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Introduction: Recent work examining the impact of climate-change induced
extremes on food-energy-water systems (FEWS) estimates the potential changes
in physical flows of multiple elements of the systems. Climate adaptation decisions
can involve tradeoffs between different system outcomes. Thus, it is important for
decision makers to consider the potential changes in monetary value attributed to
the observed changes in physical flows from these events, since the value to society
of a unit change in an outcome varies widely between thing like food and energy
production, water quality, and carbon sequestration.

Methods: We develop a valuation tool (FEWSVT) that applies theoretically sound
valuation techniques to estimates changes in value for four parameters within the
food-energy-water nexus. We demonstrate the utility of the tool through the
application of a case study that analyzes the monetary changes in value of a
modelled heat wave scenario relative to historic (baseline) conditions in two
study regions in the United States.

Results:We find that food (corn and soybeans) comprises the majority (89%) of total
changes in value, as heatwaves trigger physical changes in corn and soybeans yields.
We also find that specifying overly simplified and incorrect valuationmethods lead to
monetary values that largely differ from FEWSVT results that use accepted valuation
methods.

Discussion: These results demonstrate the value in considering changes inmonetary
value instead of just physical flows when making decisions on how to distribute
investments and address the many potential impacts of climate change-induced
extremes.

KEYWORDS

economic valuation, food-energy-water nexus, climate change, consumer surplus, food
production, electricity generation, water quality

1 Introduction

New work studies the impacts of climate change and climate-induced extremes on physical
features of a linked food, energy, water system (C-FEWS) (Vörösmarty et al., 2023; this issue).
In order to use that research to guide future policy and infrastructure decisions, decision makers
need to understand what tradeoffs exist between elements of the system (Parkinson et al., 2019)
and what those tradeoffs mean in terms of human wellbeing (Antle and Capalbo 2010).
Economic valuation methods have been developed for several elements of food-energy-water
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systems; examples include crop production, air pollutant emissions,
and water quality benefits (Alston et al., 1998; Muller and
Mendelsohn, 2007; Johnston et al., 2017); these methods have been
sufficiently validated to be used extensively by the US Environmental
Protection Agency in formal cost-benefit analysis of proposed
regulations (Petrolia et al., 2021).

Research shows how estimating the monetized values of changes
in multiple ecosystem service flows can enable meaningful comparison
between them and guide decisions about policy and management. For
example, Naime et al. (2020) find that forest restoration yields greater
total benefits if it prioritizes regulating over provisioning services
because the value of carbon sequestration can be twice as large as the
use values people gain from forest use. However, there currently exists
no resource that consolidates methods for valuing multiple C-FEWS
elements into one tool for researchers to use. This study addresses that
gap by developing a valuation tool that harnesses several elements of
economics methodology to estimate the monetized social value of
changes in five C-FEWS portfolio elements from user-provided data.
The resulting instrument empowers scientists who are not experts in
economics to carry out important ecosystem service valuation of
common features of FEWS. We then harness the functionality of
the tool to identify several core features of changes in multiple
ecosystem services from climate changes.

This paper describes the methodological foundations for a C-FEWS
Valuation (FEWSVT) tool that produces valid rapid-response estimates of
the value to society of changes in food-crop yields, water quality, electricity
generation, carbon sequestration, and air quality. The tool is spatially and
temporally flexible and accommodates any user-defined alternative
scenarios. The analyses use two different types of economic valuation
approaches. Microeconomic market analysis (Alston et al., 1998;
Manning and Ando 2022) is used to estimate changes in monetized
consumer and producer surplus for crops and electricity when a climate
shock changes production costs by altering crop yields and increasing
input costs. In contrast, the values of changes in air quality, water quality,
and net carbon flux are estimated using non-market valuation methods
(Hanley and Czajkowski 2019; Bateman and Kling 2020) that estimate
society’s willingness to pay (WTP) for improvements in environmental
quality.

We then explore several important principles of C-FEWS
valuation by applying this tool to data representing hypothetical
but plausible climate changes in the Northeastern and Midwestern
United States. We show which changes in climate change-attributable
physical flows are likely to have the largest monetary impacts to
society. Finally, we show the importance of using theoretically sound
economic methods for valuation rather than simple products of
market prices and quantities of goods produced.

2 Materials and methods

2.1 C-FEWS valuation (FEWSVT) tool

As the world continues to grow in population and economic
development, demand for elements of the food-energy-water (FEW)
nexus will continue to strain the engineered and natural infrastructure
on which these elements depend. Global crop demand is projected to
double from current levels by 2050, while global water demand is
estimated to rise by 20%–30% per year by 2050 (Tilman et al., 2011;
WWAP & UN-Water, 2018). Research on FEW systems has fueled a

push to develop market and non-market valuation methods that
monetize the economic ramifications of scenarios on the FEW nexus.

Previous research has refined and validated methods to estimate
the social value of changes in food-energy-water system (FEWS)
elements. For example, food production has been studied
extensively to examine how a certain change influences crop
production, which in turn can be monetized using market data.
Examples include the effect of irrigation on food supply (Jin et al.,
2012; Xu et al., 2020), the impacts of climate change shocks on crop
yields (Islam et al., 2012; Lobell et al., 2013; Nelson et al., 2014;
Adhikari et al., 2015; Niyogi et al., 2015), and the effects of farm
subsidies on a crop’s productivity levels (Unisfera International Centre
2003; Lencucha et al., 2020). Research has also monetized the impacts
of scenario changes on electricity generation per sector using price and
cost data. Fonseca et al. (2021) evaluated the impacts of climate change
on the electric power sector in the Southeast region of the US, and
provided monetary estimates as to the increase in investment costs
that would result from accounting for climate change effects on both
supply and demand. Other studies have examined how climate change
conditions impact specific generating units (Mideksa and Kallbekken
2010; Solaun and Cerda, 2019).

Much research in economics has also developed and validated tools
for quantifying FEWS portfolio elements whose impacts are not reflected
through a market mechanism like price. Both air pollutant emissions and
water quality have effects on human health and wellbeing that are
monetized with non-market valuation techniques. Primary non-market
valuation methods such as hedonic pricing and travel cost studies can be
used to capture the values people place on an ecosystem service. Benefit
transfer methods can take values estimated for environmental goods in
one place with primary research and apply them to estimate the values of
similar goods in other settings. For air pollutant emissions, integrated
assessment models (IAM) have been developed to estimate marginal
damages associated with rising power plant-level emissions (Muller and
Mendelsohn, 2007; Heo et al., 2016a; U.S. Environmental Protection
Agency, 2018). The policy consequences of changing power plant-level
emissions have also been examined with respect to the transportation
industry (Holland et al., 2020).

Research examining the value of water quality improvements ranges
from site-specific studies valuing individuals’ WTP to use a clean water
body for one specific use to more holistic studies using benefit transfer
methods to quantify use and non-use values from restoring the water
quality of a range of water bodies (Houtven et al., 2007; Kauffman 2019;
Johnston and Bauer 2020). Recent literature has also developed valuation
methods to quantify the “social costs of nitrogen” (SCN), which is a
spatially explicit measure of the monetary damages of nitrogen release to
nearby surface waters from fertilizer application (Keeler et al., 2016;
Gourevitch et al., 2018).

Despite the ever-growing literature on the values of individual
elements of FEWS, no resource has yet consolidated methods for
valuing multiple FEWS elements in a single tool. Adaptations to
climate change can involve tradeoffs between elements of the
system, so it is vital to be able to compare the social value of
multiple changes in the same analysis in order to evaluate which
course of action would have the most favorable net value (Goldstein
et al., 2012). To meet that need, this study presents a valuation tool
(Chang 2021) that adapts economic valuation methods to take user-
input data and produce monetary estimates for multiple FEWS
portfolio elements: food (corn and soybeans) production, power
plant-level electricity generation, net carbon dioxide emissions
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(including carbon sequestration), and water quality (total nitrogen and
total phosphorus).1

As shown in Figure 1, the tool accepts user-provided inputs for
these FEWS portfolio elements and employs a variety of economic
valuation techniques to produce monetary outputs, available in three
different formats. The values of marketed goods like food and
electricity are estimated with a social-surplus calculation approach.
We use information on changes in market prices, output quantities,
and features of production that help us trace out the shapes of demand
and supply curves to calculate how the difference between the value to
consumers and production costs to producers change in respond to a
shock, like climate change. In contrast, the values of non-marketed
outcomes like net carbon flux and air and water pollution are found by
drawing on previous research that estimates social WTP for
environmental quality, and applying those numbers to the changes
in environmental quality reflected in the scenarios being analyzed.

Complete technical documentation of the functions of FEWSVT is
readily available online in Chang. Below we explain the approach used
in this specific paper to value changes in elements of a FEWS portfolio
with the FEWSVT tool.

2.1.1 Food crop production
The food production component of the FEWSVT tool estimates

changes in social surplus due to changes in crop yield for a
particular commodity. These values are derived using economic
surplus methods that, given initial demand and supply, quantify the
magnitude of the vertical shift in a commodity’s supply curve due to
a change in yield (Alston et al., 1998). This shift in supply, along
with the observed change in yield, dictates the magnitude of the
change in total surplus for the commodity. In Figure 2, area a-b-c-d
represents this monetary measure, due to a vertical supply curve
shift (b-a).

This vertical shift in a commodity’s supply curve, herein
designated as parameter “K”, can be derived in one of two
manners. If there is available price and quantity data for both a
baseline scenario and alternative scenario, one can use Eq. 1 from
Manning and Ando (2022), where P0 and P1 are baseline and
alternative scenario prices, Q0 and Q1 are baseline and alternative
scenario quantity, and εS is the price elasticity of supply.

K � P1 − P0 + P0

Q0εS
Q0 − Q1( ) (1)

However, there may be cases in which one does not have a reasonable
expectation as to how prices and quantities will change from its baseline
level. Letourneau et al. (2015) developed an alternative calculation for K
which is driven by changes in crop yield instead of prices and quantities.
Eq. 2 displays this analytically, where Y0 and Y1 are baseline and

FIGURE 1
FEWSVT process flow chart.

1 The tool presented in Chang (2021) also quantifies damages from local air
pollution released by electricity-generating power plants (nitrous oxide and
sulfur dioxide).
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alternative scenario yields. Based on the inputs provided, FEWSVT can
use either method to calculate K.

K � Y1 − Y0| |
Y0εS

(2)

Once the shift in the supply curve is quantified, changes in value can
be determined. The impacts of this shift depend on change in price and
quantity, as well as supply and demand elasticities. In addition, the size of
the market in question determines if changes to commodity yields within
the region are large enough to influence international market price. If this
is the case, trade effects with any region which the study area exports to,
herein designated as the “Rest-of-World” (ROW), must be considered to
accurately reflect the underlying effects of the changes in yield for the
studied commodity. ROW price-elasticities for the commodity must also
be considered to capture all market behavior.

Therefore, FEWSVT can model two kinds of cases dependent on
spatial resolution. The first case assumes the study area in question
does not have a large enough market share of the commodity in which
changes to its crop yields would influence international market price
for that crop. If yields within the study area changed over time,
international market price would remain unchanged, as producers in
the study area act as price takers. The underlying equations adapted
from Alston et al. (1998) are as follows:

ΔCS � P0Q0Z 1 + 0.5ZμD( ) (3)
ΔPS � P0Q0 K − Z( ) 1 + 0.5ZμD( ) (4)

ΔTS � ΔCS + ΔPS � P0Q0K 1 + 0.5ZμD( ) (5)
Here, Z is the price change relative to its initial value and μD/εS are the
domestic price-elasticities of demand (absolute value) and supply for
the commodity. Since the study area does not influence market price in
this case, initial price P0 does not change in reaction to alternative-
scenario commodity quantities. The Z parameter is derived from the K
parameter and price-elasticities of supply and demand. Thus, given
baseline values of commodity price and quantity and alternative-
scenario quantities, the valuation tool uses Eq. 5 to calculate changes in
total surplus.

If the specified study area does have a large enoughmarket share of
the commodity to influence market price, trade effects with the ROW
must be considered. One example of a study areas that fulfills this case
is the Midwest corn market, which accounts for an approximately 50%
share of U.S. corn production, with the United States. being the
world’s largest corn exporter (Roberts and Schlenker 2013). There
are no numerical thresholds within the tool that determine whether
inputs fall under this case; rather, spatial location is the sole
determinant used by the tool. In these instances, the underlying
equations (adapted from Alston et al., 1998) are as follows, for
both the study area (subscript “DOM”) and areas who receive
exports from it (subscript “ROW”):

ΔCSDOM � P0CA,0Z 1 + 0.5ZμD( ) (6)
ΔPSDOM � P0QA,0 K − Z( ) 1 + 0.5ZμD( ) (7)

ΔTSDOM � P0Q0K 1 + 0.5ZμD( ) (8)
ΔCSROW � P0CB,0Z 1 + 0.5ZμB( ) (9)
ΔPSROW � P0QB,0Z 1 + 0.5ZεB( ) (10)
ΔTSROW � P0Q0Z 1 + 0.5ZμB( ) (11)

Here, CA,0 is initial domestic (study area) consumption, QA,0 is initial
domestic production, CB,0 is initial ROW consumption, QB,0 is initial
ROW production, and μ/ε are the price-elasticities of demand
(absolute value) and supply for the study area (subscript D) and
ROW (subscript B). For domestic (study area) producers, we assume
price elasticities account for demand and supply for both domestic and
ROW consumption. For ROW areas, we assume price elasticities only
account for exports received from the study area. The Z parameter is
calculated in the same manner as the first case.

Trade effects are only captured by incorporating ROW supply and
demand price elasticities for the commodity, and we assume that there
are no trade-distorting policies that may otherwise influence market
price. There are several reasons why we argue that this assumption will
not lead to false estimates of surplus. Policies such as ethanol subsidies
mainly impact demand for the commodity (in this case, corn), and
since the shock that is fed into the tool is to supply, the effects of these
policies are largely not felt for the desired parameters of interest

FIGURE 2
Basic economic surplus change model Note: P0 and Q0 are initial price and quantity, P1 and Q1 are final price and quantity, S0 and S1 are initial and final
supply, D is demand (unchanged), and the change in total surplus is represented by shaded region abcd.
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(Babcock and Fabiosa 2011). Furthermore, many of the largest export
destinations for United States. corn maintain free trade agreements
under which exports enter at low or zero tariffs, which mitigates
concerns over the impacts of trade distortions on model estimates
(USTR 2021). Thus, given baseline values of commodity price and
quantity and alternative-scenario quantities, the valuation tool uses
Eq. 8 to calculate changes in total surplus.

In this paper, we input crop yield and harvested area data as
described in Section 3.2 into FEWSVT Version 1.0, which assigns
elasticity values as specified in Table 1. While the tool contains
multiple measures of domestic and ROW elasticities, this study
applies domestic elasticities from Roberts & Schlenker (2013) and
ROW elasticities from Reimer et al., 2012.2

2.1.2 Electricity generation
The electricity generation component of FEWSVT estimates

changes in value of power plant level production due to changes in
electricity generation and marginal cost for a given technology.
Understanding how measures of value change for certain electricity
sectors are useful in examining the impact of various scenarios, such as
future climate shock events. Utilizing methods from Logan et al.
(2021), the valuation tool takes in spatially explicit user inputs of
electricity generation (MWh) and marginal cost ($/MWh), and uses
built-in electricity price data to output measures of present value of
generation for any given electricity sector at an annual timescale.
Given data inputs from both a baseline and alternative scenario, the
tool can also calculate the change in value between scenarios.

For any given electrical sector, the valuation tool uses the following
underlying equation, adapted from Logan et al. (2021):

PVj � Gj W −M( ) (12)
Here, PVj is the present monetary value of electricity generation under
conditions j, Gj is electricity generation (MWh) under conditions “j,”
W is the wholesale electricity price ($/MWh) received for the given
sector, and M is the marginal cost of electricity (MWh) for the given
sector. The marginal cost term considers the capital (e.g., fuel) and
variable operation and maintenance (O&M) costs of producing one
additional unit of generation for a given electricity-generating
technology.

Conditions j refers to the specific spatial and temporal input
received by the tool for the electrical sector of interest. For
example, the National Renewable Energy Laboratory’s (NREL)
Regional Energy Deployment System (ReEDS) Model produces
generation and cost projections by “balancing area” for the
contiguous United States, and typically breaks down these
parameters into 17 time slices that represent specific seasons and
time-of-day throughout the calendar year (Brown et al., 2020).

Besides electricity generation and marginal cost, the user can
also choose to specify their own electricity prices to produce
monetary estimates per their own preferences. However, the
tool does contain default historical wholesale electricity prices
obtained from online independent system operator (ISO)
databases for the Northeast and Midwest regions of the
United States. We input electricity generation and price data as
described in Section 3.2 and apply baseline marginal cost values as
specified in Chang (2021).

2.1.3 Net CO2 flux
Greenhouse gas emissions are a uniformly mixed pollutant,

such that the damages of such pollution do not depend on spatial
location. Rather, damages are uniformly distributed across space
regardless of the source of pollution and are quantified solely as a
simple function of the total net quantity emitted. Examples of such
pollutants include carbon dioxide (CO2) and chlorofluorocarbons
(CFCs).

We use this component of the valuation tool to estimate
changes in social wellbeing due to changes in net CO2 flux,
where CO2 is emitted from power plants and absorbed through
terrestrial sequestration. The valuation tool uses the following
underlying equation:

TD � SCCp CO2PP − CO2SQ( ) (13)
Here, TD is the total net damages from carbon emissions, SCC is the
social cost of carbon ($/ton), CO2PP (tons) is the quantity of carbon
dioxide emissions from power plants, and CO2SQ (tons) is carbon
sequestration levels. It is important to note that carbon sequestration
data is typically measured in mass units of carbon. Thus, the valuation
tool first converts mass carbon units into its carbon dioxide equivalent
by multiplying by the ratio of the molecular weight of carbon dioxide
to that of carbon. If the user does not have carbon sequestration data,
the CO2SQ term is simply dropped from the equation and the resulting
monetary estimate is changed to the total gross damages from just
carbon dioxide emissions.

TABLE 1 FEWSVT price elasticities specified in heat-wave scenario.

Commodity Domestic demand
elasticity

Domestic supply
elasticity

ROW demand
elasticity

ROW supply
elasticity

Source

Corn −0.05 0.12 — — Roberts & Schlenker
(2013)

Corn — — −1.10 0.50 Reimer et al. (2012)

Soybeans −0.05 0.12 — — Roberts & Schlenker
(2013)

Soybeans — — −0.90 0.24 Reimer et al. (2012)

Note: ROW reflects the “rest of world,” which are all other trade partners besides the domestic importer or exporter of the good.

2 While FEWSVT only contains elasticity values for corn and soybeans, the user
can input their own estimates of crop price and elasticity for other
commodities of interest.
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The valuation tool contains several default values of the SCC taken
from literature that allows a user the flexibility to produce either a low,
middle, or high monetary estimate depending on their preferences
Hänsel et al. (2020) (Interagency Working Group on Social Cost of
Greenhouse Gases, 2016; Nordhaus 2017). As shown in Table 2, all
SCC values used by the tool assume a 3% discount rate and are
updated to have uniform units of 2021 United States. dollars (USD)
per ton of carbon dioxide emitted. The valuation tool also allows a user
to input their own estimate which takes precedent over the default
values within the tool.3 This paper uses estimates of net carbon flux
from both carbon dioxide emissions from power plants and net carbon
sequestration from multiple land cover types for the Midwest and
Northeast regions in the United States and applies a SCC value of $51/
ton CO2 as estimated by InteragencyWorking Group on Social Cost of
Greenhouse Gases, 2016.

2.1.4 Water quality
The water quality component of the valuation tool estimates

changes in consumer WTP to use a water body due to changes to
its water quality. The valuation tool first takes in water pollutant
concentration inputs to produce a “Water Quality Index” (WQI)
estimate, and then employs a benefit transfer methodology to calculate
monetary values associated with people’sWTP for a water body’sWQI
(Johnston et al., 2005; Alvarez et al., 2016; Johnston et al., 2017;
Johnston and Bauer 2020).

The WQI is a standardized 100-point index that relates water
pollutant concentrations to water body suitability for wildlife and
human usage (Johnston and Bauer 2020). Higher WQI values indicate
a water body of higher quality, with water pollutant concentrations at a
level low enough to support aquatic life, recreational use, or even

drinking water consumption. The WQI is calculated using pollutant
concentration data inputs, which are translated into subindex values
that are combined with an assigned index weight to produce an
aggregate WQI estimate. The resulting WQI equation is as follows
(adapted from Walsh and Wheeler 2013):

WQI � ∏6

i�1Q
Wi
i (14)

where Qi is the water quality subindex for water pollutant i, andWi is
the assigned index weight of water pollutant i. Table 3 shows all
assigned subindex weights for water pollutants in freshwater water
bodies. For each water pollutant, shown in Table 4, subindex values are
first calculated on a 10–100 scale dependent on pollutant
concentration. Once these subindex values are derived, Eq. can be
used to generate a WQI estimate for any water body.

A benefit transfer methodology is then applied to estimate the
monetary value of changes to the initial WQI estimate. The tool uses a
meta-regression model developed by Johnston et al., 2017, using
140 unique observations from 51 stated preference studies
published between 1985 and 2013 that estimated WTP for changes
toWQI as a function of independent variables (Berrgstrom and Taylor
2006) that characterize features of the study site, water bodies, and
nearby affected population from studies in the analysis. The variables
used in this model are listed in Table B1 of Chang (2021) and the
coefficients on those variables resulting from a random effects
regression are summarized in Table B2 of Chang (2021). These
coefficients are matched with any geographic features of the water
body, as well as the socioeconomic characteristics of those who
reguarly utilize it. For example, if the water body in question was
located in the United States. Department of Agriculture Northeast
region, the user would assign a binary value of “1” to the variable
“Northeast_United States.” Once all variable coefficients have been
matched with its selected value, household WTP is calculated using
standard Consumer Price Index (CPI) adjustment for a specified
increase in WQI for the desired water body. Household data is
then used to calculate region-wide WTP.

This paper inputs nitrogen concentrations (mg/L) for water bodies
located in the Midwest and Northeast United States. For the other five
water pollutants that comprise the WQI, the tool will assign a default
subindex value of 50 for those pollutants. Thus, the resulting changes
in WQI across the climate scenario described in Section 3.2 only
reflects changes in nitrogen concentrations.

2.2 Climate scenario data

This study is within the structure of the C-FEWS framework
(Vörösmarty et al., 2023 this issue), where all climate scenarios are
based on the North American Land Data Assimilation Phase 2
(NLDAS-2) and its intensified modification. The input datasets are

TABLE 2 FEWSVT social cost of carbon (SCC) estimates.

Source SCC (2021$/ton CO2) Discount rate (%)

Interagency Working Group on Social Cost of Greenhouse Gases (2016) 51 3

Nordhaus (2017) 102 3

Hänsel et al. (2020) 208 3

TABLE 3 Water quality index (WQI) subindex weights.

Pollutant Unit WQI weight

Dissolved oxygen mg/L 0.24

Fecal coliform colonies/100 mL 0.22

Biochemical oxygen demand mg/L 0.15

Total nitrogen mg/L 0.14

Total phosphorus mg/L 0.14

Total suspended solids mg/L 0.11

Source: Johnston and Bauer (2020).

3 FEWSVT only contains SCC values for one uniformly mixed air pollutant
(carbon dioxide). However, FEWSVT can still operate for other uniformly
mixed pollutants given the desired air pollutant’s emissions and social cost
estimate.
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mostly from the model simulations within the C-FEWS framework
that follow the same climate scenarios of historical and intensified
extremes to produce the food production, carbon sequestration,
electricity generation, etc.

2.2.1 Data sources
The NLDAS-2 data was obtained from NASA Goddard Earth

Sciences Data and Information Services Center (DES DISC, https://
disc.gsfc.nasa.gov/), that covers the CONUS from 1980 to 2019.
The historical NLDAS-2 data and intensified climate data were fed
into a) the Terrestrial Ecosystem Model (TEM) to produce the
carbon sequestration data (Kicklighter et al., 2023 this issue), b) the
Integrated Science Assessment Model (ISAM) to produce the food
production data (Lin et al., this issue), c) the Water Balance Model
(WBM) coupled with Thermoelectric Power & Thermal Pollution
Model (TP2M) to produce electricity production data as well as
CO2 emission data (Zhang et al., this issue), and d) the SPAtially
Referenced Regression On Watershed attributes (SPARROW)
model to produce the water pollution data (Maxfield et al., 2023
this issue). All model simulations were aggregated into each state
within the C-FEWS framework defined NE and MW regions
(Figure 3, Vorosmarty et al., 2023 this issue). The brief
description of the model simulation data that was used in this
study are listed in Table 5.

For the historical baseline and heat wave scenarios, we received
data from several sources to apply as inputs to the FEWSVT tool.
Food production data was obtained from Lin et al. (2023 this issue)
for corn and soybeans via the Integrated Science Assessment Model
(ISAM), a process-based dynamic crop and vegetation model that
simulates the productivity of food and bioenergy crops (Niyogi
et al., 2015).

Annual electricity generation (MWh), electricity price ($/MWh)
and carbon dioxide emissions (metric tons) data were obtained from
the Thermoelectric Power and Thermal Pollution (TP2M) model,
which is a simulation model that simultaneously quantifies thermal
pollution from rivers and estimates efficiency losses in electricity
generation (Zhang et al., 2023 this issue) were obtained from
Zhang et al., 2023. Marginal cost of electricity production
($/MWh) data was taken from Chang (2021) and were matched by
both time and space to the TP2M generation data.

Annual carbon sequestration (Tg C) data was obtained from
Kicklighter et al. (2023 this issue) via the Terrestrial Ecosystem
Model (TEM), which is a process-based biogeochemistry model
that uses spatially referenced information to estimate fluxes of
carbon in multiple land cover types (Felzer et al., 2004).4

Annual water quality data for the baseline scenario are obtained from
Maxfield et al. (2023 this issue) via the United States. Geological Survey’s
Spatially Referenced Regression on Watershed Attributes (SPARROW)
model, which estimates long-term average values of water characteristics
by synthesizing monitoring and geographic data (Bergamaschi et al.,
2014). Water quality data for the heat wave scenario are calculated based
on the following equation, in which TNriver is total nitrogen concentration
at a given reach, TNland is overland nitrogen concentration moving to a
river, and T is water temperature in degrees Celsius.

TNriver � TNlandpe
−0.07*T( ) (15)

TABLE 4 Water quality index subindex equations.

Pollutant Input concentration Subindex equation

Dissolved oxygen (DO) DO ≤ 3.3 10

3.3 < DO < 10.5 −80.29 + 31.88*DO—1.401*DO2

10.5 ≤ DO 100

Fecal coliform (FC) FC ≤ 50 98

50 < FC ≤ 1600 98 * exp [-0.00099178 * (FC-50)]

1600 < FC 10

Biochemical oxygen demand (BOD) BOD ≤ 8 100 * exp (−0.1993 * BOD)

8 < BOD 10

Total nitrogen (TN) TN ≤ 3 100 * exp (−0.4605 * TN)

3 < TN 10

Total phosphorus (TP) TP ≤ 0.25 100–299.5*TP—0.1384*TP2

0.25 < TP 10

Total suspended solids (TSS) TSS ≤ 28 100

28 < TSS ≤ 168 158.48 * exp (−0.0164 8 TSS)

168 < TSS 10

Note–for each water pollutant, a subindex value is estimated on a 10–100 scale that is dependent on the pollutant’s input concentration. For example, if input DO concentrations were between 3.3 and

10.5 mg/L, the corresponding subindex equation would be applied to estimate a DO subindex. If DO concentrations exceeded 10.5 mg/L, then the DO subindex would automatically become 100.

Source: Johnston and Bauer (2020).

4 Before subtracting these sequestration estimates from the emissions level,
the FEWSVT tool uses molecular weights of carbon and carbon dioxide to
first convert mass units’ carbon into its carbon dioxide equivalent.
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For the baseline and heat wave scenarios, we only input annual
nitrogen concentrations (mg/L) by county. The other four water
pollutants that comprise the WQI estimate (TP, DO, BOD, TSS,
FC) are assumed to hold a subindex value of 50 and are
unchanged from one scenario to the next. Thus, as detailed in
Section 3.1.3, the resulting monetary estimates reflect the change in
WTP due to a change inWQI resulting only from a change in nitrogen
concentrations. We also received additional information regarding the
water body type(s) and geographic location of each region, which
dictates the usage of benefit transfer coefficients that are used to
calculate monetary values.

All annual inputs for food production, electricity generation, and
net CO2 flux are fed into the FEWSVT tool at the state level for the

years 2010–2019.Water quality inputs are provided at the county-level
for the aggregated period from 2010–2019. In other words, water
pollutant concentrations were provided as the average concentration
across 2010 to 2019, as opposed to individual annual values from
2010 to 2019.

2.2.2 Scenarios
The C-FEWS framework contains multiple non-climate and

climate scenarios to investigate and quantify the sensitivity of a
FEW system (Vorosmarty et al., 2023 this issue). This paper
focuses only on the difference between the baseline scenarios and
one out of 4 extreme climate scenarios to demonstrate the
characteristics of the valuation tool. The baseline scenario is the

FIGURE 3
The study area, Northeast and Midwest regions of the United States.

TABLE 5 Sources of data on C-FEWS portfolio outcomes.

Data Unit Source model Reference

Food production (corn & soy) Ton per year ISAM Lin et al., 2023 this issue

Total carbon sequestration Tera gram per month TEM Kicklighter et al., 2023 this issue

Thermal power generation MWh per year TP2M Zhang et al., 2023 this issue

CO2 Emission Ton per year TP2M Zhang et al., 2023 this issue

Nutrient pollution (N, P) Ton per year SPARROW Maxfield et al., 2023 this issue
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40 years historical climate recorded in NLDAS-2 dataset that drove all
the C-FEWS models to produce the datasets needed for this study.

The intensified extreme climate scenarios (IECS) that were described
in Approach B in Vorosmarty et al. (2023 this issue), where the most
climate extreme year in each of four types (heat wave, cold wave, heavy
precipitation, and drought) within the last decade (2010–2019) and its
2 sub-sequential years were selected to repeat three times to replace
9 years of climate data from 2010 to 2019. In this study, the focus is the
heat wave. The extreme heat wave years 2012–2014 for MW and
2016–2018 for NE were selected to repeat three times and replace the
2010–2018 climate data from the baseline. The intensified extreme
climate datasets were then used to drive all the C-FEWS models to
generate the data for this study. Figure 4 shows the air temperatures of the
baseline scenario and the heat wave IECS from 1980–2019 to show how
the latter is constructed. As heat wave has been predicted to be more
frequent in the future (Raghavendra et al., 2019; Lorenzo et al., 2021), the
scenario chosen in this study is relevant to likely future climate outcomes.

This paper examines the monetary implications of heat wave
conditions as specified in Vörösmarty et al., 2023 compared to
historically typical (baseline) climate conditions for two defined
geographic regions in the United States (Midwest (MW) and
Northeast (NE))5. The heat wave data received from sources
described in Section 3.2.1 reflect one of several climate extreme
scenarios described in Vörösmarty et al., 2023. Results from
FEWSVT indicate the monetary implications of changing

meteorological conditions related to a modeled heat wave scenario
from historical conditions as a result of changes in physical flows in
food production, electricity generation, carbon dioxide emissions, and
water quality (total nitrogen concentrations).

2.3 Analyses

We apply the FEWSVT tool to outcome simulations for the heat
wave climate extreme scenario described in Section 3.2.2. We analyse
the results to answer policy-relevant questions related to the impact of
climate extremes on ecosystem service flows. When climate extremes
hit, which changes in food-energy-water physical outcomes are likely
to have the largest monetized effects on society? How important is it to
use theoretically sound economics models for valuation?

2.3.1 Ranking monetized impacts of a climate-
extreme event

We use valuations of the heat wave scenario results to show which
changes in climate change-attributable physical flows are likely to have
the largest monetized value. We first use FEWSVT to value the
monetary impacts due to changes in physical flows for each FEWS
parameter. Then we rank all FEWS parameters by magnitude to
examine which elements contain the highest monetary impacts
directly attributed to the modelled changes in physical flows.

2.3.2 Importance of using theoretically sound
economic models for valuation

Researchers outside economics often use simple approaches to
estimate the value of changes in sectors of the economy that yield

FIGURE 4
Demonstration of creation of extreme climate scenarios. Note: The extreme heat wave event from 2010–2019 was identified and replicated three times
across the last decade of C-FEWS framework of studies.

5 The MW and NE study regions are comprised of nine and thirteen states,
respectively within the contiguous United States.
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marketable goods. If a scenario change yields a change in the quantity
of a good like electricity or crops produced, it is tempting to represent
the value of that change as the change in the market revenue from
selling that output assuming a fixed price. However, as pointed out by
Letourneau et al. (2015), that kind of simple revenue-change
calculation can produce highly inaccurate measures of the actual
changes in social wellbeing. If output falls because of an increase in
production costs, the revenue-change calculation will understate the
loss to society because it doesn’t account for increased costs of
producing the quantity still produced. On the other hand, the
revenue-change calculation can overstate the loss to society because
it does not subtract production costs from the social value of the
quantity of good no longer produced.

The FEWSVT tool estimates the value to society of changes in
production costs and market outcomes for two kinds of goods sold in
marketplaces: electricity and crops. In this part of the analysis, we
conduct simple revenue-change calculations for each of the changes in
outputs associated with the change to the extreme scenario by
multiplying the original market price by the change in quantity.
We then compare those values to the theoretically sound values
produced by the models in the FEWSVT tool.

2.3.3 Utility of monetization for decision making
Managers and policy makers may need to make choices between

policies and investments that have trade-offs between physical
outcomes. For example, investing further in tile drainage in the
Midwest could improve crop production in the face of increasing
wet springs, but worsen water pollution because of increased nitrogen
runoff. Policy makers could create an index of normalized physical
changes (like percentage changes) in qualitatively different physical
flows and pick the investments that do best in terms of that index.
Alternatively, they could monetize the changes and pick the
investment that does best in terms of total monetized value. This
section uses data from the baseline and the heat wave scenario in a
simple demonstration of how monetization can affect one’s judgment
regarding the relative merits of investments that lead to one set of
outcomes versus another.

3 Results

3.1 Ranking monetized impacts of a climate-
extreme event–results

Table 6 displays all summary results by study region
representing the change in value due to FEWS portfolio element

inputs changing from conditions set forth in the baseline scenario
to those in the heat wave scenario. The reported values indicate the
monetary impacts due to changes set forth under a heat wave
climate event relative to historic conditions. For all FEWS portfolio
elements except water quality, values in Table 6 represent the yearly
average (2010–2019) of all annual results. For water quality, since
data inputs reflect county-level water pollutant concentrations
across the 2010–2019 decade, results simply reflect outputs for
that aggregate time period.

These FEWSVT outputs offer an illustrative example of the
potential monetary implications of a modeled heat wave scenario
on changes in food production, electricity generation, air pollutant
emissions, and water quality. From the summary results posted in
Table 6, food (corn and soybeans) production accounts for the largest
share of the resulting changes, with a change in value of approximately
$291 billion (89% of the entire changes in value for both regions).
Changes in values in the MW region dwarf NE region estimates, with
the NE region accounting for less than one percent of the total changes
in values for corn and soybeans production. This observation is
unsurprising, as the MW region of the United States is a
significant producer of both corn and soybeans and accounts for a
large share of total exports for both crops. This is also substantiated by
the raw data inputs; for instance, total harvested acres for corn
production in the MW region was approximately twenty times that
of the NE region.

Changes in value for the remaining three FEWS portfolio elements
are smaller in magnitude across both regions, ranging from
$206 million (water quality) to $28.5 billion (net CO2 flux). These
results indicate that under themodelled heat wave conditions, the food
production sector would potentially be most affected relative to other
elements considered within the food-energy-water nexus.

3.2 Importance of using theoretically sound
economic models for valuation–results

As stated in Section 3.3.2, it is vital to use theoretically sound
methods when valuing changes in economic value. To demonstrate
the level of magnitude of differences in changes in value, we
compare the food and electricity results from Section 4.1 with
an alternative simplified methodology that simply calculates
economic value by multiplying price and quantity under the
baseline and heat wave scenarios. For food, we multiply corn
and soybeans production levels by their respective prices
(omitting crop-specific market relationships at the state level),
while for food we multiply electricity generation by its received

TABLE 6 Heat-wave scenario aggregate results by C-FEWS element and study region.

FEWS portfolio element Midwest region change in value Northeast region change in value

Food production 290.00 0.90

Electricity generation 3.50 4.00

New Carbon Dioxide Flux 10.00 18.50

Water quality 0.135 0.07

Total 303.64 23.47

Note: All monetary values are reported in Billion U.S. Dollars (USD).
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price (omitting application of the marginal cost of electricity
production).

Table 7 displays these values, themagnitude of differences in changes in
value, and the percent difference between applying theoretically sound
methods versus overly simplified methods. We observe that the
simplified methodology underestimates the true change in value for food
production and overestimates the true change in value for electricity
generation. The magnitude of changes in value between both metrics
using the simplified method are quite similar, but when using
theoretically sound economic valuation techniques, we find food
production to have much higher potential economic implications under
the modelled heat wave scenario.

3.3 Utility of monetization for decision
making—results

As stated in Section 3.3.3, it is useful to compare how changes in
physical flows of food-energy-water metrics relate to corresponding
monetary changes in value. It is often not appropriate to assume that
observed changes in physical flows will linearly scale with change in
monetary value. The economic valuation techniques specified
throughout Section 3 often compute changes in value that relate
changes in physical flows in a non-linear manner.

Using the results presented in Table 6 as reference, while
elements like net carbon dioxide flux show a proportional
relationship between change in physical flows and change in
monetary flows, other elements such as water quality do not.
For example, a 5% change in physical flows (nitrogen
concentrations) results in a 1.5% change in monetary flows, and
a 10% change results in a 3.8% change in monetary flows. This is
expected, as the valuation calculation for water quality is complex
and non-linear, while other elements like net carbon dioxide
emissions values are calculated linearly.

For these metrics, it is apparent that one cannot assume without
calculation that a change in physical flows by some fraction will
correspond to the same change in monetary value. Thus, it is useful to
understand the value in employing these theoretically sound valuation
techniques, as it adds additional context for decision makers when
comparing how observed changes in physical flows compare to
corresponding monetary impacts.

4 Discussion

There are several key takeaways from this analysis that all speak
to the potential monetary implications of a modelled climate
change extreme scenario. We find that the vast majority (89%)
of total changes in value across the Midwest and Northeast
United States attributed to changes in physical flows for various

food-energy-water parameters come from changes in corn and
soybean yields. We find that for the two study regions, relative to
changes in value stemming from changes in physical flows related
to electricity generation, net carbon dioxide flux, and water quality,
changes to food and soybean yields have the most implications on
potential monetary impacts under the modelled heat wave
scenario. Observations like this can help decision makers
understand what food-energy-water metrics have significant
monetary impacts to society, and provides additional context to
the observed measured changes in physical flows. For this analysis,
it is clear that stakeholders should focus on the food sector when
deciding on how to distribute investments to combat the effects of
heat wave-related climate extreme events.

This analysis also emphasizes the importance of utilizing
theoretically sound economic valuation techniques as opposed to
back of the envelope linear calculations. We find that when
changes in physical flows for food production and electricity
generation are simply multiplied by its market price, the resulting
monetary impacts for both metrics are quite close in magnitude. This
observation may lead decision makers to incorrectly determine that
investments to curb detrimental effects of heat wave-related climate
extreme events should be equally distributed across these two sectors.
As shown in our application of theoretically sound economic
valuation techniques applied through the FEWSVT tool,
investments should be primarily devoted to food production. We
also find the magnitude of changes in value to be quite different when
we apply the simplistic methodology, further emphasizing the
importance of utilizing accepted valuation methods to
appropriately characterize the impacts of heat waves on these sectors.

These findings demonstrate the value in considering the monetary
impacts of climate change-related events in addition to impacts on
physical flows within elements of the food-energy-water nexus.
However, when considering the implications of these results, it is
important to note the limitations and uncertainties of each valuation
technique utilized in the CFEWSVT tool. For instance, there may be
uncertainties with the point estimate inputs provided to the
CFEWSVT tool, which could potentially overstate or understate the
associated monetary outputs. Users can address this by conducting
additional runs to produce a range of possible monetary impacts
instead of one point estimate.

Each valuation methodology executed in the CFEWSVT tool
have their own limitations as well. For instance, the economic
surplus methods utilized in the food production component of the
tool currently do not consider benefits due to technological
improvements or mitigation strategies (such as changing input
use or crop choice), which may overstate the net costs of a heat
wave scenario. The tool also does not consider general equilibrium
effects nor impacts on downstream markets beyond the study
area(s) of interest. Finally, the tool does not report results with
statistical error bounds, as there are currently no statistical

TABLE 7 Comparison of value change estimates between FEWSVT and simplified approach.

FEWS portfolio element Total change in
value—FEWSVT

Total change in value—Simplified
approach

Difference Percent
difference

Food production 290.90 54.68 236.22 81%

Electricity generation 7.50 51.22 −43.72 −583%

Note: All monetary values are reported in Billion U.S. Dollars (USD).
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methods to assign pertaining error bounds around the module
estimates. With these limitations in mind, while the CFEWSVT
tool provides a convenient outlet for users to produce preliminary
results without having to execute highly technical analysis, the
users should not consider the monetary outputs from the tool as
more sophisticated than the results of more complex models more
tailored to site-specific characteristics.

The FEWSVT tool offers a convenient way for decision makers to
apply observed changes in food-energy-water metrics to estimate
corresponding changes in monetary value, whilst also allowing
them to compare how these values correlate with changes in
physical flows. Considering both changes to physical and monetary
flows calculated with sound economic valuation techniques allows for
well-informed decisions on how to best distribute investments in
response to anticipated climate change-related events.
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