aspect that needs to be investigated
further. This work stresses the need for a ground-based observational network of
greenhouse gas concentrations in the Middle East to better understand its spatial
and temporal variability and for the evaluation of remote sensing observations as
well as climate models.
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1 Introduction

Carbon dioxide (CO2) is the most abundant greenhouse gas in the Earth’s atmosphere
(Yoro and Daramola, 2020; IPCC, 2022). Its concentration has been rising steadily in the last
7 decades (Hashimoto, 2019; Dhakal et al., 2022; Tans and Keeling, 2023) and is projected to
continue to do so in the future albeit at an uncertain rate (Meinshausen et al., 2020). CO2
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impacts both the production and consumption of other greenhouse
gasses such as nitrous oxide and methane (van Groenigen et al.,
2011; Huang et al., 2021; Noyce et al., 2023). It has an important
effect on the Earth’s radiative budget, as it acts to enhance the
outgoing longwave radiation emitted by the Earth’s surface, leading
to an increased downward radiation flux and hence a warming of the
surface (Kiehl and Trenberth, 1997; Feldman et al., 2015; Boucher
et al., 2021). CO2 is emitted by natural and anthropogenic sources
(Yoro and Daramola, 2020). Natural sources include respiration (by
plants, soil and animals), outgassing from oceans, volcanoes and
natural wildfires, while the major anthropogenic sources are
transportation (fossil fuel combustion by air, road and maritime
vehicles), energy (coal, natural gas and oil burning used to power
infrastructure) and industry (production of metals such as iron and
steel; production of chemicals) (Lamb et al., 2021; Prentice et al.,
2021; EPA, 2023).

While the magnitude of the natural CO2 sources and sinks
exceeds that of the anthropogenic emissions, they are largely in
balance: i.e., the CO2 released to the atmosphere by respiration and
outgassed from the oceans is offset by the CO2 removed by
photosynthesis and dissolved into the oceans. In fact, natural
CO2 sources not just remove all naturally emitted CO2 but take
up to about half of the anthropogenic emissions, with the
remaining responsible for the steady increase in the
atmospheric CO2 concentration in recent decades (e.g., Le
Quere et al., 2009; Ballantyne et al., 2012; Poulter et al., 2014).
As it is a well-mixed gas, the trends do not vary much spatially on a
global scale and are mostly in the range 1.5-3 ppmv/year in recent
decades (Aumann et al., 2005; Shim et al., 2011; Jain et al., 2021),
with some inter-annual variability (Watanabe et al., 2000)
primarily driven by the El Nino Southern Oscillation in South
Asia (Das et al., 2022). The recent study of Kuttippurath et al.
(2022), and using satellite data for the period 2002–2020 from four
different sources, estimated the global CO2 trend values to be in the
range 1.8–2.2 ppmv/year. The authors found that, for South Asia,
the satellite-derived XCO2 values can differ by more than 5 ppmv,
highlighting the need for ground-based measurements to assess the
biases in the satellite estimates. They also performed a
comprehensive analysis of the atmospheric CO2 distribution
over India, reporting an average trend of 2.1 ppmv/year, with
larger values of 2.3–2.4 ppmv/year in autumn and winter in
western and eastern parts of the country owing to higher oil,
gas, coal, and total energy consumption (Sharma et al., 2023).
Kunchala et al. (2022) analyzed XCO2 concentrations over India
during 2014–2018 from the Orbiting Carbon Observatory-2
(OCO-2; Wunch et al., 2011a; b; Crisp et al., 2012; O’Dell et al.,
2012; Frankenberg et al., 2012; Frankenberg et al., 2015). The
authors found a marked seasonal variability with amplitudes that
at some sites in central and eastern India can exceed 10 ppmv. The
peak takes place in spring in the pre-monsoon season, owing to
higher temperatures and drier conditions that foster respiration
and suppress photosynthesis, while the minimum occurs in the
summer monsoon season driven by cooler temperatures, increased
soil moisture and vegetation growth. The zonally-averaged XCO2

over India increased at a rate of around 2.8 ppmv/year from July
2014 to December 2018, even though the 2015–16 El Nino that
increased XCO2 concentrations through hotter and drier
conditions modulated the 5-year trend. While there are several

studies on the CO2’s spatial and temporal variability in the mid-
latitudes (e.g., Helfter et al., 2016; Cheng et al., 2022) and even in
the polar regions (e.g., Cristofanelli et al., 2011; Wickland et al.,
2020), very little research has been done in the Middle East, which
is one of the world’s emission hotspots (e.g., Arman, 2015; He et al.,
2020; Mustafa et al., 2021). One of the reasons for this is the dearth
of ground-based observations of CO2. In fact, the Total Carbon
Column Observing Network (TCCON; Wunch et al., 2011a), a
network of, at the time of writing, 28 ground stations which
measure the column abundances of greenhouse gasses including
CO, CO2, CH4 and N2O (Liang et al., 2017), does not have any
station in the Middle East. In this region, the main human sources
of CO2 are electricity, water desalination, transportation, and
industry, with oil well fires, agriculture and landfills playing a
role as well (Koerner and Klopatek, 2002; Sengul et al., 2009;
Farahat, 2016).

One of the very few ground-based CO2 stations in the Arabian
Peninsula is located near Kuwait City, with the analysis of the
measurements collected during 1996–2001 presented in Nasrallah
et al. (2003). Besides the expected annual cycle with a peak in
February and a minimum in September, and a weekly cycle with
higher CO2 concentrations during the workweek and lower over
the weekend, the authors found a clear diurnal cycle that has a
slightly larger magnitude than the annual cycle (~3 ppmv vs
2 ppmv). The minimum occurs around 17 Local Time (LT), after
the winds die down following the vertical mixing associated with
the daytime surface heating and resulting mixing in the
atmosphere. The daily maximum, on the other hand, takes
place around 22 LT, after the peak in emissions due to the
evening commute and in a more stable boundary layer. After
22 LT, the CO2 values decrease as the land-breeze advects cleaner
(i.e., less CO2-rich) desert air into the site. As the local-scale
circulations (e.g., Dasari et al., 2022) and the spatial distribution of
CO2 emissions (e.g., Farahat, 2016) in the Arabian Peninsula are
highly heterogeneous, the variability of the CO2 concentration on
different timescales throughout the region is likely to differ from
that of the station near Kuwait City mentioned above. A network
of surface CO2 observations is therefore needed to evaluate the
estimates from remote sensing assets, which can exhibit
considerable biases (e.g., Kulawik et al., 2016), and to further
our understanding on the processes behind the observed
variability. Insight into the vertical distribution of CO2 can
also be gained from aircraft measurements, as highlighted by
Vogel et al. (2023), who noted that the strong ascent associated
with the Asian summer monsoon enhances its concentration in
the stratosphere up to an altitude of 20 km. Li et al. (2014), and
using tethered balloon observations, found the vertical
distribution of CO2 in the bottom 1 km to depend on the
atmospheric stability and boundary layer depth, a finding also
reached by Crawford et al. (2016). Besides ground-based
observations, a complete picture of the variability of CO2 can
only be achieved with airborne instruments such as balloons,
aircrafts or drones.

The analysis of satellite-derived column-averaged dry air mole
fraction of CO2 (XCO2) in the Middle East has been conducted.
Golkar and Shrivani (2020) analyzed 7-year of XCO2 from the
Greenhouse Gases Observing Satellite (GOSAT; Kuze et al., 2009)
over Iran. The authors found higher XCO2 values in the
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southwestern and northwestern regions, which were attributed to
industrial activities with the topography and advection by the
prevailing winds playing a role as well. CO2 concentrations are
higher in winter, due to increased fossil fuel burning and lower
photosynthetic activity, with higher summertime values in the
central and eastern parts attributed to the severe drought in the
region. The spatially-averaged XCO2 increased at a rate of about
2.12 ppmv/year during 2009–2016, which is consistent with that
estimated elsewhere (e.g., Payan et al., 2017). Golkar and Mousavi
(2022) investigated XCO2 concentrations from the OCO-2 over the
Middle East for the period 2015–2020. They identified the major
anthropogenic emission sources, namely, oil and gas platforms and
urban areas, as well as CO2 sinks, such as biomass absorption and
photosynthesis. This was achieved by comparing the satellite-
derived XCO2 with two datasets that give information on
anthropogenic and biogenic CO2 emission sources and sinks. It is
possible, however, to estimate the CO2 emissions from the XCO2

concentrations directly, such as through the divergence method
proposed by Liu et al. (2021) or through the analytical inversion
procedure detailed in Chen et al. (2022). This would also allow for a
better understanding of the role of CO2 transport in the XCO2

concentration. In addition, and given how crucial it is to correctly
represent the CO2 concentrations in climate change runs, an
evaluation of the CO2 data used to drive the climate change
simulations is needed. This is achieved in this study by
comparing the column CO2 forcing data (i.e., not model outputs,
the XCO2 concentration used to drive future model simulations) of
the climate change simulations that feature the sixth phase of the
Coupled Model Intercomparison Project (CMIP6; Tebaldi et al.,
2021) for different climate change scenarios against satellite-
derived estimates.

The goals of this work are three-fold: i) investigate the seasonal
variability of CO2 in the Middle East and correlate it with the CO2

emission sources; ii) examine the spatial patterns in CO2

concentrations trends; iii) assess how realistic the CO2 driving-
data of climate models is when compared to satellite-derived
measurements. All three objectives are achieved using 7-years
(06 September 2014 to 28 February 2022) of OCO-2 data and 3-
years (06 August 2019 to 28 February 2023) of data from its sister
mission OCO-3, as well as ERA-5 reanalysis data.

This paper is structured as follows. In Section 2, a description
of the datasets and the methodology used in this work is given. The
CO2 anthropogenic emissions in the Middle East are summarized
in Section 3. In Section 4 the focus is on the seasonal variability of
the XCO2 concentration, while in Section 5 the trend in XCO2 is
explored. In Section 6, the satellite-derived and the XCO2

concentration used to force some of the climate change
simulations conducted as part of the CMIP6 project are
compared. The main findings of this study are outlined
in Section 7.

2 Materials and methods

2.1 Observational and modelled datasets

In this work, the XCO2 concentrations over the Middle East
(20°-70°E and 5°-45°N) are extracted from the OCO-2 (O’Dell et al.,

2018) and OCO-3 (Eldering et al., 2019) datasets, with
anthropogenic CO2 emissions downloaded from the Emissions
Database for Global Atmospheric Research version 8.0
(EDGARv8; European Commission, 2023; Crippa et al., 2023).
ERA-5 reanalysis data (Hersbach et al., 2020), combined with the
satellite-derived XCO2 concentration, is used in the divergence
method detailed in section 2.2 to estimate the full (biogenic and
anthropogenic) CO2 emissions. The CO2 concentrations used to
drive future climate simulations are also downloaded and compared
with the satellite-derived data. All these datasets are briefly
summarized in the subsections below.

2.1.1 XCO2 concentrations from OCO
OCO-2 was launched in July 2014, its sister mission OCO-3

was launched in May 2019, and both carry an instrument that
incorporates three high-resolution spectrometers providing high
spatial resolution (1.29 km × 2.25 km) CO2 retrievals with a
precision better than 1 ppm at 3 Hz. This is in contrast with the
single instrument carried by the GOSAT satellite launched in
January 2009, which gives CO2 data at a 10.5 km × 10.5 km
resolution (Liang et al., 2017). Both OCO and GOSAT infer the
CO2 concentration from the reflected sunlight in the shortwave
infrared (0.76–2.06 μm) band. A full description of the retrieval
algorithm is given in Boesch et al. (2011). Although the overall
performance of OCO-2 and OCO-3 is similar, there are
important differences between the two. As detailed in Eldering
et al. (2019), OCO-2 is in a sun-synchronous orbit and is part of
the Afternoon Train (A-train) satellite constellation. OCO-3,
built from spare parts during the construction of the OCO-2,
is onboard the International Space Station. OCO-3 also features a
new pointing mirror assembly, which enables the collection of
data over large contiguous areas of 100 km × 100 km on a single
overpass, generating a product called snapshot area map (Bell
et al., 2023). The level 2 (L2) OCO-2 (Gunson and Eldering,
2020), for the period 06 September 2014 to 28 February 2022, and
OCO-3 (Chatterjee and Payne, 2022), for 06 August 2019 to
28 February 2023, bias-corrected XCO2 version 10 products are
used. The bias-correction step, which aims at removing
systematic biases in XCO2 in an attempt to minimize errors,
involves different variables such as surface pressure, water
vapour and optical depth from dust, water and sea salt aerosol
species. It is discussed in O’Dell et al. (2018) for OCO-2 and in
Eldering et al. (2019) for OCO-3. The OCO-2 and OCO-3
L2 products also come with a quality flag in which the XCO2

measurement goes through a series of parameter-based tests, with
a value of “0” denoting a good retrieval and “1” lower quality data
(Osterman et al., 2020). Only good quality measurements are
considered in this work, except for the trend in the UAE’s
monthly XCO2 concentration for which all data points are
taken so as to minimize the gaps in the time-series.

OCO-2 measurements have been evaluated against ground-
based XCO2 measurements such as those collected by the
TCCON. Wunch et al. (2011b) reported absolute median
differences of less than 0.4 ppm and root-mean-square
differences within 1.5 ppm at global scales. Liang et al. (2017)
found that, for the period September 2014 to December 2016, the
mean accuracy of OCO-2 in comparison with TCCON was
0.2671 ppm, with an error standard deviation of 1.56 ppm,
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compared to −0.62 ppm and 2.3 ppm for GOSAT for 2014–2016,
respectively. Taylor et al. (2023) evaluated OCO-2 and OCO-3
XCO2 estimates against TCCON observations and reported root
mean square errors of ~0.8 ppm and 0.9 ppm, respectively. The
comparable performance of the two datasets is consistent with the
fact that they carry a similar instrument. Unfortunately, there are
no TCCON stations in the Middle East (Wunch et al., 2011a), nor
other XCO2 measurements from ground-based sites for the period
targeted here. As a result, the evaluation of satellite-derived
estimates in this region is not possible. In any case, the good
performance of the OCO-2/OCO-3 data in comparison to
TCCON estimates gives confidence in using it to explore the
variability of the XCO2 concentration in the Middle East region.

For the spatial trend analysis in Section 5, a gridded product
is needed, with the OCO-2 level 3 (L3) dataset (Weir and Ott,
2022) used for this purpose. The OCO-3 L3 provides daily XCO2

fields on a 0.5° × 0.625° grid from 01 January 2015 to roughly a
year before present, which are obtained from the L2 orbital
retrievals combined with the Goddard Earth Observing System
Constituent Data Assimilation System (GEOS CoDAS), as
detailed in Ott and Weir (2022). GEOS CoDAS is run at a
nominal spatial resolution of 50 km with 72 terrain-following
vertical levels that extend from the surface up to 0.01 hPa, from
which the column concentrations are derived. The surface-
atmosphere fluxes in the model are estimated from satellite-
derived products, with the meteorological fields obtained from
the Modern-Era Retrospective analysis for Research Applications
version 2 (MERRA-2; Gelaro et al., 2017) reanalysis dataset. The
remote sensing and in-situ observations are ingested into GEOS
CoDAS using the 3D-Var data assimilation technique (Otto and
Weir, 2022).

2.1.2 CO2 emissions from EDGAR
CO2 emissions from anthropogenic sources are extracted from

the EDGARv8 dataset (Crippa et al., 2023). They are compared with
the full (biogenic and anthropogenic) emissions estimated with the
divergence technique using the satellite-derived XCO2 and
reanalysis fields outlined in section 2.2, as well as with the spatial
patterns of the trend analysis conducted using the Trend Empirical
Orthogonal Function (Trend-EOF) technique detailed in section 2.3.
Monthly total and sector-wise emissions on a 0.1° × 0.1° grid for
2015–2022 are also considered to investigate the trends and identify
the major contributors to the CO2 inventory, taking the United Arab
Emirates (UAE) as a country whose CO2 emissions are
representative of those in the Arabian Peninsula. The codes used
for the specification of the sectors are taken from the
2006 Intergovernmental Panel on Climate Change (IPCC)
Guidelines for National Greenhouse Gas Inventories
methodology report (IPCC, 2006).

2.1.3 ERA-5 reanalysis data
ERA-5 reanalysis (Hersbach et al., 2020) is the latest reanalysis

dataset produced by the European Centre for Medium Range
Weather Forecasting and is available on a 0.25° × 0.25° grid
(~27 km) and on a hourly resolution from 1950 to present. It has
a higher spatial and temporal resolution than other commonly used
reanalysis datasets (Francis et al., 2021), and has been shown to
perform well in the Arabian Peninsula in comparison with in-situ

measurements (e.g., Al Senafi et al., 2019; Arshad et al., 2021;
Fonseca et al., 2022). In this study, ERA-5’s density and
horizontal winds, together with the satellite-derived XCO2 data,
are used to estimate the CO2 emissions following the divergence
method described in section 2.2.

2.1.4 CO2 data used to drive climate change
simulations

The CMIP6 is the sixth phase of the CMIP project, which began
in 1995 and aims at comparing the forecasts of independent models
for the historical period (1850–2014; Meinshausen et al., 2017) and
different climate change scenarios (2015–2,500; Meinshausen et al.,
2020) in an attempt to better understand and quantify past, present
and future changes in climate (Eyring et al., 2016). Each climate
change scenario is defined as SSPX-Y. Y, where SSPX is the scenario
of the Shared Socioeconomic Pathway (SSP; O’Neill et al., 2017;
Riahi et al., 2017) and Y.Y is the expected radiative forcing (W m-2),
a measure of the change of the radiative balance between the net
shortwave and terrestrial longwave radiation at the top of the
atmosphere, by 2,100. Five SSP scenarios are considered,
depending on the magnitude of the challenges with respect to
adaptation and mitigation, as discussed in O’Neill et al. (2017).
In SSP1, we have low challenges for both, with a reduced inequality
across and within countries coupled with a stronger emphasis on
wellbeing. It is a scenario which represents a sustainable path. In
SSP2, we have moderate challenges for mitigation and adaptation, a
middle of the road scenario. In SSP3, challenges are substantial on
both fronts in response to a resurgent nationalism and an increasing
disparity between developed and developing countries, with a strong
environmental degradation in some regions. In SSP4, adaptation
challenges prevail, arising from the increasing inequality between
the high- and low-income societies, with investments in low-carbon
energy sources taking place. In SSP5, mitigation challenges
dominate over the adaptation ones, with the push for economic
and social development leading to the increased usage of fossil
fuel resources.

The CO2 surface mole fraction data used to drive
CMIP6 climate change simulations is extracted from ground-
based measurements and ice core data for the historical period,
the latter is considered before 1984, whereas for future climate
simulations the input comes from ground-based observations for
2015–2016 and global-mean model projections for 2016–2,500
(Meinshausen et al., 2017; 2020). OCO-2 and OCO-3 data are not
used for this purpose. It is also important to stress that the
evaluation is not conducted for the outputs of CMIP6 models, but
instead for the CO2 forcing data ingested into the models for
different climate change scenarios. In addition, it is assumed that
the aforementioned CO2 surface mole fraction is propagated
vertically throughout the troposphere and stratosphere in the
models so it can be directly compared to the satellite-derived
XCO2 data. As is the case for the historical greenhouse gas
concentration data (Meinshausen et al., 2017), the CO2

concentration used to drive the future climate simulations are
available monthly on a 0.5° latitude grid with no vertical and
longitudinal dependence (Meinshausen et al., 2020). Several
approximations were made in obtaining the aforementioned
CO2 concentrations from global-mean values, with respect to
the latitudinal gradients and seasonality. For example, it is
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assumed that, in the future, and compared to the historical
period, the CO2 sources and sinks remain roughly constant in
terms of their latitudinal position (location) but not with respect
to their magnitude. The net primary productivity (NPP), the
difference between the CO2 removed from the atmosphere by
photosynthesis and that released back during respiration, is used
as proxy for seasonality changes, with the modelled future NPP
regressed against the seasonality derived for the historical period
(Meinshausen et al., 2020). The CO2 forcing data is taken from
the Earth System Grid Federation (ESGF, 2023) website, and is
compared with the satellite-derived measurements.

2.2 Estimation of CO2 emissions

The CO2 emissions are estimated following the divergence
method proposed by Liu et al. (2021) but using the full column
XCO2 concentration derived from satellite data instead of the
concentration in the boundary layer, which would also have
required model data. It is also important to note that Liu et al.
(2021) applied the methodology to methane (CH4), whereas here it
is used to extract the CO2 emissions, for which inversion models are
generally not as accurate (Deng et al., 2022). This technique does not
require a priori information on the location and strength of the
emissions, and allows for the estimation of greenhouse gas emissions
from satellite observations. It is described below, with all the
assumptions made highlighted.

For a general chemical tracer whose concentration is X, the rate
of change at a given grid-point is given by

DX

Dt
� ∂X

∂t
+ U · ∇X � s (1)

where U is the three-dimensional wind vector and s is the source
term, given by the difference between the emissions E and sinks S.
Eq. 1 can be combined with the continuity equation, as described in
Ambaum (2010), to yield

D ρX( )
Dt

� ∂ ρX( )
∂t

+ ∇ · ρUX( ) � ρs (2)

where ρ is the air density. In a steady state, Equation 2 can be
expressed more generally as

D � DB +DE −DS � E − S (3)
where D is divergence, which can be decomposed into a sum of
background (DB), emission (DE) and sink (DS) terms. Ignoring the
sink terms DS and S, the emission E can be expressed as

E � DE � D −DB � ∇ · ρU X −XB( )[ ] (4)
where the overbar denotes a time mean over some period such as a
season or a year.

As noted in Liu e al. (2021), the background concentrationXB

is generally not homogeneous due to both the changing
topography and spatially-varying biases in the observational
estimates. At a given grid-point, XB can be replaced by the
regional background concentration, which is defined as the
average of the lowest 10th percentile of X in the
surrounding ±5 grid-points (i.e., a total of 11 × 11 = 121 grid-

points are considered, with the reference one in the center).
Following Liu et al. (2021), DE is multiplied by (1 − R) where R is
the spatial correlation between DE and DB. This step aims at
removing the strong correlation between these two fields in
particular in regions of complex terrain. Areas where E is
negative are masked out as they imply no significant sources.
The transport of X with respect to the background concentration
XB can be expressed as ρU(X −XB), which is the time-mean of
the argument of the divergence term in Equation 4. Together with
the emissions, the XCO2 transport with respect to the
background concentration is estimated to assess its impact on
the spatial distribution of the XCO2 concentration.

The methodology above is applied to the XCO2

measurements from all OCO-2 and OCO-3 overpasses over
the target domain. First, the raw measurements are binned
into ERA-5’s 0.25° × 0.25° grid, with the XCO2 concentration
at a given grid-box and for a given overpass taken as the median
of all XCO2 measurements in that grid-box (the standard
deviation is also extracted and taken as an estimate of the
uncertainty). As X in Equation 4 is the column concentration
XCO2, U will be replaced by V, the horizontal wind vector.
Vertical profiles of CO2 concentration measured with aircraft
observations have revealed higher values just above the surface
and a sharp decrease above (e.g., Tanaka et al., 2012; Li et al.,
2014). An assumption is then made that most of the CO2

emission sources are located at lower levels in the atmosphere,
in which case the 10-m wind vector is used to estimate the
divergence term. It is important to stress that the choice of
the level used to extract the winds will likely influence the
results given the pronounced vertical and seasonal variability
of the horizontal wind vector in this region (e.g., Ju and Slingo,
1995). Following Liu et al. (2021), only wind speeds in the range
1–10 m-1 are considered, as some wind is needed for the
divergence method to work while strong winds violate the
approximation made of replacing XB by the regional
background concentration.

2.3 Trend empirical orthogonal functions
(Trend-EOFs)

One of the goals of this work is to investigate the trends in
XCO2 data. This is typically achieved through linear regression
(e.g., Golkar and Shirvani, 2020; Jain et al., 2021) but alternative
methods are available. One of such methods is based on the
principal component analysis, in which trend empirical
orthogonal functions (TEOFs) and trend principal components
(TPCs) are extracted. This technique, proposed by Hannachi
(2007) and used in studies such as Barbosa and Andersen
(2009) and Ceron et al. (2022), is based on the eigen-analysis of
a matrix with the inverted ranks instead of the actual values. The
procedure followed can be summarized in three steps: i) the XCO2

gridded daily data, OCO-3 L3 product, for 2015–2021 is used to
construct a matrix Xn×p � (xij), where i = 1, 2, . . . , n is the time
index with n the total number of time-points, and j = 1, 2, . . . , p
where p is the total number of grid-points. A matrix Qn×p is then
generated where, for each grid-point, the associated time-series is
first sorted and the inverse rank of the data is assigned to each
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time-point, weighted by the cosine of the corresponding latitude;
ii) the centering operatorHn×n � (In − 1

n1n1
T
n) is multiplied by the

matrix Qn×p, with the eigenvalues and eigenvectors of HQ
extracted. In and 1n are respectively the identity matrix and a
vector containing only ones; iii) the corresponding patterns in the
original (physical) space are obtained by projecting the XCO2 data
onto the trend EOFs, with the TPCs given by w � HXv, where v is
the eigenvector ofHQ. The TEOFs are then obtained by regressing

the TPCs onto the original field. A full discussion of the method is
given in Hannachi (2007).

3 CO2 anthropogenic emissions

The Arabian Peninsula is bordered by the Arabian Gulf and Sea of
Oman to the east and northeast, the Arabian Sea to the southeast, the

FIGURE 1
(Continued).
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Red Sea to the west and the Mediterranean Sea to the northwest
(Figure 1A). The terrain is relatively flat, except for the Al Hajar
Mountains in northern Oman and eastern and northeastern UAE,
which rise to roughly 3,000 m above sea-level, and the Sarawat
Mountains in western and southwestern parts, with a peak elevation
of about 3,666 m. The Middle East is also largely devoid of vegetation,
comprising mostly arid and semi-arid regions (Figure 1B).

Figure 1C summarizes the seasonal-mean large-scale
circulation. The main features are: i) the subtropical
anticyclones, ubiquitous in the region collocated with the
descending branch of the Hadley Cell (Spinks et al., 2015); ii)
a thermal low over the eastern Arabian Peninsula in the summer,

the Arabian Heat Low (Fonseca et al., 2022); iii) the southwestern
extension of the Siberian Anticyclone over southwestern Asia in
winter (Hasanean et al., 2013). The low-level flow in the Arabian
Sea shifts from southwesterlies in the summer to northeasterlies
in winter, in association with the South Asian monsoon
circulation (e.g., Schott and McCreary Jr, 2001). The
background flow in the Arabian Gulf is north-westerly year-
round (Bou Karam Francis et al., 2017; Naizghi and Ouarda,
2017). The region features generally hot and dry weather
conditions (e.g., Francis et al., 2020), with air temperatures
that can exceed 50°C in the summer when the relative
humidity drops below 10% over the desert, while in winter,

FIGURE 1
(Continued) Large-Scale Circulation from ERA-5: (A) Topography (m; shading) of the Middle East at 0.25° × 0.25° resolution (~27 km) from ERA-5.
The location of the major countries, water bodies andmountain ranges mentioned in the discussion is highlighted. (B) Predominant vegetation type from
ERA-5. Regions devoid of vegetation (desert landscape) are shaded in white. (C) Seasonal-mean sea-level pressure (shading; hPa) and 10-mwind vectors
(arrows; m s-1) from ERA-5 averaged over 2015–2021. The predominant anticyclonic and cyclonic systems for each season are highlighted.
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FIGURE 2
CO2 anthropogenic emissions from EDGARv8: (A) Total CO2 emissions (kg m-2 s-1), as given by the EDGARv8 dataset, plotted using a logarithmic
scale for easiness of visualization, for 2015 (left) and the ratio between the emissions in 2022 and 2015 (right). White pixels denote missing data, with the
location of major cities highlighted in the left panel. (B) UAE CO2 emissions (Megatons, Mt), as given by the EDGARv8 dataset, for 2015–2022. The black
line gives the total annual emissions, while the colour lines show the three largest contributors: main activity electricity and heat production (red);
manufacturing industries and construction (green); road transportation no resuspension (blue). (C) Is as (b) but giving the monthly-mean emissions
averaged over 2015–2022.
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nighttime temperatures can reach freezing levels and the relative
humidity is higher, generally around 60%–80% over coastal
regions and above 40% in the desert (Patlakas et al., 2019).
There is, however, considerable spatial variability (Hasanean
and Almazroui, 2015). In the eastern and southeastern sides,
the majority of the annual precipitation, mostly in the range
10–300 mm, falls in the colder months from November to
March in association with mid-latitude baroclinic systems
(Hasanean and Almazroui, 2015; Wehbe et al., 2017; Wehbe
et al. 2018; Wehbe et al. 2020; Nelli et al., 2021). On the
western and northwestern sides, the 20–200 mm annual rainfall
is mostly driven by the interaction between the Red Sea Trough, a
low-pressure trough that extends from equatorial Africa to the
eastern Mediterranean and Red Sea, and mid- and upper-level
mid-latitude troughs, being more substantial in the autumn (de
Vries et al., 2016). Summer convective events occur predominantly
i) around the Al Hajar and Sarawat mountains, where they are
primarily driven by the interaction of the daytime sea-breeze flow
with the topographic circulation and can lead to local
accumulations of more than 100 mm of rain (Branch et al.,
2020; Francis et al., 2021; Parajuli et al., 2022); ii) in coastal
parts of Oman and Yemen, associated with the Asian monsoon
(Kwarteng et al., 2009), with more than 400 mm of precipitation on
average falling in the mountainous terrain in Yemen in a given year
(Hasanean and Almazroui, 2015). Air temperatures are typically in
the range 5°C-25°C in winter and 25°C-45°C in the summer, with
the northwestern region being the coldest year-round and with the
highest temperatures in the Rub’ Al Khali (or Empty Quarter)
desert, except in winter where the warmest areas are those
bordering the Red Sea (Nelli et al., 2020; Ajjur and Al-Ghamdi,
2021; Nelli et al., 2022). The whole region witnesses frequent dust
storms (Francis et al., 2020; Francis et al., 2023a) mostly driven by
Shamal winds (Bou Karam Francis et al., 2017), dry cyclones
associated with reduced amounts of moisture and clouds but
important drivers of dust emission (Bou Karam et al., 2009;
Francis et al., 2019a; Francis et al., 2020), density currents from
convection (Francis et al., 2019b; Francis et al., 2023a), and cold
fronts from mid-latitudes (Kaskaoutis et al., 2019; Nelli
et al., 2022).

Figure 2A shows the total CO2 anthropogenic emissions, as
given by the EDGARv8 dataset, for 2015 and the difference between
2022 and 2015 expressed as the ratio of the emissions in the 2 years.
Further details regarding the major emission sources and their
annual cycle are given in Figures 2B,C for the UAE, a country where
the emissions are representative of those in the Arabian Peninsula.
CO2 emissions in the Middle East have generally remained steady
during 2015–2022, partially due to the effects of the COVID-19
pandemic in 2020–2022. There are increases along the main
shipping routes in the Arabian Sea and Sea of Oman, in line
with the ever booming global trade, and at the location of major
oil and gas platforms in the Arabian Gulf, reflecting higher activity.
In countries such as Ethiopia and Turkey the anthropogenic
emissions in 2022 are slightly larger than in 2015, owing to
increased economic development. In Afghanistan and parts of
central and southern Sudan, on the other hand, internal conflict
has led to an overall decrease in the CO2 anthropogenic emissions.
The highest values are concentrated i) around the major cities (e.g.,
Abu Dhabi in the UAE; Doha in Qatar; Riyadh in Saudi Arabia;

Kuwait City in Kuwait); ii) along the main roads and shipping
routes; iii) in agricultural-intensive regions, such as the area
adjacent to the Nile river and the Nile Delta in Egypt
(Awulachew et al., 2012); iv) at the location of oil and gas
platforms, as evidenced by the hotspots in the Arabian Gulf
(Paris et al., 2021). The narrow orange band extending from the
Mediterranean Sea to the Red Sea via the Suez Canal, then into Gulf
of Aden, Arabian Sea and further into the Arabian Gulf, is a route
commonly taken by ships going from Europe to the countries
around the Arabian Gulf (Kaskaoutis et al., 2023).

The total CO2 emissions in the UAE varied from ~190 Mt to
~220 Mt during 2015–2022. As far as the main contributions are
concerned, roughly 87%–92% of the emissions come from the
energy, manufacturing and construction and transportation
sectors, as also noted by Sengul et al. (2009) and Farahat
(2016). The drop from 2016 to 2018 is associated with
reduced emissions from the manufacturing and construction
sectors, which is attributed to decreased investments in light
of a fall in oil prices, followed by a rebound in 2018–2019
(Globaldata, 2019). The slight drop in emissions from the
transportation sector during 2020 likely reflects the effects of
the COVID-19 lockdown. The diversification of energy sources
(Ghanem and Alamri, 2023), including the recent opening of the
Barakah Power Plant in eastern UAE which does not emit CO2,
and investments in renewable energy, explains why, despite a rise
in population and manufacturing and construction activity, the
CO2 emissions from the energy sector have been declining during
2017–2021, with a slight rebound in 2022. The annual cycle of
emissions is given in Figure 2C. While CO2 emissions from the
energy sector peak from May to August, likely due to the demand
for cooling systems when the air temperatures are the highest
(Nelli et al., 2020; 2022), emissions from the manufacturing and
construction sectors reach their annual maximum from
December to March, as the more extreme summertime
weather conditions slow down the activity in those sectors.
Given this, the total CO2 emissions in the country peak in
March remaining high until June. Emissions from road traffic
are roughly constant throughout the year, as most people work
year-round, and short-term decreases are offset by an increase in
tourists visiting the country.

Even though anthropogenic CO2 emissions generally prevail
over natural emissions in arid regions, the latter can still be
substantial. For example, Koerner and Klopatek (2002), for the
city of Phoenix in Arizona, United States and for the period June
2000 to May 2001, found that roughly 16% of the total annual CO2

emissions came from natural sources (namely, soil respiration), with
roughly 80% associated with vehicle emissions. In coastal desert
regions, such as the UAE, air-sea fluxes of CO2, which increase with
the wind speed (Takahashi et al., 1997; Weiss et al., 2007), also have
to be considered. Higher ocean dust deposition leads to a larger CO2

uptake by the ocean and therefore to a decrease in the atmospheric
CO2 concentration (Kok et al., 2023). On the other hand, the
solubility of atmospheric CO2 into the ocean decreases at warmer
temperatures, and hence the atmospheric CO2 concentration will be
higher in low-latitude coastal desert regions (Hashimoto, 2019). A
quantification of the natural CO2 emissions in the UAE would
require the collection of in-situmeasurements at several sites that are
currently not available in the region.
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FIGURE 3
(Continued).
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4 Seasonal CO2 variability and
CO2 emissions

The spatial and temporal variability of the XCO2 concentration
in the Middle East is summarized in the seasonal mean XCO2 maps
given in Figures 3A,B. They are obtained as follows: i) for all OCO-2
and OCO-3 overpasses in the target region, the median (and for the
uncertainty the standard deviation) of the XCO2 measurements in
each grid-box of the 0.25° × 0.25° ERA-5 grid for a given overpass is
estimated; ii) for each grid-box and season, the XCO2 data from all
overpasses is averaged to extract the seasonal-mean value. The
uncertainty in the XCO2 observations in the study domain is
typically of 0.five to one ppmv (Figure 3B). Figure 3C gives the
estimated CO2 emission sources and the CO2 transport following
the divergence method presented in section 2.2.

In general, the XCO2 concentration peaks in spring and reaches
its annual minimum in the autumn. This is also the case in Iran
using GOSAT data (Golkar and Shirvani, 2020), and over West Asia

using OCO-2 data over 2015–2019 (Mustafa et al., 2021). CO2 is a
well-mixed gas and its annual variability is largely governed by the
seasonal growth in land vegetation (Keeling et al., 1996). In
particular, plant growth during the northern hemisphere (where
most of the world’s vegetation is found) captures the atmospheric
CO2 with a minimum in its concentration in late summer to early
autumn, while leaf decay and decomposition and subsequent release
of CO2 back to the atmosphere explains the maximum in late winter
to early spring. In the UAE, a country which is representative of
those in the Arabian Peninsula, the annual maximum occurs in
April-May and the minimum in September-October (Figure 4A),
when the tropospheric CO2 reaches its annual extremes in the
tropics (Crevoisier et al., 2004). Polewards of ~35°N, on the other
hand, the annual maximum occurs in winter and in some parts the
lowest annual values are seen in the summer. This region, in
particular over Asia, features semi-arid conditions with reduced
vegetation coverage, Figure 1B. As a result, anthropogenic emissions
play a larger role in the seasonal XCO2 variability, peaking in the

FIGURE 3
(Continued) Seasonal XCO2 maps and CO2 emissions: (A) Seasonal-mean XCO2 concentration (ppmv) binned in the 0.25° × 0.25° ERA-grid
obtained from all OCO-2 overpasses in the period 06 September 2014 to 28 February 2022 and OCO-3 overpasses in the period 06 August 2019 to 28
February 2023. Grey shading denotes regions where no data is available. The maximum and minimum seasonal-mean values, together with the seasonal
cycle‘s amplitude and uncertainty are given in (B). (C) The shading gives the CO2 emission (10—11 kg m-3 s-1) and the arrows give the low-level (10-m)
transport with respect to the background concentration (3 × 10—6 kgm-2 s-1) obtainedwith the divergencemethoddetailed in section 2.2. The first five rows/
columns are shaded in grey as the background concentration (and hence the emissions) is not defined here.
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FIGURE 4
Trends in XCO2 concentration: (A)Monthly XCO2 concentration (ppmv; blue line) from the OCO-2/OCO-3 L2 products averaged over the UAE for
the period 2015–2022. The red line shows a linear fit to the data with the slope, intercept and statistical significance of the fit provided in the top left. The
error bars give one standard deviation from the mean, an indication of the uncertainty in the XCO2 measurements. (B) First Trend EOF (TEOF) of the daily
XCO2 concentration (ppmv; shading) for each season and for 2015–2021. Regions where the anthropogenic CO2 emissions, as given by the
EDGARv8 dataset and averaged over the same period, exceed 10–9 kg m-2 s-1 are stippled. The first TEOF accounts for between 85% and 99% of variability,
while the others represent less than 1% for all seasons. In (C), the respective Trend Principal Components (TPCs) are plotted. The gridded OCO-2
L3 product is used for the TEOF analysis.
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winter months when fossil fuel-related energy sources are widely
used to heat up buildings (Cao et al., 2017). Around Kuwait, the
magnitude of the annual cycle is typically 3–4 ± 0.5 ppmv, Figure 3B,
in line with that measured in-situ at Kuwait City from June 1996 to
May 2001 (Nasrallah et al., 2003). The seasonal cycle amplitude
increases to 8–10 ± 1 ppmv at higher latitudes (Keeling et al., 1996)
and in southwestern and southeastern parts of the Arabian
Peninsula and tropical Africa (Mengistu and Tsidu, 2020), owing
to a more marked seasonality of plant activity on top of
anthropogenic emissions in particular in the mid-latitudes
(Figure 2A). A similar seasonal cycle amplitude is seen over
India where the annual maximum occurs in the drier and hotter
pre-monsoon months of April to June, and the minimum in the
cooler and wetter summer monsoon months of June to September
(Kunchala et al., 2022).

In addition to heterogeneity in terms of the temporal variability,
there are also differences in the spatial pattern of the XCO2

concentration. The spatial variations can be understood by
looking at the CO2 emissions and CO2 transport with respect to
the background concentration given in Figure 3C, estimated using
the divergence method summarized in Section 2.2. It is interesting to
note that the magnitude of the CO2 transport, typically in the range
10–7 to 10–5 kg m-2s-1, is comparable to some of the largest
anthropogenic emissions as given by the EDGARv8 dataset
(Figure 2A). This stresses the role played by the horizontal
advection of CO2 in the spatial distribution of the XCO2

concentration (cf. Figures 3A,B), even though the inversion
technique may be over-predicting the CO2 fluxes (Deng et al.,
2022). The hotspots in parts of Libya, Egypt and northern Chad
and Sudan as well as in southeastern Saudi Arabia over the Rub’ Al
Khali desert in the autumn and winter are driven both by the
transport of CO2 and emission sources (Figure 3C), the latter
playing the largest role in northeastern Africa. Here, the
magnitude of the estimated CO2 emissions is largely comparable
to that of the anthropogenic ones given in Figure 2A, suggesting
biogenic emissions likely play a reduced role, which is consistent
with the semi-arid landscape (Figure 1B). The clear contrast in the
number of CO2 emission sources over tropical Africa between the
summer, when they are largely absent, and the winter season, when
they are abundant, is consistent with the fact that during the wet
(summer) months the vegetation (Figure 1B) picks up CO2 from the
atmosphere, with very little transport as the low-level flow is from
the southwest (Figures 1C, 3C). This explains the lower XCO2

concentrations seen here in the warmer months (blue patches in
Figure 3A). The downstream transport of CO2 (Figure 3C),
combined with reduced emission sources over the eastern
Mediterranean where forests are present year-round (Figure 1B),
is in line with the lower XCO2 values here throughout the year
(Figures 3A,B). A visual comparison of the CO2 emission sources in
Figure 3C with the CO2 anthropogenic emissions given by the
EDGARv8 dataset in Figure 2A reveals that the latter play an
important role: e.g., the higher number of sources along the Nile
River in Egypt, in coastal areas around the Arabian Gulf, and around
Israel, Jordan and Syria together with the dearth of emission sources
over tropical Africa between 5° and 15° N in particular in the warmer
months are present in both maps. There are, however, some
important differences. Given that the two products have different
spatial resolutions (0.1° for EDGARv8 and 0.25° for the estimated

CO2 emissions), in regions of complex topography the divergence
method will not be able to capture localized emission sources such as
those in western and southwestern Iran, around the Sarawat
mountains in Yemen and Saudi Arabia, and over parts of
Turkey. The signal from transient emission sources such as ships
seen in Figure 2A is also not present in Figure 3C. An evaluation of
the magnitudes of the estimated emissions (Figure 3C) against the
anthropogenic ones (Figure 2A) reveals they tend to be largely
similar in regions that feature a lack of vegetation (cf. Figure 1B),
with the former exceeding the latter in vegetated regions. The
comparison of the seasonal-mean XCO2 concentrations in
Figures 3A,B with the CO2 emission sources and transport in
Figure 3C and the anthropogenic emissions as given by the
EDGARv8 dataset (Figure 2A) sheds light on some of the
processes behind the spatial and temporal variability of the
satellite-derived XCO2 data.

5 Trends in CO2 concentration

Having discussed the seasonal variability in XCO2, the trend will
now be examined. Figure 4A shows the monthly UAE-averaged
XCO2 for 2015–2022. This plot is obtained as follows: i) for each
OCO-2 and OCO-3 overpass, the median (and for the uncertainty
the standard deviation) of the XCO2 measurements in the 0.25° ×
0.25° grid used by ERA-5 at a given overpass is estimated; ii) for each
month in the period 2015–2022, the XCO2 data at each grid-box is
averaged over all overpasses; iii) all XCO2 data points in the grid-
boxes inside the UAE are averaged for each month. It is important to
note that all measurements, regardless of their quality flag value, are
considered to generate Figure 4A. If only good quality retrievals are
used, the overall findings are similar but there are far more gaps in
the time-series (not shown).

On top of the annual variability, there is a marked positive trend
in the monthly data for the 8-year period at a rate of about 2.50 ±
0.4 ppmv/year, statistically significant at the 95% confidence level.
The magnitude of the trend is on the higher side of the
1.8–2.2 ppmv/year estimated for different regions of the world
(Kuttippurath et al., 2022). However, even steeper trends have
been measured such as an OCO-2 trend of 2.8 ppmv/year over
India from July 2014 to December 2018 (Kunchala et al., 2022), and
a GOSAT-derived trend of 2.6 ± 0.3 ppmv/year over the Arctic
Ocean for July-September 2009–2016 (Payan et al., 2017). The trend
reported here for the UAE is steeper than the 1.92 to 2.16 ppmv/year
estimated over Iran for May 2009 - June 2016 using GOSAT data
(Golkar and Shirvani, 2020), and the 2.1 ppmv/year for the same
region using GOSAT and Environmental Satellite (ENVISAT) data
for the period 2003–2015 (Safaeian et al., 2023). The fact that the
period over which the trend is computed in this study (namely,
2015–2022) includes more recent years when the rise in the CO2

concentration has become steeper (Tans and Keeling, 2023), and the
biases in the satellite-derived estimates which, as noted by
Kuttippurath et al. (2022), can be substantial, may explain the
higher trend magnitude compared to that reported elsewhere.
CO2 trends estimated using in-situ measurements are comparable
to these: e.g., Jain et al. (2021) estimated a trend of 2.5 ± 1.2 ppmv/
year from surface measurements in southern India for the period
April 2016 to April 2019, while Imasu and Tanabe (2018) reported a
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FIGURE 5
Comparison of OCOwith CO2 forcing data in future climate simulations: Monthly XCO2 concentration (ppmv) averaged over (A) 05.25°-15.25°N and
(B) 35.25°-45.25°N fromOCO-2/OCO-3 (black line) and that given by eight different shared socioeconomic pathway (SSP) scenarios from 2015 to 2022.
(C)Hovmoller plot of monthly XCO2 fromOCO-2/OCO-3 (top left) and the differencewith respect to that of the eight SSP scenarios (remaining plots) for
2015 to 2022. Grey shading indicates no data from the satellite-derived product.
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trend of about 2 ppmv/year for urban, suburban and rural areas
around Tokyo. The fact that the CO2 trends from different locations
and obtained with ground-based and satellite assets have a similar
magnitude in the range 1.8–2.6 ppmv/year is explained by the fact
that CO2 is a well-mixed gas (Kuttippurath et al., 2022).

In order to gain further insight into the XCO2 variability, the TEOF
technique is applied to the OCO-2 daily L3 gridded product. Figure 4B
gives the first TEOF for each season, which represents 85%–99% of the
variability (not shown), with the TPCs shown in Figure 4C. It is
important to note that here the trends are being examined, and
their spatial and temporal patterns do not necessarily have to match
those of the seasonal-mean XCO2 concentration given in Figure 3A.
The largest trend values are seen in the summer when the highest
surface and air temperatures occur (e.g., Alizadeh and Babei, 2022),
which promote soil respiration and organic matter decomposition
(Raich et al., 2002; Knorr et al., 2005) and reduce the solubility of
the CO2 into the ocean (Hashimoto, 2019). There is a hospot over
northeastern UAE and southern Iran in this season, which largely
overlaps with the region of higher anthropogenic emissions as given by
the EDGARv8 dataset (cf. Figure 2A). The accumulation of emissions
over this area during summer can also arise due to the convergence of
three wind regimes: Shamal winds from the northwest, monsoon flow
from the southwest and the Levar winds from the northeast (e.g., Rashki
et al., 2019; Francis et al., 2020).

The lower values over the equatorial Indian Ocean and eastern
Africa coincide with a region of reduced CO2 emissions (cf. Figures 2A,
3C), and where the extension into higher latitudes is consistent with the
northward transport of CO2 in this season (Figure 3C). Over tropical
Africa, the highest trend values in the summer (wet) season are mostly
driven by deforestation (cf. Figure 1B) and subsequent release of CO2

into the atmosphere (Baccini et al., 2012; Salih et al., 2013; Duku and
Hein, 2021). For the other seasons the spatial variability ismuch smaller,
generally within 5%–10%.

The TPCs given in Figure 4C show a steady increase in the 7-year
period, in line with the upward trend in CO2 concentrations over the
UAE estimated from the L2 orbital retrievals, Figure 4A. There are,
however, marked differences in the intra-seasonal variability: there is a
clear increase in autumn and winter, a slight increase in spring, and a
decrease in the summer. For the vast majority of the countries in the
region, anthropogenic emissions peak in the winter months (e.g.,
Figures 2C, 3C). The rise in the cold season emissions in the period
2015–2021 is likely tied to higher fossil fuel burning to heat up buildings
over a backdrop of a rising population. The steady increase during the
winter months seen in the respective TPC may be attributed to the fact
that the coldest temperatures normally occur in January and February,
and therefore at the end of the season. A similar reasoning can explain
the variability in the autumn, with the TPC values rising gradually at the
beginning and then faster at the end when the weather starts to turn
colder. Natural variability is likely at play as well, as the demise of the
vegetation is gradual meaning that earlier in the season the plants are
still able to remove CO2 from the atmosphere through photosynthesis.
The fact that the reduction in anthropogenic emissions and the growth
in vegetation reach the maximum in this season likely explain the
decreasing values during the summer, with amoremuted intra-seasonal
variability in spring. It is interesting to note that, while in the autumn
and winter there is a smooth transition from 1 year to the next, in
spring, and in particular in summer, there is a jump or a step in the
time-series. This is also seen in the raw data (not shown), and is a

consequence of the weak (in spring) and decreasing (in summer) intra-
seasonal variations over a background of rising concentrations. In
autumn and winter the increasing values during the season have the
same sign as the trend in the background concentration, which is also
increasing over time, yielding a smoother time-series.

6Comparison of OCOwith CO2 forcing
data in climate change simulations

In this section, the CO2 concentrations used as input in (and not
a prediction of) the CMIP6 climate change simulations are evaluated
against the OCO-2/OCO-3 measurements. The historical period is
1850–2014, and therefore does not overlap with the OCO data that
extends from 2015 to 2022. Hence, the comparison will be done for
the first 8 years of the climate change period, 2015–2022, when both
are available. The satellite-derived data used here is obtained as
follows: i) for each OCO-2 and OCO-3 overpass in the period
2015 to 2022, and for the same 0.5° latitude grid used in the CO2

forcing data, the median of the XCO2 measurements for all
longitudes for a given overpass is obtained; ii) the latitudinal
XCO2 values for each month in the 8-year period are averaged
over all overpasses.

Figures 5A,B show a time-series of the CO2 concentration from
OCO-2/OCO-3 (black) and eight SSP scenarios averaged over
05.25°-15.25°N and 35.25°-45.25°N, respectively, which are
representative of the southern and northern parts of the target
domain. In the deep tropics, Figure 5A, for 2015 and 2016 the OCO
and the forcing data’s CO2 are roughly in agreement, even though
the amplitude of the seasonal cycle is about two times larger in the
latter. For 2017–2022, there is a clear positive bias in the forcing data,
whose rate of increase is roughly 10%–30% higher than that of the
observed, suggesting that in all five scenarios, and for this range of
latitudes, the forcing data overestimates the amount of CO2 in the
atmosphere and therefore its impact on the Earth’s climate. While in
2015–2018 there is little variability between the different scenarios,
by 2019–2022 there is a clear distinction between them, with lower
values for SSP1 and higher for SSP3 and SSP5 by up to about
2 ppmv, with the differences amplifying over time. This is expected,
as the scenarios are initialized in 2015 and it takes some time for the
increased emissions in SSP3-5 compared to SSP1-2 to be felt in the
column concentrations. The differences are even more marked in
the mid-latitudes, Figure 5B, with the latitude range 35.25°-
45.25°N comprising major urban centers and industrial
activities where CO2 emissions are likely to rise more strongly.
The year-on-year increase in the forcing CO2 data is up to 30%
larger than that in OCO, with positive biases reaching up to
12 ppmv by 2022 and a twice as large seasonal cycle amplitude.
The increase in the seasonality of the CO2 annual cycle has been
observed in recent decades and is estimated to be as much as 50%
in the last 50 years in the Northern Hemisphere. It has been
attributed to a rise in the ecosystems and croplands’ productivity
(Gray et al., 2014; Forkel et al., 2016), and is projected to continue
to increase in the future, with a doubling of its amplitude by
2,100 in the SSP5-8.5 scenario (Meinshausen et al., 2020). In
addition, the fact that the CO2 forcing data is originally a surface
mole fraction is also consistent with the higher seasonality with
respect to the satellite-derived XCO2 concentration.
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Further insight can be gained by looking at the full dataset
(Figure 5C). The first panel shows OCO-2/OCO-3 data, which
exhibits a marked annual cycle in the Northern Hemisphere and
a much reduced one in the Southern Hemisphere due to lower
amounts of vegetation and where oceans prevail in the mid-latitudes
and ice is dominant at higher latitudes (Cleveland et al., 1983). On
top of this there is a gradual increase in magnitude over the 8-year
period, with the phase remaining largely unchanged. The OCO-2/
OCO-3 estimated XCO2 is qualitatively similar to that estimated
from other satellites’ measurements (Jiang et al., 2016). The other
panels in Figure 5C show the differences with respect to the OCO
data for each of the eight climate change scenarios. In the Southern
Hemisphere the discrepancy is rather small but the CO2 is still
overestimated, with biases in the range 0–2 ppmv increasing to
5 ppmv at higher latitudes by 2022. However, in the Northern
Hemisphere the differences are pronounced, exceeding 10 ppmv by
2022 in particular around 40-50°N, roughly the latitude of the major
urban centers and energy-producing regions in the world. The
higher CO2 amounts in the Northern Hemisphere are generally
in phase with the seasonal cycle, acting to increase its amplitude,
with slight negative values in summer and autumn and much larger
positive values in winter and spring. As also seen in the time-series in
Figures 5A,B, the difference in CO2 between the scenarios is
generally small in 2015–2021, but more recently, and in
particular in 2022, the column concentrations in SSP5-8.5 are at
times more than 3 ppmv higher than those in SSP1-1.9.

The results in Figure 5 indicate that the CO2 concentration used
to drive climate change models is likely overestimated, which has
implications for the interpretation of their predictions. Gurriaran
et al. (2023) developed amodel to estimate the demand for electricity
in Qatar until the end of the century driven by the temperature
projections from CMIP6 models. They found an average rate of
increase of +4.2%/°C for the electricity demand, projected to rise by
5%–35% due to warming alone by 2,100. An accurate input of CO2

concentrations is therefore needed to improve the reliability of
future climate projections.

7 Discussion and conclusion

Carbon dioxide (CO2) is the most prominent anthropogenic
greenhouse gas and its concentration has been rising in recent
decades at an ever-increasing rate (Quadrelli and Peterson, 2007;
Tans and Keeling, 2023). Despite its crucial role in the Earth’s
climate (Feldman et al., 2015), there are still only a few ground-based
CO2 measurements worldwide (Wunch et al., 2011a), and none in
the Middle East, which is an emission hotspot (Mustafa et al., 2021;
Francis et al., 2023b). The variability in the column CO2 (XCO2)
concentration, as given by the measurements collected by the
Orbiting Carbon Observatory-2 (OCO-2) and OCO-3 in the
period September 2014 to February 2023, and its trends in the
Middle East are analyzed in this work. They are also used to assess
the CO2 data ingested into future climate simulations for different
climate change scenarios. The central goals of this work are to i) shed
light on the current state of the CO2 concentrations ii) identify areas
and seasons where it has been increasing at a faster rate and where
in-situ measurements would be more valuable; iii) evaluate the CO2

data used to drive climate change simulations against satellite-

derived measurements. The findings of this study will help in the
development of adaptation and mitigation strategies aiming at
reducing emissions and ensuring a more sustainable future.

The XCO2 concentration generally peaks in spring and reaches
its annual minimum in the autumn, in line with the seasonal cycle of
land vegetation (Keeling et al., 1996). In the Arabian Peninsula, the
annual cycle amplitude is typically 3–8 ± 0.5 ppmv increasing to
8–10 ± 1 ppmv in the mid-latitudes. The spatial variability in the
seasonal-mean XCO2 concentration can be at least partially
explained by the CO2 emissions and transport, such as the
hotspots over Libya, Egypt and northern Chad and Sudan and
over southeastern Saudi Arabia in autumn and winter. A
comparison with an anthropogenic CO2 emission inventory
indicated anthropogenic sources play an important role in the
spatial distribution of the XCO2 concentration, in particular in
arid and semi-arid regions largely devoid of vegetation. The
trend in the XCO2 values over the UAE for 2015–2022 is
estimated to be 2.50 ± 0.4 ppmv/year, slightly higher than that
reported at other sites in the Middle East (e.g., Golkar and Shirvani,
2020) but slightly lower than that estimated over India in the recent
years (Kunchala et al., 2022). This has been attributed to biases in the
satellite-derived estimates (Kuttippurath et al., 2022) and to the fact
that more recent years have been considered in the analysis, when
the CO2 concentration has increased at a faster rate. In any case,
even steeper trends have been reported elsewhere using satellite and
ground-based measurements, and the UAE is regarded as a hotspot
in CO2 emissions inventories. A statistical analysis of the gridded
OCO-2 level 3 product revealed a trend hotspot over northeastern
UAE in the summer, in an area of increased anthropogenic
emissions and low-level wind convergence.

An evaluation of the CO2 data used to drive climate change
simulations, for which OCO-2 and OCO-3 measurements are not
considered, against the satellite-derived values revealed an
overestimation of the former, with a magnitude exceeding 10 ppmv
in particular between 40° and 50°N where the major urban centers are
located. The trend in the XCO2 increase in the forcing data is up to 30%
steeper than that in the OCO measurements, with the amplitude of its
seasonal cycle also increasing faster than in observations, being twice as
large by 2022. This is a reflection of the premises made with respect to
the latitudinal gradients and seasonality when generating the CO2

forcing data, as well as the assumption that the CO2 surface mole
fraction is propagated vertically in the models so it can be directly
compared to the satellite-derived XCO2 concentration (Meinshausen et
al., 2020). As CO2 acts to generally warm the surface and the
atmosphere, this suggests the projected temperature changes over
the Arabian Peninsula may be overestimated, which can be further
amplified by the deficiencies in the models’ physics and dynamics.

Further insight into the CO2 variability can be gained through
higher spatial and temporal frequency data. This can be achieved by
a comprehensive network of ground-based observations, which is
still lacking to date in the Arabian Peninsula, and/or through more
sophisticated satellites such as the three planned to be launched in
2025 as part of the European Space Agency’s CO2 Monitoring
(CO2M) mission (Sierk et al., 2021). Such observations are also
crucial for the evaluation of the performance of numerical models,
and subsequently improve the quality of their forecasts for both the
current and future climate. In addition, measurements at different
heights collected by aircraft (Tanaka et al., 2012), tethered balloons
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(Li et al., 2014), and/or drones are needed to understand the vertical
structure of the CO2 concentration and estimate, for this region, the
typical vertical mixing time-scale, which is a function of the three
dimensional atmospheric circulation (e.g., Babu et al., 2023).

8 Research data

The following datasets are employed in this study: i) three
products from the Orbiting Carbon Observatory (OCO): OCO-2
and OCO-3 level 2 data (Gunson and Eldering, 2020; Chatterjee and
Payne, 2022) and OCO-2 level 3 data (Weir and Ott, 2022); ii) CO2

emissions from the Emissions Database for Global Atmospheric
Research version 8.0, available on the European Commission’s
website (European Commission, 2023); iii) ERA-5 pressure-level
(Hersbach et al., 2018a; 2019b) and surface (Hersbach et al., 2018b;
2019a) reanalysis data; iv) CO2 data used to drive the future climate
simulations of five models of the Coupled Model Intercomparison
Project 6 (CMIP6; University of Melbourne, 2023; ESGF, 2023). All
figures were generated using the Interactive Data Language
(Bowman, 2005) software version 8.8.1.
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