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Exploring the factors that drive the change of ecosystem services (ES) is very important for
maintaining ES function and zoning ecological management, especially in the Sichuan
Basin area with high spatial heterogeneity such as natural and socio-economic
characteristics. Taking the Sichuan Basin in China as an example, the PCA-MGWR
model was constructed to explore the temporal and spatial patterns of ES in the
Sichuan Basin from 2000 to 2015. The potential driving factors including
anthropogenic factors, geomorphological factors, climate factors, and vegetation
factors would be analyzed by principal component analysis (PCA). To illustrate the
impact of spatial dependence in the data, the multi-scale geographically weighted
regression (MGWR) technology was selected to explore the spatial differentiation of the
impact of these four dimensions on ES to reflect the local differences of ecosystem service
driving mechanisms in more detail. The results showed that 1) from the perspective of time
series evolution, carbon storage (CS) and soil conservation (SC) in ES in the Sichuan Basin
showed an upward trend, while water yield (WY) showed a downward trend; from the
perspective of spatial patterns, except the main urban areas of Chengdu and Chongqing,
the CS service level of other regions was high; The spatial distribution characteristics of SC
services were “low in the middle and high in the periphery”; the high value area of WY
service was located in Northeast Sichuan. 2) Among natural factors, elevation (DEM), slope
(SLO), NDVI, annual average temperature (TEM), and annual average precipitation (PRE)
had a higher contribution rate to ES, while among socio-economic factors, GDP density
(GDP), night light (LIG), and population density (POP) had a higher contribution rate to ES,
while other factors had a lower contribution rate. 3) Combined with the PCA-MGWR
model, we analyzed the comprehensive response and spatial differentiation of driving
factors to ES in the Sichuan Basin and explained in detail the influence of anthropogenic
factors, geomorphological factors, climatic factors, and vegetation factors and their spatial
heterogeneity in ES. It is expected that the spatial differences in the impact degree of
different indicators can be considered when formulating the countermeasures of ES in the
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Sichuan Basin, to provide theoretical support for the implementation of regional ecological
management and control.

Keywords: ecosystem services, PCA-MGWR model, driving factors, spatial heterogeneity, Sichuan Basin

1 INTRODUCTION

Ecosystem services (ES) are ecological characteristics, functions,
or processes that contribute directly or indirectly to human well-
being (Costanza et al., 1997; Yang et al., 2021a; Yu et al., 2022b).
The United Nations Millennium Ecosystem Assessment divides
ES into four categories: support services, regulation services,
supply services, and cultural services. There are complex
relationships between different services (Tallis and Kareiva,
2005; Luo et al., 2021). The concept of ES as a “bridge”
between natural ecosystems and human social systems serves
as a foundation for improving human well-being and achieving
regional sustainable development. The integrated assessment of
ES is an effective hybrid that has become a frontier and research
hotspot in geography, ecology, and environmental science, and it
is also central to the sustainable development of ecosystems and
the management of ecological resources (Costanza et al., 2017;
Castillo-Eguskitza et al., 2018; Yu et al., 2021; Chen et al., 2022;
Hu et al., 2022).

It is generally accepted that ES can be influenced by both
natural and human factors (Burkhard et al., 2012; Burkhard et al.,
2015; Zhang et al., 2020; Yang et al., 2021b). First, climate change
can directly change the capacity to supply services such as food
production, freshwater supply, and net primary productivity by
changing ecosystem properties. In addition to climate change,
elevation, slope, soil, and vegetation also contribute to changes in
ES (Wolff et al., 2015; Yang et al., 2020). Human activities have
both direct and indirect impacts on the ecosystem, with both
beneficial and detrimental impacts. For example, the human
activities of urban construction, forest, and grassland into an
impermeable surface, resulting in the decline of the ability to
provide ES. Payments for Environmental Services (PES) practices
around the world, such as China’s “conversion of cropland to
forest and grassland” and the South African government’s
Working for Water program, have improved soil conservation
(SC) and water yield (WY) in the region (Wei et al., 2017; Wu
et al., 2019; Bing et al., 2021).

Therefore, we not only need to fully understand the
spatiotemporal patterns of ES but also need to explore the
driving factors of ES to develop scientifically sound ES
management approaches (Geijzendorffer et al., 2015; Wei et al.,
2017). Several recent studies have shown this concern, including
Chen et al. (2020) the need to consider different drivers and spatial
spillovers in the formulation of strategies for integrated ecosystem
management and sustainable land use in urban agglomerations
(Chen et al., 2020). Peng et al. (2020) discussed the impact of
urbanization on the ES budget through decoupling analysis (Peng
et al., 2020). Hu et al. (2021) took the Shanxi province of China as an
example; this study explored the spatial differentiation of five ES and
captured the main driving factors of ES change from a geospatial
perspective (Hu et al., 2021).

Existing studies have shown that ES often has certain spatial
heterogeneity (Li et al., 2013; Song and Deng, 2017; Zhou et al.,
2018; Licheng et al., 2019; Yang et al., 2019), which will be more
obvious in regions with high spatial heterogeneity in geography,
society, and economy. However, most of these studies are based
on global regression, mainly considering a single driving factor,
without considering the comprehensive effect. Less attention has
been paid to the spatial non-stationary relationship between the
leading factors affecting ES. Commonly used methods such as
correlation analysis and overlay analysis can only clarify the
relationship between individual factors and ES and cannot
quantitatively derive significant impact factors and their
intensity, nor can it reveal the spatial heterogeneity of factor
interaction and the possible synergistic or antagonistic effects
among the factors (Jiang et al., 2022), especially when exploring
multivariate driver analysis, the problem of multicollinearity
between drivers often occurs (Toutenburg, 2006; Yu et al.,
2022a). When there is a multicollinearity problem, the
variance of the parameter estimator will be too large, the
accuracy will be reduced, the significance test of the variable
will be meaningless, and the influence of the explanatory variable
on the explained variable cannot be correctly judged, resulting in
the unreasonable value of the parameter estimator (Yu et al.,
2009). Therefore, based on the PCA-MGWR method, this study
combines the advantages of principal component analysis (PCA)
and MGWR. Before MGWR analysis, the PCA of independent
variables is carried out, and several uncorrelated principal
components extracted are used as independent input variables
for MGWR to analyze the spatial impact distribution of each
principal component. PCA-MGWR can not only eliminate the
multicollinearity problem caused by the correlation of
independent variables but also explain the spatial effects of
different ecosystem service factors.

To sum up, although natural-human factors have a significant
impact on ES, the current research on their comprehensive
consideration is still insufficient. Therefore, this study hopes to
make up for the current gap. Sichuan Basin is the ecological
barrier to the upper reaches of the Yangtze River. The basin has a
good natural resource endowment and is one of the regions with
the largest supply of ES in China (Pan and Wang, 2021). Fully
understanding the spatio-temporal pattern of ES in the Sichuan
Basin, and exploring the natural-human multiple impact factors,
is of great importance to ensure the ecological security of the
upper reaches of the Yangtze River and even the ecological
security of the country.

At present, more and more attention is focused on exploring
the driving force of the impact on the ES (Zhong et al., 2019;
Sannigrahi et al., 2020). Relevant studies have focused on the
spatial-temporal pattern of ES in Sichuan Province and its various
driving factors from a statistical perspective (Liu et al., 2020; Niu
et al., 2022). However, these studies generally focus on the
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analysis of change patterns, paying less attention to the spatial
change characteristics of driving forces, and often ignoring the
scale differences of different driving factors. Therefore, some
studies have used the spatial regression model to test the
spatial non-stationary relationship between the four driving
forces on SC and WY in Sichuan Province (Huang et al.,
2022). This study not only adds the measurement indicators
and driving factors of ES in the Sichuan Basin but also uses the
MGWR model to explore the nature and intensity of the impact
of various factors on ES in the Sichuan Basin. In view of the
limitations and deficiencies of previous studies, this study has the
following specific objectives: (I) evaluate the ES and their
temporal and spatial changes in the Sichuan Basin; (II)
quantitatively assess the driving factors of temporal and spatial
changes of ES in Sichuan Basin; and (III) analyze the
comprehensive response and spatial differentiation of various
driving factors of ES in Sichuan Basin.

2 METHODOLOGY

2.1 Study Area
Sichuan Basin lies at the intersection of the Belt and Road and the
Yangtze Economic Belt (27° 68′~ 32° 30′N, 101° 95′~ 108° 95 E,
Figure 1). Influenced by the subtropical monsoon climate, the
annual average temperature is 13–20°C, and the annual average
precipitation is 1,000 mm. The scope of the study includes 15 cities,
including Chengdu in Sichuan and 29 districts and counties in
Chongqing, with a total area of about 185,000 km2. There are many
types of landforms in the region, forming various kinds of vertical
climatic zones; the climatic differentiation is remarkable, the natural
ecological environment is diverse, and the ecological resources are
rich. In 2019, the Chengdu-Chongqing urban agglomeration had a
resident population of 96 million and a regional GDP of nearly

6.3 trillion yuan. The 2021 outline for constructing the Double-City
Economic Circle proposes that the Chengdu-Chongqing urban
agglomeration should play an exemplary role in promoting the
green development of the Yangtze River Economic Belt and the
ecological protection of western China.

2.2 Data
This study refers to the methods of previous studies and the data
requirements of the InVEST model to quantify the ES (Xie and Ng,
2013; Chen et al., 2020; Zhang X. et al., 2021; Huang et al., 2022). SC
is an important indicator to measure the water and soil conservation
of the ecosystem. Carbon storage (CS) can directly reflect the carbon
absorption and storage capacity of the ecosystem.WY is the ability of
the ecosystem to retain rainwater under the joint action of plants and
soil. At the same time, considering that Sichuan Basin is an
important water source and protected area of the Yangtze River
and the Yellow River, soil erosion is an important factor in its flood
disaster. Sichuan Basin is also rich in natural resources, including
forests, meadows, wetlands, and snow mountains. It is a strategic
area for ecological security in Western China. Therefore, combined
with the natural landform and the regional characteristics of the
social economy in the Sichuan Basin, these three ecosystems can be
regarded as important ecosystems for the sustainable development of
resources and the environment. It involves the use of multi-source
data such as land use, digital elevation model, meteorological data,
soil data, watershed boundary, and social and economic data. to
comprehensively evaluate the ES in the Sichuan Basin. The data
sources and their descriptions are shown in Table 1.

2.3 Quantification of Ecosystem Services
2.3.1 Carbon Storage (Carbon Storage)
Carbon sequestration services, also known as “Carbon Storage”
services, are important regulatory services in ecosystems. The
“carbon”module in the InVEST model is used to evaluate the CS

FIGURE 1 | Location and administrative division of the Sichuan Basin.
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in Sichuan Basin as the supply of carbon sequestration services. The
input carbon storage data refer to previous local studies (Liu et al.,
2004; Tang et al., 2018; Liang et al., 2021). The formula is as follows:

Ctot � Cabove + Cbelow + Csoil + Cdead (1)
where Ctot is the total carbon storage (t · hm−2), Cabove is
aboveground biological carbon (t · hm−2), Cbelow is
underground biological carbon (t · hm−2), Csoil is soil organic
carbon (t · hm−2), andCdead is dead organic matter. The details of
each coefficient are shown in Supplementary Table SA1 of the
supplementary data.

2.3.2 Water Yield (Water Yield)
WY refers to the ability of ES to store water resources. The
Sichuan Basin is located in the middle reaches of the Yangtze
River, so it is vital to assess the WY for the storage and utilization
of water resources. The “water yield” module is used to quantify
the supply of WY in the Sichuan Basin. This module is defined as
the part of precipitation minus evapotranspiration based on the
principle of water balance (Sharp et al., 2014; Sun et al., 2018).
The formula is as follows:

Swp � (1 − AETxj

Px
) × Px (2)

AET(x)
P(x)

� 1 + PET(x)
P(x)

− [1 + (PET(x)
P(x)

)
w

]
1/w

(3)
PET(x) � Kc(x) × ETo(x) (4)

W(x) � AWC(x) × Z

P(x)
+ 1.25 (5)

where Swp is the annual water yield (mm); AET(x) is the actual
annual evapotranspiration (mm) of the grid unit; Px is the annual

precipitation (mm) of the grid unit; PET(x) is the potential
evapotranspiration of the grid unit; Kc(x) is the crop
evapotranspiration coefficient; ETo(x) is the reference crop
scatter; AWC(x) is the plant available water content; W(x) is
the empirical parameter; and Z is the Zhang coefficient (Zhang
et al., 2004). The details of each coefficient are shown in
Supplementary Table SA2 of the supplementary data.

2.3.3 Soil Conservation (Soil Conservation)
In this study, the modified universal soil loss equation (USLE) is
used to estimate regional soil conservation and soil erosion. In
sediment retention, the model takes into account the important
hydrological process of plant-induced soil erosion and sediment
interception, which makes the simulation results more scientific
and reasonable. We used the “sediment delivery ratio”module of
the InVEST model to evaluate SC service. This module uses the
revised universal soil loss equation (RUSLE) to express SC,
according to the difference between potential soil loss and
actual soil loss (Renard et al., 2017; Rao and Xiao, 2018). The
calculation formula is as follows:

RKLSi � Ri × Ki × LSi (6)
USLEi � Ri × Ki × LSi × Ci × Pi (7)

SEDRETi � RKLSi − USLEi + SEDRi (8)
where RKLSi grid I is based on geomorphology and climate
calculation of potential soil erosion; Ri, Ki, LSi, Ci, and Pi are the
rainfall erosivity factor, soil erodibility factor, slope length factor,
vegetation cover, and management factor, SC measure factor of
the unit grid i;USLEi was the actual soil erosion amount of grid i,
and SEDRETi was the SC amount of grid i; Ci(Pi) is
0.05,0.03,0.04,0,0 (1,1,1,0,0) for cultivated land, woodland,
grassland, water area, and construction land, respectively.

TABLE 1 | Data source and its detailed description.

Data Data
format

Data source Data description

Land use maps Raster
(30 m)

Resource and Environmental Science Data Center of the
Chinese Academy of Sciences (https://www.resdc.cn/,
accessed on 1 February 2022)

Based on the Landsat TM image of the United States, it is
generated through manual visual interpretation

Digital elevation model Raster
(30 m)

Geospatial Data Cloud (http://www.gscloud.cn, accessed on
3 February 2022)

Including elevation, slope, and aspect data

NDVI data Raster
(30 m)

National Earth System Science Data Center (http://www.
geodata.cn/, accessed on 3 February 2022)

Vegetation is quantified by measuring the difference between
near-infrared (vegetation strong reflection) and red light
(vegetation absorption)

Climate data Raster
(1 km)

National Earth System Science Data Center (http://www.
geodata.cn/, accessed on 3 February 2022); Terra Climate
(http://www.climatologylab.org/terraclimate.html, accessed on
5 February 2022)

Including annual average precipitation, annual average
temperature, and potential evapotranspiration

Soil data Raster
(1 km)

Harmonized World Soil Database (http://www.iiasa.ac.at/
Research/LUC/External-World-soil-database/HTML/,
accessed on 4 February 2022)

It includes soil texture, topsoil sand fraction, topsoil silt fraction,
topsoil clay fraction, topsoil organic carbon, root limit depth, and
plant available water content

Demographic and
economic data

Raster
(1 km)

Resource and Environmental Science Data Center of the
Chinese Academy of Sciences (https://www.resdc.cn/,
accessed on 1 February 2022); National Centers for
Environmental Information (https://ngdc.noaa.gov/eog/dmsp.
htm, accessed on 5 February 2022)

These include the GDP spatial distribution km grid data set, the
population spatial distribution km grid data set; Suomi NPP VIIRS
night light remote sensing data (2015)

Watershed boundary Shapefile HydroSHEDS (http://hydrosheds.org/, accessed on 4 February
2022)

Digital watershed atlas of natural resources
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Other factors are input based on the model recommendations.
The details of each coefficient are shown in Supplementary Table
SA3 of the supplementary data.

2.4 Spatial Autocorrelation of Ecosystem
Services
Spatial autocorrelation can reflect the degree of interdependence
and aggregation between the attributes of a specific region and
those of other regions (Hu et al., 2022). The calculation of the
Moran’I equation in ArcGIS 10.5 can be used to examine spatial
patterns of ES. The calculation formula is as follows:

Moran′I � ∑n
i�1∑n

j�1Wij(xi − �x)(xj − �x)
S2∑n

i�1∑n
j�1Wij

, (9)

where n is the total number of each district (county) in Sichuan
Basin; S � 1/n∑n

i�1(xi − �x)2; xi, xj is the value of ES of each
district (County);Wij is the weight matrix of unit space; and x is
the average of ES. When Moran′I > 0, the space is positively
correlated, when Moran′I < 0, the space is negatively correlated,
and when Moran′I = 0, the space is not correlated.

2.5 Spatial Differentiation of Driving Factors
2.5.1 Factor Identification and Data Dimensionality
Reduction
First, we selected the factors associated with ES, including the four
major factors: anthropogenic factors, climatic factors, vegetation
factors, and geomorphological factors (Costanza et al., 2014;
Zhou et al., 2018; Chen et al., 2019; Schirpke et al., 2019;
Zhang Z. et al., 2021; Xu et al., 2022). To explore the overall
correlation of ecosystem service impact factors, we conducted
Spearman correlation research between CS, WY, and SC services
and potential drivers based on SPSS 25. The final anthropogenic
factors include night light, GDP density, and population density;
climatic factors include annual average temperature, annual
average precipitation, and actual evapotranspiration; vegetation
factors include NDVI; and geomorphological factors include
elevation, slope, and aspect (Table 2).

Second, to avoid the influence of multicollinearity of all
variables, we mainly based on PCA to synthesize multiple
related variables with the principle of as little information loss
as possible and turn them into a few irrelevant variables to reduce

the dimension of data, simplify the data structure and ensure that
the VIF of explanatory variables is not greater than 7 (Plaza et al.,
2005; Sannigrahi et al., 2020), thus to eliminate the possible
influence of multicollinearity between variables
(Supplementary Table SB1).

2.5.2 Local Regression Analysis
Geographically weighted regression (GWR) is a spatial
regression method that can explain different local
relationships among variables (Sun et al., 2020). Its greatest
advantage is the ability to measure spatial variability accurately
(Brunsdon et al., 1998). Although GWR captures the spatial
heterogeneity of influencing factors to some extent, it is
implemented under the assumption that all covariates
change on the same spatial scale, and it is not enough to
explain the spatial heterogeneity level of different urban
landscape factors. MGWR relaxes the assumption of “same
spatial scale” and allows optimization of covariate-specific
bandwidths. The GWR and MGWR formulas are given in
the equations:

yi � ∑m

j�0βj(ui, vi)xij + εi, (14)
yi � ∑m

j�0βbwj(ui, vi)xij + εi, (15)

where xij is the J prediction variable and (ui, vi) is the centroid
coordinate of each region (county) i. βbwj is the optimal
bandwidth for calibrating the j condition relationship. By
contrast, MGWR allows different processes to operate on
different spatial scales by deriving the individual bandwidth of
the conditional relationship between the response variables and
the different predictive variables. MGWR uses the inverse fitting
algorithm to calibrate and initializes the inverse fitting process by
estimating the GWR parameters. Based on these initial values, the
calibration process works iteratively, with all local parameter
estimates and optimal bandwidth evaluated in each iteration. The
iteration is terminated when the difference in the parameter
estimates of the successive iterations converges to the specified
threshold.

3 RESULTS

3.1 Temporal and Spatial Patterns of
Ecosystem Services
From 2000 to 2015, the average values of CS and SC services
increased from 5846835 t/ha and 6868780 t/ha to 5884678 t/ha
and 7777234 t/ha, respectively, and the average WY decreased
from 184656 m3/ha to 174054 m3/ha. The results showed that
urbanization had a negative effect on the occupation of arable
land, forest land, and carbon storage, and the implementation
of ecological and water conservation projects had a positive
effect on soil and water conservation. As far as the spatial
distribution of ES was concerned (Figure 2), the CS service
level was higher in all regions except Chengdu and Chongqing.
The spatial distribution characteristics of SC services were
“low in the middle and high in the periphery”. The high-value
area of WY service was located in the northeast of Sichuan

TABLE 2 | Selected potential factors.

Driving factor Variable description Abbreviation

Anthropogenic factors Night light LIG
GDP density GDP
Population density POP

Climatic factors Annual average temperature TEM
Annual average precipitation PRE
Actual evapotranspiration EVA

Vegetation factors NDVI NDVI
Geomorphological factors Elevation DEM

Slope SLO
Aspect ASP
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Province. On the whole, the spatial distribution of various
services was different, which was closely related to the regional
geographical background. In terms of the spatial change of ES,
most regions showed a decrease in CS services, especially in
cities and towns and their surroundings. Except for some
regions of Wushan County, Chongqing, Wuxi County, and
Chengkou County, SC services showed a decreasing trend, the
other regions showed an increasing trend, and the decrease of

WY services was mainly located in the northeast of the
study area.

3.2 Spatial Autocorrelation of Ecosystem
Services
Spatial autocorrelation analysis of CS, WY, and SC ES in the
Sichuan Basin was conducted from 2000 to 2015 (Figure 3), in

FIGURE 2 | Spatial distribution of ES from 2000 to 2015. (A) 2000 annual water yield (WY); (B) 2015 annual WY; (C) 2000 annual carbon storage (CS); (D)
2015 annual CS; (E) 2000 annual soil conservation (SC); and (F) 2015 annual SC.
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which the 2000 CS Moran’s I index was 0.359 and the standardized
test Z (I) value was 10.073; in 2015,Moran ‘ s I indexwas 0.360 and Z
(I) was 10.124, respectively, at the significance level of 0.05(p= 0); the
results showed that the spatial distribution of CS showed a significant
positive autocorrelation, and the state of carbon accumulation was
apparent.

Moran’s I Index of WY in 2000 was 0.459, Z (I) value of the
standardized test was 12.762, Moran’s I Index of WY in 2015 was
0.470, Moran’s I Index of WY in 2000 was 0.459, Moran’s I value
was 12.762, Moran’s I value was 0.05, Moran’s I Index of WY in
2015 was 0.470, the Z (I) value of the standardized test was 13.017,
and it passed the test at the significance level of 0.05(p = 0). The

results showed that the spatial distribution of WY supply
presented a significant positive autocorrelation and the
aggregation was obvious.

In 2000, Moran’s I index was 0.347, Z (I) of the standardized
test was 9.819, and it passed the test at the significance level of
0.05(p = 0) In 2015, Moran’s I index was 0.409, and Z (I) of the
standardized test was 11.399, which passed the test at the
significance level of 0.05 (p = 0) The results showed that the
spatial distribution of SC supply showed a significant positive
autocorrelation and aggregation.

At the same time, the local spatial autocorrelation analysis of
ES, such as CS, WY, and SC from 2000 to 2015, was carried out,

FIGURE 3 | LISA agglomeration distribution of ES from 2000 to 2015 (A) 2000 annual WY; (B) 2015 annual WY; (C) 2000 annual CS; (D) 2015 annual CS; (E)
2000 annual SC; and (F) 2015 annual SC.
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and the distribution chart of local indicators for spatial
autocorrelation (LISA) was drawn. As shown in Figure 3,
from the results of local spatial autocorrelation analysis, the
low-low aggregation types of ES were mainly distributed in the
central part of the Sichuan Basin, including Ziyang, Suining,
Neijiang, Deyang, eastern Chengdu, and western Chongqing,
while high-concentration types were mainly distributed in the
eastern and western border areas of Sichuan Basin, the northern
part of Chongqing, the northern part of Dazhou, the southern
part of Ya’an, and the southern part of Leshan, i.e., the northern
part of Chengdu, the southern part of Deyang, the northern part
of Ziyang and the eastern part of Meishan. The other places had
not passed the local spatial autocorrelation significance test.

3.3 Influencing Factors
3.3.1 Correlation Analysis
To explore the overall correlation of the impact factors of ES in
the Sichuan Basin from 2000 to 2015, the results of the Spearman
correlation between services and factors (Table 3) found that, the
spatial distribution of ES capacity in the Sichuan Basin was
influenced by both natural and socio-economic factors, thus
showing different spatial distribution characteristics. In
general, terrain factors such as TEM and EVA contributed the
most, while socio-economic factors such as GDP and POP
contributed less, and the contribution rate of other factors was
low. Among them, POP, GDP, and LIG had a significant negative
correlation with these three services. NDVI, DEM, and SLO had a
significant positive correlation with these three services.

3.3.2 Spatial Heterogeneity
SPSS 25 PCA was used to visualize the factors after 10 kinds of
standardization, and the spatial pattern of coefficients was
obtained (Figure 4), the spatial heterogeneity of different
factors on WY, CS, and SC was further explored.

The spatial distribution of geomorphological factors in the
Sichuan Basin had significant ring-shaped spatial features
(Figure 4A). From the spatial distribution trend of influence
intensity, with Ziyang, the central area of Sichuan Basin as the
core, the negative driving force of topographic factors on the
Sichuan Basin ecosystem was gradually increasing outwards and
presented obvious ring-type distribution characteristics. The
central part of the Sichuan Basin was affected by the

surrounding mountainous terrain. The whole environment was
closed and blocked, and the foundation of heat dissipation
was poor.

The climate factors in Sichuan Basin had a negative correlation
to the regional ES (Figure 4B) and had a significant gradient in
the spatial distribution. In terms of the spatial distribution of the
overall driving mechanism, except for the peripheral region of the
Sichuan Basin, a few mountainous areas, and the central area of
the Zhongliang mountain range in Jinyun, there was a strong
positive correlation between driving characteristics, the climate of
Chengdu-Chongqing urban agglomeration as a whole had an
obvious positive effect on regional ES.

The anthropogenic factors in Sichuan Basin showed a
significant negative correlation between the driving
characteristics of regional ES and the spatial distribution of
small patches (Figure 4C). The main driving force behind this
phenomenon was that, on the one hand, the economic and
industrial structure in Sichuan Basin was still in the stage of
transition from primary production to secondary production and
the basic demand for space and resources by industries such as
industry and manufacturing led to the horizontal expansion of
cities. On the other hand, the corridor of the Double-City
Economic Circle in Chengdu and Chongqing was the main
area of negative correlation, the spatial population density had
a negative driving effect on the urban development, while a few
marginal urban areas in the north showed a weak positive driving
effect. From the perspective of the spatial distribution trend of
driving intensity, the influence degree of the two core cities,
Chengdu and Chongqing, gradually decreased outward.

The vegetation factors in Sichuan Basin showed a significant
positive correlation to the regional ES and the patch spatial
distribution trend (Figure 4D). As a whole, Sichuan Basin was
dominated by farmland and grassland ecosystems and had
prominent supply-type services. The increase in species
diversity and community complexity would directly increase
the stock of ES. At present, the stock of forest land ecological
assets in each district of Chengdu-Chongqing urban
agglomeration was insufficient, and the regulation, support,
and cultural services in the core area of the central city were
weak. Therefore, the enhancement and optimization of
vegetation and other ecosystems had a significant effect on the
enhancement of the Sichuan Basin’s overall service functions.

TABLE 3 | Statistical description of Spearman correlation between ES and various impact factors.

Correlation analysis Carbon storage (CS) Water yield (WY) Soil conservation (SC)

LIG −0.604** −0.893** −0.759**
GDP −0.625** −0.915** −0.820**
POP −0.727** −1.000** −0.840**
TEM −0.397** −0.617** −0.748**
PRE 0.103 0.166* 0.229**
EVA −0.065 −0.024 0.045
NDVI 0.649** 0.897** 0.892**
DEM 0.501** 0.609** 0.694**
SLO 0.564** 0.773** 0.917**
ASP 0.002 0.182* 0.171*

In spearman correlation statistics, ** represents at the significant level of 0.01 (double tail). * represents at the significant level of 0.05 (two-tailed).
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3.3.3 Multi-Scale Geographically Weighted
Regression
The global model, GWR model, and MGWR model under the
ordinary least squares method (OLS) were shown in Table 4. The
result of OLS fitting showed that theVIF of all the factors was less than
7.5, which showed that there was no variable redundancy and there
were no multiple linear relationships among the factors. At the same
time, Jarque-Bera’s result showed that the residuals did not obey the
normal distribution, the model fitting was one-sided, and the GWR
model should be combined to improve the fitting accuracy.

However, the local spatial regression model based on MGWR
could better reflect the impact of the aforementioned influencing
factors on WY services, CS services, and SC services in specific

spaces, according to the results shown in Figure 5, which showed
the local R2 spatial distribution of the fitting results of the MGWR
model. Figure 5A showed the impact of various factors on WY
services, showing a vertical strip distribution in space, with the east
being more intense, followed by the west, while the middle was less
affected; Figure 5B showed the impact of various factors on CS
services, showing a circular impact pattern opposite toWY services
in space, that was, west > northeast > middle; Figure 5C showed
the impact of various factors on SC services, showing local patches
and overall axisymmetric distribution in space, and the northwest
was the most affected.

From the descriptive statistical results of the coefficients of the
MGWR Model (Tables 5, 6, and 7), it could be seen that the

FIGURE 4 | Spatial effect of four kinds of influencing factors (A). Geomorphological factors; (B) climatic factors; (C) anthropogenic factors; and (D) vegetation
factors).

TABLE 4 | Comparison of the fitting results of OLS, GWR, and MGWR.

Model
index

CS WY SC

OLS GWR MGWR OLS GWR MGWR OLS GWR MGWR

AICc 6645.997 291.141 186.472 7610.206 346.232 276.243 6700.948 242.548 168.989
R2 (adjusted) 0.639 0.642 0.841 0.486 0.490 0.705 0.736 0.737 0.857
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influence of different factors and their trend of action were quite
different in-service spaces. DEM had the largest effect on CS,
followed by POP onWY, while LIG had the least effect on SC and
the temperature had the least effect on WY. From the ratio of
positive and negative effects, the same factor had different effects
on different services, which indicated that there was significant
spatial heterogeneity of the factors, and the MGWR model could
show the characteristics of local coefficients.

4 DISCUSSION

4.1 Spatio-Temporal Patterns of Ecosystem
Services in the Sichuan Basin
In the Sichuan Basin, one of the major suppliers of ES in China
(Pan and Wang, 2021), carbon sequestration services and SC
services showed an upward trend, while water production services

showed a downward trend. These results were mainly attributed
to the great changes in land use types in the study area. The
increase in vegetation coverage led to a significant increase in CS
and SC, which was consistent with previous studies (Jiang et al.,
2018; Luo et al., 2019). At the same time, large-scale planting led
to a significant increase in water consumption and
evapotranspiration, which is the main reason for the decline of
WY(Feng et al., 2016). However, the p-value of the Moran index
of the three ES is 0, indicating that there is a significant positive
autocorrelation at the significance level of 0.05. L-L cluster areas
are mainly concentrated in the central part of the Sichuan Basin,
and H-H cluster areas are distributed in the northeast and the
periphery of the cities. In general, the Chengdu Plain, basin hills,
and mountain areas around the basin in the east are the
concentrated areas for WY supply services, while the
southwest Sichuan mountains, west Sichuan mountain valleys,
and northwest Sichuan Plateau in the west are the concentrated
areas for CS and SC supply services.

4.2 Quantitative Attribution of the Driving
Factors of Ecosystem Services in the
Sichuan Basin
Combined with the results of the impact of natural and socio-
economic driving factors on the correlation of ecosystem services
in the Sichuan Basin, it can be found that LIG, GDP, POP, and
TEM have significant negative effects on ES, indicating that the
rise of these indicators will make the state of ES tense to some

FIGURE 5 | Spatial heterogeneity distribution of ES under different factors (A). WY; (B) CS; and (C) SC.

TABLE 5 | Statistical description of the MGWR coefficient of WY services.

Variable Mean STD Min Median Max

Intercept −0.001 0.000 −0.002 −0.001 −0.001
LIG 0.023 0.000 0.022 0.023 0.023
GDP 0.042 0.007 0.030 0.045 0.048
POP −1.063 0.024 −1.098 −1.059 −1.037
TEM 0.002 0.001 0.001 0.002 0.003
PRE −0.005 0.001 −0.007 −0.004 −0.003
NDVI 0.004 0.003 −0.001 0.002 0.007
DEM 0.001 0.001 −0.000 0.001 0.001
SLO −0.003 0.001 −0.004 −0.003 −0.002
ASP −0.002 0.000 −0.003 −0.002 −0.002

TABLE 6 | Statistical description of the MGWR coefficient of CS services.

Variable Mean STD Min Median Max

Intercept −0.097 0.277 −0.720 −0.026 0.382
LIG −0.539 0.005 −0.545 −0.540 −0.528
GDP 0.460 0.224 0.109 0.594 0.690
POP −0.200 0.292 −0.524 −0.244 0.208
TEM 0.547 0.229 −0.013 0.637 0.822
NDVI −0.140 0.007 −0.154 −0.140 −0.116
DEM 1.157 0.024 1.128 1.147 1.223
SLO 0.108 0.015 0.077 0.105 0.166

TABLE 7 | Statistical description of the MGWR coefficient of SC services.

Variable Mean STD Min Median Max

Intercept −0.079 0.004 −0.085 −0.080 −0.068
LIG 0.002 0.003 −0.005 0.004 0.005
GDP −0.019 0.001 −0.022 −0.019 −0.017
POP 0.057 0.068 −0.306 0.069 0.127
TEM −0.271 0.054 −0.380 −0.285 −0.103
PRE 0.175 0.004 0.161 0.176 0.178
NDVI 0.176 0.003 0.171 0.177 0.184
DEM 0.196 0.089 0.004 0.229 0.330
SLO 0.326 0.260 0.047 0.247 0.890
ASP −0.043 0.072 −0.292 −0.042 0.077
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extent. NDVI, DEM, and SLO have significant positive effects
on ES. These results are consistent with other studies but
slightly different in the magnitude of the correlation
coefficient (Lin et al., 2020), this is mainly due to the
differences in research methods and scales, which provide a
reference for enhancing ES in the Sichuan Basin research area
(Sannigrahi et al., 2020; Huang et al., 2022). At the same time,
according to the mean absolute value of regression coefficient
of different factors, artificial factors such as LIG, GDP, and
POP have a greater impact on WY services, the water
production services are very sensitive to POP. CS services
are sensitive to DEM and LIG. LIG, POP, and NDVI negatively
affected CS services. SC services are sensitive to SLO and TEM,
among which GDP, TEM, and SLO have negative effects on SC
services, the rest were positive. The aforementioned results
provide a basis for exploring the impact of different driving
factors on ES in Sichuan Basin.

4.3 Comprehensive Response and Spatial
Heterogeneity of Driving Factors to
Ecosystem Services in the Sichuan Basin
Four comprehensive driving factors show different characteristics
of the spatial pattern (Figure 4): geomorphological factors show
the spatial characteristics of “centripetal trough”, climatic factors
show the spatial characteristics of “east high west low”,
anthropogenic factors show the spatial characteristics of “east-
west dual-core”, and vegetation factors show the spatial
characteristics of “planarization”. The contribution rate of
geomorphological factors, TEM, and EVA to the three natural
factors is higher, the contribution rate of GDP and POP to the
three social-economic factors is higher, and the contribution rate
of other factors is lower. POP, GDP, LIG, and other factors have a
significant negative correlation with these three services, these
variables are the main driving factors of ecosystem service
changes, which are also consistent with previous relevant
researchers (Wang et al., 2019; Yongxiu et al., 2020). It shows
that the key to achieving coordinated development of regional
ecosystems is to reduce the negative interference of human
activities in the ecosystem.

Because of the regional and spatial differences in geological
and meteorological conditions, the service and driving factors of
CS, WY, and SC in the Sichuan Basin are characterized by spatial
heterogeneity; the results of MGWR show that the AICC value of
the MGWR model is smaller than that of OLS and GWR model,
the adjusted R2 is larger, and the bandwidth of variables is rich,
which indicates that the fitting effect of MGWR is more reliable
(Oshan et al., 2019; Li and Fotheringham, 2020), and can provide
reference and guidance for regional units to adopt relevant policy
regulation, according to local conditions.

Specifically, there is strong spatial heterogeneity in the driving
factors of WY services in the Sichuan Basin (Supplementary
Figure SA1), especially in Chongqing in the east and Chengdu in
the west. It further explains that the eastern and western parts of
the Sichuan Basin also have higher LIG and GDP, resulting in
excessive demand for water in highly urbanized areas. At the
same time, the altitude of surrounding areas leads to changes in

precipitation, average temperature, and vegetation coverage, thus
affecting WY services in external areas (Cao et al., 2020). To sum
up, the Sichuan Basin River basin, which is composed of eastern
Sichuan Ridge Valley, central Sichuan hilly area, and Chengdu
Plain Lake area, has an uneven water production service space
due to its special topography and spatial distribution of
precipitation.

There is also a strong spatial heterogeneity in Sichuan
Basin’s CS services (Supplementary Figure SA2). The
service capacity of CS in peripheral areas such as northern
counties and western counties and cities is relatively large, the
main reason is that the People’s Government of Sichuan
Province has taken the lead in setting up a natural forest
resources protection project leading group to implement the
system of chief responsibility and management by objectives
responsibility for the natural forest resources protection
projects within the areas under their jurisdiction, to
prohibit the cutting of natural forests, and to close down
the timber trading market in the project areas, and the
logging ban was quickly extended to the entire province.

The SC services in Sichuan Basin still have spatial differences
(Supplementary Figure SA3). The main reason is that the hilly
area in the middle of Sichuan and the Chengdu Plain of
Kawanishi is the most severe area of soil erosion in the upper
reaches of the Yangtze River, accounting for 21.9% of the total
area of soil erosion, the area is located in the middle and lower
reaches of Min River, Tuo River, Jialing River, and the Yangtze
River. The ground is cut and broken, the hills undulate and the
west is plain. In most places in the region, the rainfall is about
1,000 mm, and most are heavy rain. The outcropping rock is
mainly composed of purple-red sandstone and mudstone, which
is easy to be weathered and eroded, resulting in severe hydraulic
erosion in this area. However, the SC services in the
mountainous areas around the basin are better, mainly due
to the low, middle, and high mountains in the region,
especially the widespread distribution of carbonate rocks
and the intercalation of detrital rocks among them, as well
as various human actions in recent years, such as the ecological
protection of the red line, less population density distribution,
and other comprehensive reasons, resulting in this area SC
services steadily improved.

4.4 Limitations and Future Sustainable
Development Measures
In this study, we used the InVEST model to estimate the value of
CS, WY, and SC. However, the Sichuan Basin ecosystem is an
integrated system with a wide variety of service functions (Kang
et al., 2018; You et al., 2021). In addition to the three types of
services considered in this study, food production, habitat quality,
pollution control, entertainment, and culture are also important
to service types, which are also important directions for follow-up
research. On the other hand, the supply and demand of
ecosystems together constitutes the flow of ES from natural
systems to social systems (Burkhard et al., 2012; Burkhard
et al., 2015). However, the current research focuses on the
“supply” side analysis of ES, given the lack of research on the
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“demand” side of ES, the synergy between supply and demand of
ES should be quantified in the future.

5 CONCLUSION

The concept of ES has built a “bridge” between natural ecosystems
and human social systems. This study evaluates the spatial and
temporal patterns of ES in the Sichuan Basin from 2000 to 2015 and
discusses the spatial heterogeneity of response of various driving
factors to ES with the help of PCA-MGWR model. The results
showed that the CS and SC services experienced an upward trend
during the study period, while theWY services showed a downward
trend. Especially from the perspective of spatial pattern, the carbon
sequestration services in other regions except for the main urban
areas of Chengdu and Chongqing were higher; the spatial
distribution characteristics of SC services are “low in the middle
and high in the periphery”; the high-value area of water production
service is located in Northeast Sichuan. The results of the spatial
regression model show that compared with the OLS model and
GWR Model, the MGWR model has the best explanatory power,
and there is a correlation between driving factors and ES change. In
view of the differences in the driving factors on the geographical
scale, this study helps to consider the spatial differences in the impact
of different indicators when formulating the countermeasures for ES
in the Sichuan Basin and provides more information for the refined
management and zoning control of ES in the Sichuan Basin.
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