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Droughts have become more powerful and frequent, affecting more people for
longer periods than any other natural disaster, particularly in eastern Africa. The
unprecedented climate change has increased the severity, duration, and
frequency of droughts. The objectives of this study were to evaluate
performances of different drought indices for spatiotemporal drought
characterization in the Bilate river watershed that represents part of the rift
valley drylands in Ethiopia. Historical data for 39 years (1981–2019) from seven
stations were used for drought analyses using the following indices: Standardized
Precipitation Index (SPI), Standardized Precipitation Evapotranspiration Index
(SPEI), Reconnaissance Drought Index (RDI), enhanced Reconnaissance
Drought Index (eRDI) with different time scale and Self-Calibrated Palmer
Drought Severity Index (scPDSI). Among them, SPI, SPEI, RDI and eRDI with 6-
month and 9-month time scales were found to be the best correlated drought
indices to characterize the historical drought events. Then, using the selected
drought indices, temporal drought analysis showed occurrence of major drought
events in the years: 1984/85, 1999/2000, 2002/3, and 2009. Some of these years
are well known as famine years in some parts of Ethiopia including the study area.
The results revealed spatial variation the severity of drought with extreme
droughts occurred in the southern part of the Bilate watershed. Application of
the theory of run confirmed that the maximum severity and duration of drought
were observed at the Bilate Tena station that is located in the southern part of the
watershed; the most severe being observed on a 9-month scale during 1984/85.
Hossana andWulbareg stations showed the highest frequency of drought over the
study period. The Mann-Kendal trend test statistics showed an increasing trend of
drought conditions in the study watershed.
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1 Introduction

Drought is a natural, periodic aspect of climate that occurs in almost all climates (Zarei
et al., 2019; Ogunrinde et al., 2020). It is one of the most complicated natural hazards (Vangelis
et al., 2013) affecting a wide range of industries and occurring frequently, making it difficult to
find a single general description (Vangelis et al., 2013; Tigkas et al., 2017; Zarei et al., 2019).
Droughts start slowly and spread over a large area, affecting an area for weeks, months, or even
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years (Jenkins andWarren, 2015). It starts with a lack of precipitation
in terms of timing, distribution, and intensity, leading towater scarcity
that affects the ability of natural ecosystem to function properly (Asadi
Zarch et al., 2015). This natural process leads to crop failures in
agricultural areas, destabilizing food systems and thereby threatening
local and global food security (Lesk et al., 2016). Moreover, the
consequences of this climate phenomenon on the economy,
society, and environment are high, and the harms associated with
it are increasing at an unexpected rate. . (Mahmoudi et al., 2019).
Hence, at any given time, droughts significantly harm a wide range of
economic sectors and populations (Mohammed and Yimam, 2021).

Droughts have been increased dramatically in quantity and
intensity in recent decades (Tigkas et al., 2012). Drought is

becoming more severe and frequent, affecting more people for
longer periods than any other natural disaster (Tigkas et al.,
2012). Moreover, as a result of global warming, the severity,
duration, and frequency of these unavoidable events are
predicted to increase (Guenang & Kamga, 2014). This is also
supported by Qi et al. (2022), who reported that as the world
warms, potential evapotranspiration rises practically everywhere
on earth. As a result, droughts would increase in severity
worldwide (Wang et al., 2021). Moreover, according to RCP8.5,
drought frequency in currently arid areas will probably increase by
the end of the 21st century (IPCC, 2014).

Drought indices are commonly used to characterize droughts
(Tigkas et al., 2015; Tigkas et al., 2019) and to quantify the severity of

FIGURE 1
Location map of the Bilate River Watershed.

TABLE 1 Meteorological Stations used in Bilate river watershed (Record period: 1981–2019).

Stations Latitude Longitude Altitude(m) AP (mm) MinAT (0C) MaxAT (0C) CV (%)

Alaba Kulito 7.31 38.09 1780 1,070.2 12.4 23.4 51.0

Bilate Tena 6.92 38.12 1,418 1,068.8 12.5 23.4 52.0

Hossana 7.50 37.87 2,296 1,202.6 11.3 22.4 63.0

Boditi 6.95 37.96 2044 1,121.6 15.5 25.3 54.0

Shone 7.13 37.95 1972 1,360.9 15.6 26.6 55.0

Wolayta Sodo 6.81 37.73 2030 1,398.9 15.9 25.4 54.0

Note: AP, refers to annual precipitation, MinAT refers to minimum mean annual temperature, MaxAT, refers to maximum mean annual temperature, and CV, for coefficient of variation of

precipitation.
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droughts (Tefera et al., 2019; Yihdego et al., 2019). Various
indicators based on different hydroclimatic elements such as
precipitation, temperature, river flow, and others are used to
calculate drought indices (Hao et al., 2016). Accordingly,
numerous drought indices have been developed for
characterization of meteorological, agricultural, and hydrological
droughts (Jenkins and Warren, 2015) and used for monitoring in
different locations (Asadi Zarch et al., 2015), such as the
Standardized Precipitation Index (McKee et al., 1993; Ionita
et al., 2016), Standardized Precipitation Evapotranspiration Index
(Vicente-Serrano et al., 2010; Byakatonda, 2018), Reconnaissance
Drought Index (Rahmat et al., 2015; Zarei et al., 2019), and Palmer
Drought Severity Index (Bai et al., 2020; Ogunrinde et al., 2020).

Although none of the primary drought indices are necessarily better
than others in all situations, some indices are better suited than others
for specific purposes (Karavitis et al., 2011). Individual drought indices
are not able to comprehensively assess drought conditions of a single
terrestrial ecosystem (Yihdego et al., 2019); some are used for a wide
range of applications, while others are designed to address drought-
related challenges in specific systems, depending on their structure,
characteristics, and ability to meet specific criteria (Tigkas et al., 2019).
Hence, each drought index has unique shortcomings and advantages
when calculating drought conditions (Yisehak and Zenebe, 2021). In
most cases, it is required to take into account more than one index
because no single one is acceptable in all circumstances (Morid et al.,
2006). Consequently, determining an acceptable drought index for a
given region is critical for preventing and mitigating drought-related
crises (Bayissa et al., 2018).

Comparative evaluation has been a subject of many drought
studies. For instance, Barua et al. (2011) evaluated performance of
four drought indices against five decision criteria in the Yarra River
basin in Victoria, Australia, and the results showed that the Aggregated
Drought Index (ADI) was superior to the other indices for drought
management strategies. Jain et al. (2015) evaluated six drought indices
for their suitability in drought-prone districts of the Ken River basin of
India and found that the Effective Drought Index (EDI) was the most
suitable drought index for the study basin. Bayissa et al. (2018)
examined six drought indices to evaluate their effectiveness in
identifying past drought episodes in the Upper Blue Nile (UBN)
basin in Ethiopia and concluded that none of the six drought
indices could individually identify the onset of all historical drought
events. Dogan et al. (2012) examined six drought indices for detecting
droughts in a semi-arid, closed catchment in Konya, Turkey, and
concluded that the Effective Drought Index (EDI) was better for
long-term drought monitoring. Morid et al. (2006) evaluated
performance of seven drought indices in Tehran Province, Iran, and

it was found that EDI was more responsive to the onset of drought and
performed better. On the other hand, Payab & Türker, (2019)
concluded that the performances of eight drought indices in
monitoring the impact of drought on agriculture and groundwater
were substantially and significantly connected.

There were few studies carried out to characterize drought in the
rift valley of Ethiopia (for example, Edossa et al., 2010; Moloro, 2018;
Tesfamariam et al., 2019; Mohammed and Yimam, 2021; Nasir et al.,
2021). However, none of them compared the performances of
different drought indices in the area. This study compared five
drought indices in conjunction with the application of the Theory of
Run and trend analysis to evaluate the severity and frequency of
drought over the last 4 decades in the Bilate River watershed in Rift
Valley Lakes Basin (RVLB). It was hypothesized that there were
differences in performances of the different indices and hence, the
use of two or more indices may be recommended to more effectively
characterize drought conditions in the Rift valley of Ethiopia. The
objectives of the study were: 1) to compare different drought indices
for further spatiotemporal drought characterization 2) to
characterize droughts based on the Theory of Run, and 3) to
evaluate the trends of drought in the study area.

2 Materials and methods

2.1 Study area description

The study was undertaken at the Bilate river watershed which is
located in the south-western escarpment of the Main Ethiopian Rift
Valley (Figure 1). Geographically, it is located between 60

32’40’’—8009’29’’ N and 37046’11’’—38018’43’’ E. The watershed
covers about 5,324 Km2. The north and northeastern part of the
watershed has steep slopes and the center and the south part has
gentle slopes. Bilate river drains into lake Abaya with its tributaries. The
altitude of the watershed ranges from 1,116 to 3,373 m above sea level.

The watershed has a bimodal rainfall characteristic with a short and
main rainy season. The short rainy season, (locally known as Belg
Season) extends fromMarch to April and the main rainy season (locally
known as Kiremt season) extends from July to September. The average
annual rainfall ranges between 1,276.68 in the central and southwestern
parts of the watershed to 1,068.79 mm in the southeastern part of BRW.
The Kiremt season receives 477, 457 and 349mm at the high, medium,
and low elevation areas of the watershed, respectively. Similarly, the Belg
season receives 375.88 mm, 426.04 mm, and 375.33 mmof rainfall at the
high, mid, and low elevation areas of the watershed, respectively.
Variability of rainfall is high in November and the Kiremt season

TABLE 2 Drought class description of selected drought Indices.

Normal (no drought) Moderate drought Severe drought Extreme drought Reference

−0.99 < SPI <0.99 −1.49 < SPI ≤ -1 −1.99 < SPI ≤ −1.5 SPI ≤ -2 Zhou andLiu, 2016

−0.99 < SPEI < 0.99 −1.49 < SPEI ≤ −1 −1.99 < SPEI ≤ −1.5 SPEI ≤ −2 Bae et al., 2018

−0.99 < RDI < 0.99 −1.49 < RDI ≤ −1 −1.99 < RDI ≤ −1.5 RDI ≤ −2 Tigkas et al., 2017

−0.99 < eRDI< 0.99 −1.49 < eRDI ≤ −1 −1.99 < eRDI ≤ −1.5 eRDI ≤ −2 Tigkas et al., 2017

0.49 < scPDSI < −0.49 −2 < scPDSI ≤ −2.99 −3.0 scPDSI ≤ −3.99 scPDSI ≤ −4 Wells et al., 2004
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(June to August) and low in January and autumn season. Hossana and
Wulbareg stations had high precipitation variability compared to other
stations (Table 1). In the summer season, the maximum and minimum
average temperature is around 20°C and 12°C, respectively and it is
almost uniform in the summer season for all stations. The maximum
average temperature is observed in the winter season for all stations.

2.2 Data source and description

Historical climate data, including daily precipitation and daily
minimum and maximum temperatures for the period from
1981 to 2019 were collected for seven stations from the
National Meteorological Agency of Ethiopia. In the Bilate river
watershed, seven stations were selected for this study whose data

sets had less than 10% missing values. Quality control of the data
was performed using the R software package RClimDex to identify
outliers. The list of meteorological stations and their coordinates,
annual precipitation (AP), minimum mean annual temperature
(MinAT), maximum mean annual temperature (MaxAT), and
coefficient of variation (CV) of precipitation used in this study are
shown in Table 1.

2.3 Calculation of drought indices

Although there are several drought indices, there are no
clear criteria to identify the most appropriate for a given spatio-
temporal condition (Byakatonda, 2018). However, the World
Meteorological Organization (WMO) recommends selecting an

FIGURE 2
Pearson correlation matrix: (A) Bilate Tena Station (B) Hossana station (The number next to the drought index indicates the time scale.
i.e., SPI3 indicates the SPI at a 3-month scale and so on). At p < 0.05, all correlation is statistically significant.

TABLE 3 Fleiss’ kappa test statistics for the degree of agreement among SPI, SPEI, RDI and eRDI at Bilate River Watershed.

(A) Bilate station

Time scale Kappa statistics p-value Degree of agreement

3-month (SPI3, SPEI3, RDI3 and eRDI3) 0.713a 0.000 Substantial

6-month (SPI6, SPEI6, RDI6 and eRDI6) 0.663a 0.000 Substantial

9-month (SPI9, SPEI9, RDI3 and eRDI9) 0.643a 0.000 Substantial

12-month (SPI12, SPEI12, RDI12 and eRDI12) 0.565a 0.000 Moderate

B) Hosanna Station

Time Scale Kappa statistics p-value Degree of Agreement

3-month (SPI3, SPEI3, RDI3 and eRDI3) 0.643a 0.000 Substantial

6-month (SPI6, SPEI6, RDI6 and eRDI6) 0.598a 0.000 Moderate

9-month (SPI9, SPEI9, RDI3 and eRDI9) 0.593a 0.000 Moderate

12-month (SPI12, SPEI12, RDI12 and eRDI12) 0.563a 0.000 Moderate

aStatistically significant at 95% confidence level.
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index based on data availability and simplicity of the index
(Svoboda and Fuchs, 2016). Accordingly, SPI, SPEI, RDI, eRDI,
and scPDSI were selected for this study. The descriptions of
selected indices are presented below.

2.3.1 Standardized Precipitation Index
The SPI depends solely on precipitation and assesses how far

precipitation has deviated from historically established norms
during a given period (Asadi Zarch et al., 2015). The number of

standard deviations of a normally distributed random variable that
deviates from its long-term average is measured by the SPI
(Guenang & Kamga, 2014). A statistical distribution is fitted to
the time series, which is then translated into a normal distribution
(Tigkas et al., 2019). The index thus calculates rainfall deficit by
combining cumulative rainfall data series for multiple reference time
scales (Guenang & Kamga, 2014). It is perhaps the most widely used
drought index in the world because it requires only precipitation
data (Tigkas et al., 2019). It can be used to characterize drought

FIGURE 3
Time series drought events with different time scales at Bilate Tena station: (A) 6 months, (B) 9 months, and (C) scPDSI.

FIGURE 4
Time series drought events with different time scales at Hossana station: (A) 6 months, (B) 9 months, and (C) scPDSI.
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conditions relevant for meteorological, agricultural, and
hydrological purposes (Guenang & Kamga, 2014; Tigkas et al.,
2019). The main criticism of the SPI is that it is calculated based
solely on rainfall data (Vicente-Serrano et al., 2010; Lee et al., 2017).
It does not take into account other factors that may affect droughts,
such as temperature, evapotranspiration, wind speed, and soil water
storage capacity (Vicente-Serrano et al., 2010; Zhao et al., 2017). The
SPI drought classification categories (McKee et al., 1993) are given in
Table 2.

As precipitation is typically not normally distributed, the SPI
overcomes this disadvantage by fitting to suitable distribution
(gamma) then transforming into normal and further calculating
in a way as presented from Eq. 1.1.9.–.1.1.9.

According to a probability density function, the Gamma
distribution is (Thom, 1958):

f xi( ) � 1
βα Γ α( )x

α−1
i e−xi/β (1.1)

where α and β are the shape and scale parameters. The larger the
shape parameter value is, the closer to normal distribution curve the
density curve is. xi (>0) is the precipitation within i consecutive
months, namely, i-time scales (Zhou and Liu, 2016):

x
j( )

i � ∑i

k�1Xjk, j �1, 2, . . .N (1.2)

where Xjk is the precipitation value of kth month of jth year. N is the
number of years. For 1-month time scale, i = 1.

The Gamma function Γ(α) is given as:

Γ α( ) � ∫∞

0
tα−1e−td t (1.3)

The alpha and beta parameters of the gamma probability density
function are approximately estimated as:

α � 1
4A

1 +
������
1 + 4A

3

√( ) (1.4)

β � �xi

α
(1.5)

Where A � ln(�xi) − 1
n ∑n

j�1 ln((xi)j).

Based on the probability density function (Eq. 1.1), the cumulative
probability g xi) at the selected time scale is given as follows:

g xi( ) � ∫xi

0
f xi( )dxi � 1

βα Γ α( ) ∫xi

0
xα−1
i e−xi/βdxi (1.6)

The probability of no precipitation can be written as (Zhou and
Liu, 2016):

F x � 0( ) � m

n
(1.7)

where m denotes the number of zero precipitation in the calculated
data sequence. In the case of zero precipitation, the cumulative
probability can be expressed as:

H xi( ) � F xi � 0( ) + 1 − F xi � 0( )( )g xi( ) (1.8)
Finally, as cited by (Zhou and Liu, 2016), H xi) can be

transformed to SPI using the following equations by Milton and
Stegun (1965).

SPI �
− t − c0 + c1 + c2t

2

1 + d1t + d2t
2 + d3t

3( ), t � �����������
ln

1

H xi( )2( )√
, for 0<H xi( )≤ 0.5

t − c0 + c1t + c2t
2

1 + d1t + d2t
2 + d3t

3( ), t � �����������
ln

1

H xi( )2( )√
, for 0.5<H xi( )< 1

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩ (1.9)

where c0 = 2.515517, c1 = 0.802853, c2 = 0.010328, d1 = 1.432788,
d2 = 0.189269, and d3 = 0.001308.

2.3.2 Standardized precipitation
evapotranspiration index

The monthly difference between precipitation (X) and
potential evapotranspiration (PET) is used by SPEI (Vicente-
Serrano et al., 2010). Because it can be applied at different time
scales, it can be used to analyze both short-term and long-term
droughts (Bae et al., 2018; Hui-Mean et al., 2018; Lee et al., 2017;
Vicente-Serrano et al., 2010). By normalizing the difference
between potential evapotranspiration and precipitation, SPEI
describes the degree of deviation of dry and wet conditions
from climatological average conditions (Zhao et al., 2017;
Vicente-Serrano et al., 2010). The SPEI, which adds the
evapotranspiration variables to the SPI and accounts for the
Palmer Drought Severity Index (PDSI) property that
evapotranspiration is temperature dependent; Vicente-Serrano
et al., 2010). It can therefore be compared to the PDSI, which is
self-calibrated (scPDSI) (Vicente-Serrano et al., 2010) and
regularly used for drought assessments (Zhao et al., 2017).

According to Vicente-Serrano et al. (2010) SPEI is simple to
calculate, and is based on the original SPI calculation procedure
which is uses the monthly difference between precipitation and PET.
With a value for PET, the difference between P and PET for the
month i is calculated:

Di � Xi − PETi which provides a simple measure of the water
surplus or deficit for the analyzed month. Then, there are a series of
calculations to standardize the variable, and finally, SPEI is
calculated using the following formula;

SPEI � W − C0 + C1W + C2W2

1 + d1W + d2W2 + d3W3
(2)

where W =
�������−2 ln(P)√

for p ≤ 0.5, P is the probability of exceeding a
determined Di value and is given as P = 1-F(x). If p > 0.5, P is
replaced by 1−P and the sign of the resultant SPEI is reversed. The
constants are: C0 = 2.515517, C1 = 0.802853, C2 = 0.010328, d1 =
1.432788, d2 = 0.189269, d3 = 0.001308. The average value of the
SPEI is 0, and the standard deviation is 1. The SPEI is a standardized
variable, and it can therefore be compared with other SPEI values
over time and space

SPI and SPEI could be calculated using the SPEI package of R
statistical software (Vicente-Serrano et al., 2010) and the description
is given in Table 2.

2.3.3 Reconnaissance Drought Index
The Reconnaissance Drought Index (RDI) is one of the most

important indexes for determining the severity of drought (Zarei,
et al., 2019) and this measure takes into account both cumulative
precipitation (P) and potential evapotranspiration (PET)
(Rahmat et al., 2015; Abubakar et al., 2020). It is based on the
precipitation-to-potential evapotranspiration ratio (Vangelis
et al., 2013; Zarei et al., 2019). RDI is fitted to a gamma
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distribution that is comparable to that of SPI (Rahmat et al.,
2015). The RDI standard is calculated using a technique similar
to the one used to calculate the SPI (Rahmat et al., 2015). PET, in
addition to precipitation, is a key variable in RDI’s drought
severity assessment as a result of rising greenhouse gas
concentrations (Asadi Zarch, et al., 2015).

In RDI, drought characterization and monitoring can be done in
three ways: the initial value RDI (k), the normalized RDI (nor), and
the standardized RDI (std) (Vangelis et al., 2013; Abubakar et al.,
2020) and it can be calculated using the following equations (Tigkas
et al., 2017).

The initial form of the index (α) within a year for a reference
period of k months is calculated as:

ak �
∑j�k

j�1Pj∑j�k
j�1PETj

(3)

The second form is a normalized expression of the index (RDIn),
calculated by the following equation: in which ak is the long-term
average of a k:

RDIn k( ) � ak
āk

− 1 (4)

Assuming that the values of ak follow the log-normal
distribution, the standardized form of the index (RDIst) is
calculated using the following formula (Abubakar et al., 2020):

RDIst k( ) � yk − �yk
σkk

(5)

In which yk is equal to the lnak, while �yk is its average and σkk is its
standard deviation, respectively.

2.3.4 Enhanced reconnaissance drought index
The enhanced Reconnaissance Drought Index created by

Tigkas et al. (2016) is one of the newest indices for determining
the severity of droughts, with a focus on agricultural droughts
(Zarei et al., 2019). For RDI adjustment, the use of effective
precipitation rather than total precipitation is advocated, and
this method is predicted to improve the index’s applicability for
assessing drought effects on agricultural systems, particularly for
rainfed farming system (Tigkas, et al., 2016). Effective
precipitation replaces precipitation in the upgraded RDI index
(Tigkas et al., 2016; Zarei et al., 2019) It improves the index’s
performance in agricultural drought analysis (Zarei et al., 2019).
When compared to total precipitation, effective precipitation more
accurately indicates the amount of water that can be utilized
productively by crops (Tigkas, et al., 2017). The eRDI was
estimated using the ratio of effective precipitation to potential
evapotranspiration (Zarei, et al., 2019). The main modification
aspect in the proposed eRDI, is the substitution of the total
precipitation by the Pe and the index (αe) is calculated as
(Tigkas et al., 2017):

ae k( ) � ∑j�k
j�1 Pej∑j�k

j�1 PETj

(6)

in which Pej is the monthly effective precipitation of the jth month.
The input parameter for RDI and eRDI is rainfall and temperature.
RDI and eRDI could be calculated using DrinC software (Tigkas
et al., 2015) and the description of the indices given in Table 2. The
effective precipitation was calculated using U.S.B.R (Unites State
Bureau of Reclamation) method since which is mainly proposed for
arid and semi-arid region (Tigkas et al., 2016).

FIGURE 5
Frequencies of drought (number of stations multiplied by years in %) during 1981–2019 at Bilate and Hossana stations: (A) Bilate station in 6-month
scale (B) Bilate station in 9-month scale (C) Hossana station in 6-month scale and (D) Hossana station in 9-month scale.
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2.3.5 Self-calibrating palmer drought severity index
The Palmer Drought Severity Index is based on a soil water

balance and has been widely used in the past (Vangelis et al., 2013;
Zhong et al., 2019). The original PDSI has significant flaws,
including a large effect of the calibration period, usage
limitations, and geographic comparability issues (Sousa et al.,
2011; Hui-Mean et al., 2018). This weakness is somewhat
addressed by the Palmer self-calibrating system (Zhong et al.,
2019). To calibrate the PDSI, the predefined coefficient is
substituted with local conditions in scPDSI. Hence, at different
sites, the updated scPDSI performed more consistently and
allowed for more accurate drought determinations than the
original PDSI (Wells, et al., 2004). As a result, the scPDSI
which is spatially comparable and captures extreme dry and wet
episodes under unusual conditions has improved this drought
indicator (Wells, et al., 2004). The scPDSI suggests that
temperature may play a key role in explaining drought
conditions as a result of global warming (Vicente-Serrano et al.,
2010). There is a series of computations in scPDSI which is
indicated from Eqs. 7.1.6.–..7.7.6.

According to Ogunrinde et al. (2020) four soil moisture-related
variables and their potential covariates are computed for each month
of the study period. Recharge (R), runoff (RO), potential recharge
(PRe), potential evapotranspiration (PET), loss (L), potential runoff
(PRu), and potential loss (PL) are the variables. The Thornthwaite
PET method was used to compute PET. The only factor used to
estimate these variables is the soil’s AWC, or available water holding
capacity. Four potential values are selected based on the local climate
using the weighting factors using α, β, γ and δ and to represent the
exiting climatic circumstances. The weighting factors, commonly
known as the water-balance coefficients, can be calculated as follows:

α � ET

PET
β � R

PRe
γ � RO

PRu
δ � L

PL
(7.1)

The existing climatic conditions potential values are combined
to form the existing climatic conditions precipitation, X, which
represents the amount of precipitation needed to maintain a normal
soil moisture level for a period, e.g., a month.

X � αPET + βPRe + γPRu − γPL (7.2)
where X stands for the amount of precipitation needed to maintain a
normal soil moisture level for a particular month under
consideration.

d � X − x � X − γPET + βPRe + γPRu − δPL( ) (7.3)
where X is the actual rainfall that was actually recorded for the
month being considered, x is the amount of rainfall needed to
stabilize the soil moisture in a normal condition for a month under
the current climatic conditions, and d indicates moisture departure.

In order to allow for a strong link between the scPDSI values from
a spatiotemporal perspective, Palmer (1965) equation was utilized to
complement the d value in accordance with the local climate.

K � 17.67∑12
j�1djKj

Kj (7.4)

The result of multiplying the moisture departure, d, by K
(empirical constant) is called the moisture anomaly index, or the
Z index, and is denoted by Z, shown as

Z � dK (7.5)
Without taking current precipitation trends into account, the Z

index is used to describe how dry or wet a month was and the
equation is also used to predict the PDSI value for a given month
(Ogunrinde et al., 2020):

Yi � 0.897Yi−1 + 1
3

( )Zi (7.6)

Where Y is the current value of the index. For example, to
calculate the current value of Yi, 0.897 times the previous PDSI value
Yi-1 is added to one-third of the current moisture anomaly Zi (Wells
et al., 2004).

The sole difference between the PDSI and the scPDSI is
that the empirical constants (K) and duration factors
(0.897 and 1/3) are replaced with values derived automatically
based on the research site’s historical climate data (Ogunrinde
et al., 2020).

scPDSI package of R statistical software (PalmerW., 1965; Wells
et al., 2004) can be used for the calculation of scPDSI. The input
variable for scPDSI is rainfall, temperature, and available water
content of soils. Information on the water-holding capacity of soils
can be used, however, defaults are also available and a serially
complete record of temperature and precipitation data is required
(Svoboda and Fuchs, 2016). In this study, only precipitation and
temperature were used for the analysis of scPDSI due to the
unavailability of available water content of soils (available water
content of soil was considered as 100% for all station). The
description of scPDSI is given in Table 2.

The potential evapotranspiration (PET) was calculated using
Hargraves method in the case of SPI, SPEI, RDI and eRDI, using the
minimum andmaximum temperature of the stations, while PETwas
calculated using Thornthwaite method using average temperature of
the station in the case of scPDSI.

2.4 Drought indices correlation analysis

Each drought index was calculated first, then Pearson’s correlation
analysis was conducted for comparison of indices for the five drought
indices of seven meteorological stations. The analysis was conducted
using a corrplot package of R software and 3,6,9, and 12 months’ time
scales were selected. Furthermore, the drought indices that were
analyzed by correlation analysis were tested with Kappa statistics.
Inverse distance weighting (IDW) was used to visualize the spatial
patterns of the drought occurrences in the watershed.

2.5 Cohen’s (fleiss’) kappa test

Most of the literature presented reports high correlations
between drought indices does not always mean that the indices
are similar (Vergni et al., 2021). Hence, the comparison of all
potential pairs of indices in terms of the severity category assigned
to each time series and subsequent quantification of their degree of
agreement using the Cohen’s Kappa test allowed for a more
accurate and creative evaluation of the similarity between the
indices. (Vergni et al., 2021).
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Cohen (1960) introduced the proportion of agreement
corrected for chance as a coefficient of agreement for nominal
or ordinal scales, and this form of evaluation can be successfully
attained by the Cohen’s Kappa test (Vergni et al., 2021). The
calculated outcomes range from −1 to 1, where one represents
complete agreement while 0 denotes exactly what would be
predicted by chance, and negative values denote agreement less
than chance (Ezzine et al., 2014).

When there are either two assessment techniques with a single
trial or one assessment method with two trials, Cohen’s Kappa is
used to measure the degree of agreement, while Fleiss’s Kappa is an
extension of Cohen’s Kappa for three or more measurements.
Hence, based on these assumptions Fleiss’ kappa statistics was
found suitable for this study and used to test the degree of
agreement among SPI, SPEI, RDI and eRDI as drought
assessment tools.

Because Kappa statistics works well with ordinal or nominal
data, the continuous values of each drought assessment value
(i.e., SPI, SPEI, RDI and eRDI) were transformed to ordinal data
(drought classification in Table 2 i.e., class of extreme drought
lebeled as 1, severe drought as 2, moderate drought as 3, etc).

Then, the transformed data of each index were then used to calculate
the degrees of agreement using Fleiss’ kappa statistics. Then, the
calculation of Fleiss’ kappa statistics was caried of using irr package
of R statistical software.

The formula for Cohen’s Kappa statistics is given as (Cohen,
1960):

K � po − pe

1 − pe
(8)

where po is the total observed frequency of agreement and pe is the
proportion of agreement expected by chance.

2.6 Theory of run (ToR) application

Yevjevich (1967) statistical theory of runs (ToR) is a useful
tool for addressing drought features (Samantaray et al., 2019;
Jasim & Awchi, 2020). This approach was developed to identify
drought duration and severity based on values below a
predetermined threshold level, as well as a method to
calculate drought variables including duration, severity, and

TABLE 4 Major Drought events analyzed using the Theory of run application at Bilate Tena Station during 1981–2019.

Index O T D Severity Intensity Drought Index O T D Severity Intensity Drought

SPI6 Jul 2009 Sep 2009 3 −6.45 −2.15 Extreme RDI6 May 2009 Sep 2009 5 −12.87 −2.57 Extreme

Apr 1984 Aug 1984 5 −8.46 −1.69 Severe May 1984 Aug 1984 4 −6.87 −1.72 Severe

Nov 1984 Jan 1985 3 −4.01 −1.34 Moderate Sep 2002 Nov 2009 3 −5.71 −1.91 Severe

Sep 2002 Nov 2002 3 −5.06 −1.69 Severe Jul 2002 Sep 2002 3 −5.25 −1.75 Severe

May 2000 Jul 2000 3 −3.48 −1.16 Moderate Feb 2000 Jun 2000 5 −5.99 −1.20 Moderate

SPI9 Aug 2009 Oct 2009 3 −6.54 −2.18 Extreme RDI9 Aug 2009 Nov 2009 4 −10.83 −2.71 Extreme

Jun 1984 Dec 1984 7 −11.87 −1.71 Severe Jul 1984 Sep 1984 3 −5.51 −1.84 Severe

Oct 2002 Jan 2003 4 −6.57 −1.64 Severe Oct 2002 Jan 2003 4 −7.34 −1.84 Severe

Oct 2002 Jan 2003 4 −6.57 −1.64 Severe eRDI6 May 2002 Aug 2002 4 −6.63 −1.66 Severe

Jul 2000 Sep 2000 3 −3.80 −1.27 Moderate Feb 2000 May 2000 4 −4.94 −1.24 Moderate

SPEI6 Jul 2009 Sep 2009 3 −6.74 −2.25 Extreme Apr 1984 Aug 1984 5 −11.13 −2.22 Extreme

May 2000 Aug 2000 4 −5.02 −1.25 Moderate eRDI9 Oct 1990 Jan 1991 4 −8.74 −2.19 Extreme

Apr 2008 Jun 2008 3 −5.39 −1.80 Severe Apr 2009 Aug 2009 5 13.51 −2.70 Extreme

May 2000 Aug 2000 4 −5.02 −1.25 Moderate Jul 1984 Dec 1984 6 −13.43 −2.23 Extreme

SPEI9 Aug 2009 Nov 2009 4 −9.06 −2.27 Extreme Apr 2008 Jun 2008 3 −6.61 −2.21 Extreme

Jul 1984 Dec 1984 6 −10.08 −1.68 Severe Aug 2009 Nov 2009 4 −9.89 −2.47 Extreme

Oct 2002 Feb 2003 5 −8.44 −1.69 Severe Apr 2009 Jul 2009 4 −10.83 −2.71 Extreme

Oct 2002 Feb 2003 5 −8.44 −1.69 Severe Nov 1984 Jan 1985 3 −3.54 −1.18 Moderate

Jul 2000 Sep 2000 3 −4.23 −1.41 Moderate Apr 1999 Feb 2000 11 −21.65 −1.97 Moderate

scPDSI Jun 2009 Aug 2009 3 −11.11 −3.71 Severe scPDSI Dec 2002 Nov 2003 12 −26.29 −2.19 Moderate

Mar 1984 Apr 1985 11 −25.37 −2.31 Moderate Mar 1984 Jan 1985 11 −25.37 −2.31 Moderate

Mar 2009 May 2009 3 −6.33 −2.11 Moderate May 2000 Aug 2000 4 −9.53 −2.38 Moderate

Note: D = drought duration in months, O = Onset of the drought and T = termination of the drought, and O and T represented by the first three letters of months. Only the drought events of

three and more than 3 months of duration were considered.
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intensity (Lee et al., 2017; Maeng et al., 2017). Although ToR is
not a drought indicator, it can be used in combination with
others to identify drought parameters, and a drought event is
defined as a time series that is less than the crucial threshold
level for some time (Rahmat, et al., 2015). The theory of run is
simple to use and can be used to analyze hydrometeorological
time series (Kwak et al., 2016) to differentiate drought as a
feature (Huang et al., 2014). The ToR is applied to a
predetermined threshold, which is the point where moisture
and dryness meet (Jasim and Awchi, 2020). A run, according to
ToR, is a segment of a drought variable’s time series in which

each value is either above or below the prescribed truncation
level (Huang et al., 2014; Jasim & Awchi, 2020). Drought
characteristics include a feature like duration, severity, and
intensity of the drought (Bae et al., 2018). A cumulative
shortfall of a drought metric below the threshold level
indicates drought severity (Lee et al., 2017). The beginning
and termination times of a drought, which define the duration
of the drought, are critical parameters to quantify (Panu and
Sharma, 2002). Hence, Drought severity is the sum of all
negative values below the threshold value, drought duration
is the time between the onset and termination of the drought

FIGURE 6
Spatial distribution of Extreme, Severe and Moderate droughts (A) SPI6 in 1984 (B) SPI6 in 2009 (C) SPEI6 in 1984 (D) SPEI6 in 2009 (E) scPDSI in
1984 (F) scPDSI in 2009 (G) RDI6 in 1984 and (H) RDI6 in 2009.
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TABLE 5 Major Drought events analyzed using Theory of run application at Hossana Station from 1981 to 2019.

Index O T D Severity Intensity Category Index O T D Severity Intensity Drought

SPI6 Jun 1984 Sep 1984 4 −4.84 −1.21 Moderate RDI6 Jun 1984 Sep 1984 4 −3.81 −0.95 Moderate

Jun 1999 Sep 1999 4 −5.17 −1.29 Moderate Jun 1999 Sep 1999 4 −4.67 −1.17 Moderate

Jul 2015 Dec 2015 6 −10.46 −1.74 Severe Apr 2000 Aug 2000 5 −6.22 −1.24 Moderate

Jun 1999 Sep 1999 4 −5.17 −1.29 Moderate May 2009 Aug 2009 4 −6.86 −1.72 Severe

SPI9 Jun 1981 Aug 1981 3 −3.63 −1.29 Severe Nov 2011 Jan 2011 3 −3.17 −1.06 Moderate

Sep 1984 Nov 1984 3 −5.31 −1.77 Severe Nov 2016 Jan 2017 3 −3.62 −1.21 Moderate

Jun 1984 Aug 1984 3 −3.96 −1.32 Moderate RDI9 Jun 1984 Aug 1984 3 −3.75 −1.25 Moderate

SPEI6 Jul 2000 Sep 2000 3 −3.84 −1.28 Moderate May 2009 Jul 2009 3 −3.21 −1.07 Moderate

Jul 2015 Mar 2016 9 −15.70 −1.74 Severe Aug 2009 Oct 2009 3 −5.08 −1.69 Severe

May 1984 Sep 1984 5 −6.11 −1.22 Moderate eRDI6 Sep 2015 Nov 2015 3 −6.25 −2.08 Extreme

SPEI9 Apr 1999 Sep 1999 6 −6.33 −1.22 Moderate Apr 1984 Aug 1984 5 −11.81 −2.36 Extreme

Apr 2000 Aug 2000 5 −6.57 −1.31 Moderate Nov 1984 Jan 1985 3 −5.32 −1.77 Severe

Jun 2009 Sep 2009 4 −6.87 −1.72 Moderate Apr 2000 Jun 2000 3 −4.93 −1.64 Severe

Sep 1984 Nov 1984 3 −5.04 −1.68 Severe eRDI9 Apr 1999 Jul 1999 4 −4.81 −1.20 Moderate

Jun 1984 Aug 1984 3 −3.56 −1.19 Moderate Jul 1984 Dec 1984 6 −14.20 −2.37 Extreme

scPDSI Jul 1999 Sep 1999 3 −4.05 −1.35 Moderate scPDSI Jul 2000 Sep 2000 3 −4.89 −1.63 Severe

May 2009 Jul 2009 3 −3.52 −1.17 Moderate Jul 1999 Sep 1999 3 −3.53 −1.18 Moderate

Jul 2015 Mar 2016 9 −15.50 −1.72 Severe May 2009 Jul 2009 3 −3.52 −1.17 Moderate

Mar 1984 Jan 1985 11 −22.85 −2.08 Moderate Sep 2015 Dec 2015 4 −4.76 −1.19 Moderate

Apr 2009 Aug 2009 5 −10.76 −2.15 Moderate Feb 1999 Sep 1999 8 −12.64 −1.58 Moderate

Dec 2010 Jan 2012 14 −29.64 −2.12 Moderate Apr 2009 Aug 2009 5 −10.76 −2.15 Moderate

Note: D = drought duration in months, O = Onset of the drought and T = termination of the drought, and O and T represented by the first three letters of months. Only the drought events of three and more than 3 months of duration were considered.
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events and intensity is the ratio of severity and duration.
Therefore, drought severity, duration, intensity, and station-
based frequency can be calculated with the following formulas:

D � t2 − t1( ) (9)
S � ∑D

i�1 − SPIi( ) (10)

I � S

D
(11)

F � N

T
*100% (12)

Where D is drought duration, t1 and t2 are the onset and
termination time of drought, S is the severity of drought, I
represent the intensity of drought, F is the station-based
frequency of drought, N is the number of drought events and T
is the total number of years of the study period.

2.7 Drought trend analysis

The Mann-Kendall (MK) approach is frequently used to
determine the monotonic trends of various hydro-meteorological
data (Gumus et al., 2021). The MK test is a non-parametric
(distribution-free) test used to determine whether a variable of

interest has a monotonic upward or downward trend over time
(Khosravi et al., 2018). Mann (1945) and Kendall (1948) suggested
this approach for determining statistically significant trends in
hydro-meteorological data (Gumus et al., 2021). The Z value is
used to determine a statistically significant trend and an upward or
downward trend is indicated by a positive or negative value (Gumus
et al., 2021).

In the MK test statistic, the S test statistic, the sign function, the
variance of S, and the Z statistics are calculated using the formulas
indicated in Eqs. 13–16 (Gumus et al., 2021):

S � ∑n−1
i�1

∑n
j�i+1

sign xj − xi( ) (13)

sign xj − x−( ) � +1 xj > xi

0 xj � xi

−1 xj < xi

⎧⎪⎨⎪⎩ (14)

where n is the number of d

Var S( ) � n n − 1( ) 2n + 5( ) −∑m
i�n
tii i − 1( ) 2i + 5( )⎡⎣ ⎤⎦/18 (15)

where ti is the number of ties of extent i and m is the number of tied
groups. For n larger than 10, the standard test statistic Z is computed
as the MK test statistic as follows

TABLE 6 Maximum drought Severity, Duration (months), and Intensity at each station in the Bilate River watershed from 1981 to 2019.

Station Drought SPI6 SPI9 SPEI6 SPEI9 RDI6 RDI9 eRDI6 eRDI9 scPDSI

Alaba Severity −8.46 −11.87 −6.81 −10.08 −12.73 −10.84 −11.32 −11.42 −26.29

Duration 5 7 3 6 5 4 5 5 12

Intensity −1.69 -1.70 −2.27 −1.68 −2.55 −2.71 −2.26 −2.28 −2.19

Bilate Tena Severity −8.46 −11.87 −6.84 −10.08 −12.87 −10.83 −11.13 −13.43 −25.37

Duration 5 7 3 6 5 4 5 6 11

Intensity −1.69 −1.70 −2.28 −1.68 −2.65 −2.70 −2.22 −2.23 −2.31

Boditi Severity −10.71 −13.43 −6.40 −11.61 −9.80 −10.05 −9.81 −13.77 −25.46

Duration 6 8 3 7 4 4 4 6 13

Intensity −1.78 −1.68 −2.13 −1.66 −2.45 −2.51 −2.45 −2.29 −1.96

Hossana Severity −10.46 −15.70 −10.74 −15.50 −6.86 −6.25 −11.81 −14.20 −33.88

Duration 6 9 6 9 4 3 5 6 15

Intensity −1.74 −1.74 −1.79 −1.72 −1.72 −2.08 −2.36 −2.37 −2.26

Shone Severity −9.42 −6.68 −9.66 −9.03 −12.64 −9.75 −11.52 −14.23 −44.68

Duration 4 3 4 4 5 4 5 6 23

Intensity −2.36 −2.23 −2.42 −2.26 −2.53 −2.44 −2.30 −2.37 −1.94

Wolayta Sodo Severity −8.87 −7.24 −6.81 −8.81 −12.32 −10.01 −7.98 −11.54 −48.78

Duration 5 4 3 4 5 4 3 5 23

Intensity −1.77 −1.81 −2.27 −2.20 −2.46 −2.50 −2.66 −2.31 −2.12

Wulbareg Severity −7.34 −16.53 −7.47 −4.91 −12.05 −16.79 −9.58 −14.15 −31.97

Duration 4 9 4 3 5 7 4 6 14

Intensity −1.84 −1.84 −1.87 −1.64 −2.41 −2.40 −2.40 −2.36 −2.28

Note: Only drought events with a duration of three or more than 3 months were considered.
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Z �

S − 1�������
VAR S( )√ if> 0

0 if � 0

S + 1�������
VAR S( )√ if< 0

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(16)

The presence of a statistically significant trend is evaluated using
the Z value. Positive values of Z indicate increasing trends, while

negative values show decreasing trends. In the test for either an
increase or decrease monotonic trend (a two-tailed test) at the α level
of significance, H0 should be rejected if the |Z| > Z1- α/2, where Z1-
α/2 is obtained from the standard normal cumulative distribution
tables. For instance, at the 5% significance level, the null hypothesis
was rejected if |Z|>1.96. A higher severity of the Z value indicates
that the trend is more statistically significant. MK trend test was used
at a significance level of 0.05 for this study.

TABLE 7 Total number and frequency of Extreme, Severe, and Moderate drought events at each station from 1981 to 2019.

Station Drought Types SPI6 SPI9 SPEI6 SPEI9 RDI6 RDI9 eRDI6 eRDI9 scPDSI

N F N F N F N F N F N F N F N F N F

Alaba

Extreme 8 0.21 5 0.13 8 0.21 4 0.10 13 0.33 7 0.18 20 0.51 14 0.36 1 0.03

Severe 25 0.64 29 0.74 22 0.56 23 0.59 25 0.64 24 0.62 18 0.46 19 0.49 18 0.46

Moderate 40 1.03 40 1.03 45 1.15 46 1.18 36 0.92 44 1.13 36 0.92 37 0.95 143 3.67

Total/Ave 73 0.63 74 0.63 75 0.64 73 0.62 74 0.63 75 0.64 74 0.63 70 0.60 162 1.39

Bilate

Extreme 8 0.21 5 0.13 8 0.21 7 0.18 13 0.33 8 0.21 18 0.46 15 0.38 1 0.03

Severe 25 0.64 29 0.74 22 0.56 23 0.59 20 0.51 22 0.56 19 0.49 15 0.38 18 0.46

Moderate 40 1.03 40 1.03 45 1.15 46 1.18 42 1.08 43 1.10 40 1.03 40 1.03 143 3.67

Total/Ave 73 0.63 74 0.63 75 0.64 76 0.65 75 0.64 73 0.62 77 0.66 70 0.60 162 1.39

Boditi

Extreme 3 0.08 3 0.08 5 0.13 5 0.13 11 0.28 10 0.26 11 0.28 12 0.31 0 0.00

Severe 32 0.82 27 0.69 26 0.67 27 0.69 26 0.67 23 0.59 27 0.69 16 0.41 17 0.44

Moderate 45 1.15 58 1.49 5 0.13 51 1.31 36 0.92 44 1.13 35 0.90 49 1.26 180 4.62

Total/Ave 80 0.68 88 0.75 36 0.31 83 0.71 73 0.62 77 0.66 73 0.62 77 0.66 197 1.69

Hossana

Extreme 5 0.13 3 0.08 2 0.05 5 0.13 12 0.31 9 0.23 14 0.36 11 0.28 0 0.00

Severe 24 0.62 27 0.69 26 0.67 27 0.69 22 0.56 25 0.64 30 0.77 24 0.62 15 0.38

Moderate 64 1.64 50 1.28 65 1.67 53 1.36 53 1.36 47 1.21 49 1.26 49 1.26 161 4.13

Total/Ave 93 0.80 80 0.68 93 0.80 85 0.73 87 0.74 81 0.69 93 0.80 84 0.72 176 1.50

Shone

Extreme 7 0.18 8 0.21 8 0.21 8 0.21 11 0.28 8 0.21 14 0.36 14 0.36 1 0.03

Severe 20 0.51 22 0.56 18 0.46 20 0.51 21 0.54 16 0.41 24 0.62 20 0.51 19 0.49

Moderate 52 1.33 38 0.97 55 1.41 44 1.13 43 1.10 41 1.05 39 1.00 43 1.10 155 3.97

Total/Ave 79 0.67 68 0.58 81 0.69 72 0.62 75 0.64 65 0.56 77 0.66 77 0.66 175 1.50

Welayta Sodo

Extreme 4 0.10 6 0.15 4 0.10 7 0.18 12 0.31 11 0.28 12 0.31 14 0.36 0 0.00

Severe 25 0.64 21 0.54 26 0.67 24 0.62 21 0.54 20 0.51 32 0.82 17 0.44 16 0.41

Moderate 51 1.31 45 1.15 46 1.18 40 1.03 40 1.03 34 0.87 39 1.00 44 1.13 172 4.41

Total/Ave 80 0.68 72 0.61 76 0.65 71 0.61 73 0.63 65 0.55 83 0.71 75 0.64 188 1.61

Wulbareg

Extreme 4 0.10 3 0.08 4 0.10 4 0.10 13 0.33 10 0.26 14 0.36 17 0.44 6 0.15

Severe 30 0.77 31 0.79 24 0.62 22 0.56 24 0.62 26 0.67 20 0.51 16 0.41 16 0.41

Moderate 54 1.38 52 1.33 61 1.56 54 1.38 49 1.26 45 1.15 43 1.10 43 1.10 140 3.59

Total 88 0.75 86 0.73 89 0.76 80 0.68 86 0.74 81 0.69 77 0.66 76 0.65 162 1.38

Note: N= Number of drought events and F = frequency of drought events. Only a drought duration of three or more months was considered. Total = the sum of Extreme, Severe, and Moderate

number of drought events, and Ave = average frequency.
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3 Results

3.1 Correlation of drought indices

The correlations of the drought indices were made separately
for all stations. The stations with the lowest elevation at Bilate
Tena and the highest elevation at Hossana are presented in
Figure 2. The drought indices were highly correlated to each
other for a similar time scale. For instance, SPI3, SPI6, and
SPI9 were well correlated with most of the other drought indices.
Similarly, SPEI3, SPEI6, and SPEI9 showed a very high
correlation with a similar time scale of other drought indices
(SPI, RDI, and eRDI). The correlation becomes higher on the
short-time scale, particularly on the 3-month and 6-month time
scales. On the other hand, scPDSI showed a strong correlation
(r = 0.80) with SPI3, SPI6, SPEI3, and SPEI6. Similarly, scPDSI
showed a strong correlation with RDI3 (r = 0.79) and RDI6 (r =
0.78), but showed a medium correlation (r = 0.73) with
eRDI3 and eRDI6 compared to other drought indices. This
indicates that scPDSI correlated better with SPI, SPEI, and
RDI at the time scale of 3-month and 6-month time scale.
The correlation of scPDSI decreases with the increasing time
scale of drought indices. In this analysis SPI3 with SPEI3,
SPI6 with SPEI6, and SPEI12 with RDI12 had a very strong
correlation (r = 0.99) at Bilate Tena station. The index eRDI also
showed a high correlation with a similar time scale to other
drought indices. Hence, the SPI, SPEI, and RDI were highly
correlated for a similar time scale indicating that they can be
used interchangeably.

At the Hossana station, a similar time scale of the different
drought indices showed a very high correlation (Figure 2B).
SPI3 with SPEI3, SPI6 with SPEI6, SPI9 with SPEI9, SPI12 with
SPEI12, SPEI3 with RDI3, and SPEI6 with RDI6 showed a very
strong correlation (r = 0.99). The scPDSI showed a strong
correlation with SPI3 (r = 0.77), SPI6r = 0.78), SPEI3 (r =
0.78), SPEI6 (r = 0.79), RDI3 (r = 0.77), and RDI6 (r = 0.79).
The study revealed that scPDSI showed a better correlation with
SPEI6 and RDI6 compared to other drought indices. Similar to
what was shown at Bilate Tena station, the correlation of the
scPDSI at Hossana station declined as the time scale of the drought
indices increased.

The average correlation values of the drought indices were
calculated using the results of the correlation analysis for all
stations. The average correlation of all time scales showed that
the average correlation value of 0.63 for SPI3 is the paired
correlation of SPI3 with SPI6, SPI9, SPI12, SPEI3, SPEI6, SPEI9,
SPEI12, RDI3, RDI6, RDI9, RDI12, eRDI3, eRDI6, eRDI9, eRDI12,
and scPDSI (Supplementary Figure S2). A similar analysis of all
time scales of the other drought indices for all stations showed
that the maximum average correlation was observed at the 6-
month and 9-month scales. This indicates that the best time
scales for identifying historical drought events were the 6-month
and 9-month time scales in BRW. Hence, all drought indices with
6-month and 9-month scales better explained the historical
drought characterization in BRW. The average correlation of
the scPDSI with other drought indices. The average correlation of
the scPDSI was higher at the 3-month and 6-month time scales,
indicating that the scPDSI better characterizes short-term and
medium-term droughts.

3.2 Fleiss’ kappa test statistics

The Fleiss’ Kappa Statistics result showed substantial degrees of
agreement (0.61–0.80) among SPI, SPEI, RDI, and eRDI in 3-month,
6-month, and 9-month time scales, as well as in 12-month scale a
moderate degree of agreement (0.61–0.80) which statistically
significant at p < 0.05 at the Bilate station (Table 3). Hossana
station also showed comparable outcomes (Table 3). The degree
of agreement at the 6-month and 9-month time scales, however, was
the closest to each as were observed in correlation analysis, therefore
it was chosen for further characterization of historical drought at
Bilate river watershed.

3.3 Temporal distribution of drought events

The time series (1981–2019) of the drought indices were
analyzed for all the stations. However, only the results for Bilate
Tena and Hossana stations were selected and shown here in Figure 3
and Figure 4. These two stations were considered as representatives
of the lowland and highland parts of the watershed. The temporal

TABLE 8 Menn-Kendel trend test statistics for all stations using selected drought indices (SPI6, SPI9, SPEI6, SPEI9 and RDI6).

Stations SPI6 SPI9 SPEI6 SPEI9 RDI6

Z Sen’slope Z Sen’slope Z Sen’slope Z Sen’slope Z Sen’slope

Alaba 5.2512a 1.82E-03 5.8343a 2.07E-03 3.3409a 1.17E-03 3.412a 1.19E-03 3.7184a 1.29E-03

Bilate Tena 5.2512a 1.82E-03 5.834a 2.07E-03 3.338a 1.17E-03 3.4114a 1.20E-03 3.9622a 1.33E-03

Boditi 6.8999a 2.44E-03 8.066a 2.89E-03 5.2083a 1.87E-03 6.0953a 2.16E-03 4.7722a 1.65E-03

Hossana −0.273 -1.00E-04 −0.721a -3.00E-04 −1.091 -4.10E-04 −1.683 -6.40E-04 −1.126 −4.10E-04

Shone 5.8609a 2.01E-03 6.4538a 2.29E-03 4.3634a 1.52E-03 4.5912a 1.65E-03 4.2675a 1.47E-03

Wolayta Sodo 5.8609a 2.01E-03 6.4538a 2.29E-03 4.3634a 1.52E-03 4.5912a 1.65E-03 4.2675a 1.47E-03

Wulbareg −0.045 -1.26E-05 −0.442 -1.54E-04 −1.292 -4.77E-04 −1.876 -6.94E-04 −0.977 −3.61E-04

aStatistically significant at 95% confidence level.
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analysis of drought indicated that almost all of the drought indices
were capable of identifying the major historic drought years such as
1984/85, 2000, 2002, and 2009 (Figures 3, 4 and Table 3; Table 4).
Based on the selected drought indices with time scale of 6-month
and 9-month, the major drought events identified occurred in 1984/
85, 2000, 2002, and 2009 at Bilate Tena and Hossana stations
(Figures 3, 4 and Table 3; Table 4). The historical drought years
detailed drought severity, duration, intensity, onset, and termination
of the events were indicated in Table 3; Table 4. A similar pattern of
historical major drought events were detected on the other stations
as well (Supplementary Figure S1).

At Bilate station, the SPI6 values of extreme drought ranges
from −2.46 in 1985 to −2.14 in 2009. The value of maximum severe
drought occurred with the values of −1.93 in 1984 and minimum
value was −1.52 in 2009. The value of moderate drought ranges
from −1.17 in 1984 to −1.05 in 2012. Similarly, the SPEI6 values of
extreme drought ranges from −2.36 in 1985 and to −2.25 in 2009.
The value of maximum Severe drought was −1.78 in 1984 and the
minimum value was −1.50 in 2009. The moderate drought
maximum value was −1.48 in 1984 and minimum value
of −1.07 in 1984. The RDI6 extreme drought ranges
from −2.46 in 1984 to −2.88 in 2009, the maximum severe
drought was −1.66 in 1984 and minimum was −1.90 in 2009.
The moderate drought showed the maximum value of −1.46 in
2012 and the minimum was −1.00 in 1981. The eRDI extreme
drought ranges from −2.38 in 1984 to −3.25 in 2009. eRDI6 showed
the highest peak value compared to others drought index
(Figure 3A). These drought range records confirmed that the
year 1984–2009 were the most intense drought affected years in
the watershed. Similar observation was detected in the 9-month time
scale of all drought indices.

At Hossana station, the SPI6 showed the extreme drought with a
peak value of −2.27 in 1985, a severe drought with peak value
of −1.87 in 2015, a moderate drought with a peak value of −1.34 in
1984. Similarly, SPEI6 showed extreme drought with a peak value
of−2.15 in 1985, a severe drought with a peak vale of −1.81 in 2009, and
moderate drought with the peak value of −1.36 in 1984. RDI6 also
showed the extreme drought with the peak value of −2.81 in 1984,
severe drought with a peak value of −1.93 in 2009, and a moderate
drought with a peak value of −1.34 in 2000. eRDI6 showed extreme
drought with a peak value of −2.77 in 1984, severe drought with a peak
value of −1.98 in 1984, and moderate drought with a peak value
of−1.14 in 2015. Similar pattern of drought identifiedwith the 9-month
time scale of all drought indices. Hence, the year 1984, 2009 and
2015 were the most drought affected year at Hossana station
(Figure 4A). Similar observation was detected in the 9-month time
scale of all drought indices.

The percentage of drought frequency that take into account all
stations was assessed using a total of 273 events (39 years of study
period × 7 stations). At Bilate station, in the case of SPI6, the results
indicate that high extreme drought occurred in 1980 s and 2000 s
(0.73%). In the case of SPEI6, high percentage of extreme drought
occurred in the 2000 s (1.47%). Whereas in the case of RDI6 and
eRDI6 high percentage of drought frequency occurred in 2000 s with
the value of 2.20% and 2.56%, respectively indicating that the 2000 s
were the extreme drought years throughout the study period
(Figure 5A). Severe drought showed high percentage of drought
frequency in 1980 s with values of 3.66% of SPI6, 2.93% of RDI6, and

2.56% of eRDI6, but 3.30% of SPEI6 in 1990 s. The severe drought
occurrence outweighs in 1980 s than in 1990 s indicating that the
1980 s were the more severe drought affected years. Moderate
drought showed high percentage of drought frequency in 1980 s
with values of 5.13% of SPI6, 5.86% of SPEI6, 5.13% of RDI6, but
4.76% of eRDI6 in 1990 s. The moderate drought occurrence
outweighs in 1980 than in 1990 s indicating that the 1980 s were
the more drought affected years. Regarding the pattern of the
4 decades of study period, it can be noted that severe drought
pronounced in the 1980 s and 2000 s whereas moderate drought
pronounced in the 1980 s and 1990 s. All the drought indices,
accounts a total severe drought frequency percentage 11.36% and
18.68% in 1980 s. Thus, 1980 s, 1990 s and 2000 s were drought
prone decades specifically in terms of sever and moderate droughts
whereas the last decade was less drought affected (Figure 5A).
Similar pattern was observed in the 9-month time scale of all
drought indices (Figure 5B).

At Hossana Station, in the case of SPI6, the results indicate that
high extreme drought occurred in 1980 s (0.73%). In the case of
SPEI6, high percentage of extreme drought occurred in the 1980 s
(0.37%). Whereas in the case of RDI6 and eRDI6 high percentage of
drought frequency occurred in 1980 s with the value of 1.83% and
2.93%, respectively indicating that the 1980 s were the extreme
drought years throughout the study period (Figure 5C). Severe
drought showed high percentage of drought frequency in 2010 s
with values of 3.30% of SPI6, SPEI6 and RDI6, and 2.20% of eRDI6.
Moderate drought showed high percentage of drought frequency in
1980 s with values of 7.69% of SPI6 in 1980 s, and 5.49 of SPEI6, and
5.13% of RDI6 in 1990 s. The moderate drought occurrence
outweighs in 1980 s and 1990 s indicating that the 1980 s were
the more drought affected years (Figure 5C). Regarding the pattern
of the 4 decades of study period, it can be noted that extreme
drought pronounced in the 1980 s whereas moderate drought
pronounced in the 1980 s and 1990 s. All the drought indices,
accounts a total extreme, severe and moderate drought frequency
percentage 34.81% in 1980 s indicating the most drought affected
decade of the study period. Similar pattern was observed in the 9-
month time scale of all drought indices (Figure 5D).

Generally, 1980 s, 1990 s and 2000 s were drought prone decades
specifically in terms of sever and moderate droughts whereas the last
decade was less drought affected. Similar pattern was observed in the
9-month time scale of all drought indices.

3.4 Spatial distribution of drought events

The interpolated values of the highest drought severity at each
station were used to produce the spatial map of drought events. In
1984, extreme drought was observed in the central and southern
parts of BRW using SPI, SPEI, and scPDSI with small variations
(Figure 6). However, the SPI indicates that the northern part of the
watershed also experiences extreme drought exceptionally due to the
higher drought severity recorded at Hossana station in 1984
(Figure 6). In 2009, extreme drought was observed in the central
and southern parts of the watershed in all drought indices (Figure 6).
Likewise, severe drought is also distributed at the central and
southern parts of the watershed using SPEI and scPDSI
(Figure 6). In 2009, SPEI and scPDSI showed similar patterns in
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indicating the distribution of historical drought events. Generally,
the interpolated value of the drought maximum severity record at
the seven stations indicated that the central and southern parts of the
watershed experienced extreme and severe drought.

The interpolated values of the highest drought severity at each
station were used to produce the spatial map of drought events. In
1984, extreme drought was observed in the central and southern
parts of BRW using SPI, SPEI, and scPDSI with small variations.
Particularly at the central (Alaba station) and the south eastern
(Bilate station) part of the watershed showed high extreme value that
ranges from −2.46 to −2.22 (Figure 6A). However, the SPI indicates
that the northern part of the watershed experiences extreme with the
value of −2.21 to −1.97 exceptionally due to the higher drought
severity value displayed at Hossana station in 1984. Severe drought
also highly distributed in the central part of the watershed with the
value of −1.96 to −1.92, southern and small part of the western
(Wolayta Sodo station) parts of the watershed in 1984. Similarly, the
moderated drought showed the highest distribution in the central part
of the watershed with the value of −1.48 to−1.45 in 1984 (Figure 6A). In
2009, extreme drought was observed in the central and southern parts of
the watershed in all drought indices in general. Particularly, intense
extreme drought was distributed with the values that ranges
from −2.6.2 to −2.33 at the western edge of central part of the
watershed in 2009 (Figure 6B). The value of SPI6 extreme drought
was higher in 2009 than the value of SPI6 in 1984. Severe drought also
distributed in the south western part of the watershed with the value
that ranges from −1.98 to −1.93 which was higher value compared to
the SPI6 value of 1984 (Figure 6B). The distribution of moderate
drought showed at the north western and south western part of the
watershed with the highest value that ranges from −1.45 to −1.43 in
2009. Hence, the spatial drought distribution showed a shift from the
central and southern parts in 1984 to the western edge of the watershed
in 2009 with the drought index of SPI6.

SPEI6 in 1984 showed the highest extreme drought distribution at
the central, north western and southern part of the watershedwith value
that ranges from −2.37 to −2.11 in 1984 (Figure 6C). Severe drought
showed its distribution at the western part of the watershed with value
that ranges from −1.89 to −1.86 in 1984. The moderate drought also
distributed at the central and southern part of the watershed with the
value that ranges from −1.48 to −1.46 in 1984 (Figure 6C). In 2009,
SPEI6 showed the highest extreme drought distribution in the central
part of the watershed with the value that ranges −2.76 to −2.45 which
was highest to the value of 1984. Severe drought also distributed with
high value that ranges from −1.98 to −1.93 at the central and southern
part of the watershed. Moderate drought in 2009 was also highly
distributed at the northern, north western, central southern part of
the watershed with the value that ranges from −1.48 to −1.43 in 2009
(Figure 6D). The distribution of extreme drought shifts from central
and southern part of the watershed in 1984 to the western part in
2009 with the drought index of SPEI6. The severe drought also shifts
from western part in 1984 to eastern part in 2009. However, the
moderate drought did not show a spatial shift from 1984 to 2009.
Similar pattern of drought class distribution was observed with the time
scale 9-month.

Even though the interpolation was only based on a small
number of data (seven stations), it nevertheless depicts the
overall pattern of drought in the watershed. Drought spatial
distribution for various classes (extreme, severe and moderate

drought) and year (1984 and 2009) showed a spatial pattern
variation. However, the central and southern portions of the
watershed experienced intense (extreme and severe) droughts
during the study period, according to the spatial drought
distribution map for all drought classes (extreme, severe, and
moderate) and timescales (6-month and 9-month).

3.5 Drought characterization using the
theory of run

At the Bilate Tena station, the highest drought was observed
from the SPI9, SPEI9, RDI6, and scPDSI indices (Table 4 Figure 6).
SPI9 showed a value of −11.87 from June 1984 to December
1984 with a duration of 7 months. Similarly, SPEI9 showed a
value of −10.08 from July 1984 to December 1984 with a
duration of 6 months, RDI6 showed a severity of −12.87 from
May 2009 to September 2009 with a duration of 5 months and
eRDI9 showed a severity of −13.43 from July 1984 to December
1984 with a duration of 6 months, the scPDSI index showed a value
of −26.29 from 12, 2002 to 11, 2003 with a duration of 12 months.
Therefore, SPI detected the drought early compared to SPEI. The
longest duration of drought ranged from 3 to 5 months and
3–7 months for the 6-month and 9-month time scales,
respectively. The average duration was 4 and 5 months for the 6-
month and 9-month time scales, respectively. The maximum
drought intensity was −2.29 with SPEI9, -2.57 with RDI6,
and −3.71 with scPDSI.

At Hossana station (Table 5; Table 6), the maximum drought
severity with SPI9 was −15.70 from July 2015 to March 2016, with a
duration of 9 months. SPEI9 was −15.50 from July 2015 to March
2016 with a duration of 9 months, and scPDSI was −29.64 from
December 2010 to January 2012, with a duration of 14 months
eRDI6 showed a maximum severity of −11.81 from April 1984 to
August 1984 with a duration of 5 months and eRDI9 showed a
severity of −14.20 from July 1984 to December 1984 with a duration
of 6 months. The longest duration of drought ranged from 4 to
6 months and 3–6 months for the 6-month and 9-month time scales,
respectively. The average duration was 4 and 3 months for the 6-
month and 9-month time scales, respectively. The maximum
drought intensity was −2.08 with RDI9, −2.36 with RDI6,
and −2.37 with eRDI9.

At Bilate Tena stations, the maximum severity and duration of
drought were observed on the time scale of 9 months, especially in
1984/5 (Tables 4–6). The maximum drought severity with SPI6 was
shown at Boditi station with a duration of 6 months while the
maximum intensity was shown at Shone station (Table 6).
SPI9 showed the highest drought severity at Wulbareg station for
9 months. SPEI6 and SPEI9 showed the highest drought severity at
Hossana station with values of −10.74 and −15.50, respectively.
scPDSI showed the highest drought severity at Wolayta Sodo station
with a duration of 23 months. For all drought indices, the highest
drought severity was observed at Hossana and Wulbareg stations,
while the highest intensity was recorded at Shone station. The
longest drought duration was observed from SPI9 and
SPEI9 indices with duration ranging from 3 to 9 months at Bilate
Tena station. Maximum drought severity was observed at all stations
with a duration of 9 months except at Shone and Wolayta Sodo
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stations. The most intense drought was observed for all drought
indices in all stations mostly at a time scale of 9 months. Among all
stations, Hossana and Wulbareg showed highest drought severity,
particularly on a 9-month scale which was also characterized by a
high CV of precipitation (Table 1). The maximum value of drought
characteristics identified for all stations with the Theory of run
application is shown in Table 6.

In SPI6 index, the maximum number of droughts were
observed at Hossana and Wulbareg stations with a value of
93 and 88, respectively (Table 7). In the SPI9 index, showed a
maximum number of droughts were at Boditi and Wulbareg
stations with the value of 88 and 86 drought events,
respectively. SPEI6 showed the highest number of drought
events at Hossana and Wulbareg stations with a value of
93 and 89, respectively. SPEI9 showed the highest number of
drought events at Hossana and Wulbareg stations with a value
of 85 and 83, respectively. Similarly, RDI and eRDI showed the
highest number of drought events at Hossana and Wulbareg
stations on both time scales. Thus, most drought events were
recorded at Wulbareg, Hossana, and Boditi stations compared to
the other stations. scPDSI showed the highest number of drought
events at Boditi station with a value of 197.

The minimum and a maximum number of drought events on a
time scale of 6 months varied from 73–93 for SPI6 with an average
value of 81, 36–93 for SPEI6 with an average value of 75, 73–87 for
RDI6 with an average value of 78, and 73–93 for eRDI6 with an
average value of 79 (Table 7). Thus, a higher number of historical
drought events were identified at a 6-month time scale than at a 9-
month time scale. At a 6-month time scale, SPI6, RDI6, and
eRDI6 had a higher average number of drought events with a
value of 81, 78, and 79, respectively.

Drought frequency was calculated using all drought indices
with 6-month and 9-month time scales (Table 7). At Hassanal
station, the maximum average frequency of drought on a 6-month
time scale with drought indices SPI6, SPEI6, and eRDI6 was 80%.
At Wulbareg station, the frequency of drought was 75% for SPI6,
73% for SPI9, 76% for SPEI6, 74% for RDI6, and 69% for RDI9.
With SPEI6 and RDI6, Alaba and Bilate Tena stations had a
comparable drought frequency of 64%. In Boditi and Wolayta
Sodo stations, the drought frequency was 75% with SPI6 and 71%
with eRDI6. Consequently, the maximum drought frequency
calculated with a 6-month scale was higher than the 9-month
scale of drought indices. However, Hossana andWulbareg stations
had the highest percentage of drought frequency on both time
scales, indicating that these stations experienced the most frequent
drought.

3.6 Drought trend

The SPI, SPEI, RDI, eRDI, and scPDSI values derived over 6-
month and 9-month time scales were subjected to MK trend
analysis. The results (Table 8) revealed that utilizing all drought
indices, on all stations except Hossana and Wulbareg showed a
statistically significant positive trend from 1981 to 2019, indicating
an increasing trend of drought conditions. Therefore, drought
conditions at BRW showed mostly an increasing trend from
1981 to 2019.

4 Discussion

The correlation analysis revealed that similar time scales showed
a high correlation value of 0.99 in all stations. This result is exactly
similar with the research output of Rascón et al. (2021) that showed a
correlation coefficient of 0.98 and 0.99 between SPI and SPEI at the
same temporal scale. This result also agrees with those obtained by
Stojanovic et al. (2018) who determined a correlation value of
0.96 between the SPI and the SPEI at a 1-month scale when
assessing droughts in central Europe.

Furthermore, the findings of correlation analysis showed that
similar time scales of SPI, SPEI, RDI, and eRDI showed the highest
correlation indicating that these indices could be used alternatively,
which is similar to the research finding of Jain et al. (2015) and
Wable et al. (2019). The correlation of the scPDSI decreased as the
time scale of the drought indices increased, indicating that the
scPDSI was well suited to detect short-term and medium-term
droughts. In addition, the average correlation analysis showed
that the 6-month and 9-month time scales were highly correlated
and therefore selected to be used for further characterization of
drought events in BRW. In the temporal drought analysis,
significant drought events were detected in 1984/5, 2000, 2002,
and 2009 in BRW. Thus, most of the drought indices were able to
identify the historical drought years of 1984/5, 2000, 2002, and 2009,
which is consistent with the major historical drought events
documented in Ethiopia (Degefu & Bewket, 2015; Suryabhagavan,
2017; Mera, 2018; Mohammed and Yimam, 2021). Drought
conditions were prevalent throughout all of Ethiopia in a few
years, primarily 1984 and 2009 (Viste et al., 2013).

In Bilate Tena station, the highest drought severity observed with
SPI6 and SPI9 were −8.46 and −11.87, respectively in 1984 with a
drought class of severe. Likewise, the highest drought severity observed
with SPEI6 and SPEI9 were −6.74 and −10.08, respectively in 1984 and
2009 with a drought class of severe. The highest drought severity
observed with RDI6 and RDI9 were −12.87 and −10.83, respectively in
2009 with a drought class of extreme. Similarly, scPDSI showed a
severity of −25.37 in 1984 with a drought class of moderate. This
indicate that the strongest drought was observe in the years 1984 and
2009 (Table 4). Similarly, in Hossana station the highest drought
severity observed with SPI6 and SPI9 were −10.46 and -15.70 in
2015 and 2016, respectively with a drought class of severe. The
highest drought severity observed with SPEI6 and
SPEI9 were −6.87 and −15.50 in 2009 and 2016, respectively with a
drought class of severe and moderate. The highest drought severity
observed with RDI6 and RDI9 were −6.86 and −6.25 in 2009 and 2015,
respectively with a drought class of severe and extreme. Similarly,
scPDSI showed a severity of −29.64 in 2012 with a drought class of
moderate. This indicate that the strongest drought was observe in the
years 1984 and 2009 (Table 5). In general, on applying the theory of run,
almost all drought indices, the highest drought was observed at Hossana
and Wulbareg stations, which had the highest precipitation variability
(Table 1). In addition, Hossana and Wulbareg stations had the highest
percentage of drought frequency at both time scales, indicating that they
were the stations with the most recurrent drought in the BRW.

Although the spatial distribution of drought events was analyzed
using interpolation of only seven-point data that represent
meteorological stations, the results were coarse and may not
show the real spatial distribution of historical droughts in BRW.
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This is due to the fact that there was insufficient meteorological data
and its accuracy cannot always be guaranteed (Arekhi, et al., 2020).
Instead, the spatial distribution of historical drought could be more
accurately depicted by the interpolation of gridded meteorological
data or through the appropriate analysis of satellite images. The use
of satellite imagery is particularly advantageous since it provides
timely, accessible, extensive coverage, and continuous data (Orhan
et al., 2014; Tran et al., 2017; Wang et al., 2018).

The MK trend analysis showed that almost all drought indices
were significantly and positively increasing. However, Hossana and
Wulbareg showed a decreasing trend of drought which is not
statistically significant. Overall, the Bilate watershed showed an
increasing trend of drought throughout the study period and this
finding was similar to the findings of previous research in Bilate
watershed and in the Rift valley lake basin (Mohammed and Yimam,
2021; Haile et al., 2022).

5 Conclusion

The correlation analysis revealed three distinct patterns on almost
all stations. First, all drought indices were highly correlated with
similar time scales. Second, all drought indices were strongly
associated with scPDSI at 3-month and 6-month time scales.
Third, as the time scale increases, the correlation of the scPDSI
with other drought indices decreases. As a result, the scPDSI can
only detect drought events in a short and medium period.

To analyze the performance of drought indices and select the
best-correlated one, an average correlation analysis of all drought
indices was calculated. The result was that the 6-month and 9-
month time scales had the highest average correlation, indicating
that they were the best indices compared to other time scales.
Thus, to identify and describe droughts in terms of duration,
severity, intensity, and frequency, the theory of run was applied
using 6-month and 9-month time scales for all drought variables.
The most significant drought events identified at the Bilate Tena
and Hossana stations based on the selected 6-month and 9-
month drought index time scales occurred in 1984/85, 2000,
2002, and 2009. At the other stations, a similar trend was mostly
observed for major drought episodes. The greatest severity and
longest duration of the drought were observed at Alaba and Bilate
Tena stations for 9 months, especially in 1984/5. With a severity
of −48.78 and a duration of 23 months, the scPDSI at Wolayta
Sodo station indicated the greatest drought. The greatest drought
severity was observed at Wulbareg station, while the maximum
intensity for all drought indices was observed at Shone stations.
At Hossana station, a maximum average frequency of 80% was
observed on a 6-month time scale with drought indices of SPI6,
SPEI6, and eRDI6. Moreover, Hossana and Wulbareg stations
had the highest percentage of drought frequency in both periods,
indicating that they suffered from recurrent drought during
1981–2019. The results of the MK trend test statistics also
showed an increasing trend in drought conditions at all
stations except Hossana and Wulbareg. Most drought indices

also showed an increasing trend at all stations except Hossana
andWulbareg. This study used sparse and interpolated point data
from a few meteorological stations to depict the spatial
distribution of drought. Therefore, additional research
utilizing geospatial data was recommended in order to
comprehend the actual spatial distribution of historical
drought in the watershed.
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