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Carbon emissions from the transport sector (COE) haswitnessed unprecedented growth,which
calls for special measures to control these emissions to achieve carbon neutrality by 2050. One
of themeasures taken to limit these emissions is climate changemitigation technology related to
the transport sector (CCMT). However, there exists relatively scant literature that explores the
CCMT-COE nexus. Hence, the present study explores whether CCMT curbs COE in the top
transport sector carbon-emitting countries. For this purpose, we employ a panel quantile
regression (PQR) approach, which probes the impact of CCMT on COE in low-, middle, and
high-emission countries. The result shows thatCCMTdoes not affect COEat the lowest quantile
(i.e., 10th quantile) while CCMT plunges the emissions at all other quantiles. In particular, a 1%
increase inCCMTcurbsCOEby0.13%at the 25th, 50th, and75th quantile,while a 1%upsurge
in CCMT impedes COE by 0.22% at the 90th quantile. In the light of these findings, the carbon
policy in the transport sector should invest in climate change mitigating technology in the
transport sector and scale it up and out.
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INTRODUCTION

The transport sector is regarded as one of the imperative sectors because it contributes significantly to
social and economic development. Improved transport facilities assist the mobilization of the labor
force and help to transfer other resources (e.g., coal, machines, other capital goods, etc.). Not only
this, the transport sector plays a pivotal role while providing quality education and health services.
Further, quality transportation services boost tourism, trade, and effective distribution, thereby
upsurging economic growth (EG). Besides, transportation transfers resources from resource-
abundant to resource-scarce areas and reduces income inequality. In the US and European
Union (EU), the share of the transport sector to GDP is around 8% and 5%, respectively1. Thus,
the transport sector is undoubtedly inevitable for the socio-economic development of the nation and
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the well-being of people (Monioudi et al., 2018; Xu and Lin, 2018;
Ülengin et al., 2018; Jiang et al., 2019; Lv et al., 2019; Georgatzi
et al., 2020).

However, it is important to note that the transport sector
significantly relies on energy. Whether it is road transportation,
railways, or air transport services, the use of energy is profound.
Both production and consumption/use of transport require a
substantial amount of energy. For instance, an enormous amount
of energy is used as an input to produce vehicles, ships, and jets,
among others. On the contrary, petroleum-based products (e.g.,
gasoline and jet fuel, etc.) are required to operate vehicles, ships,
jets, etc. Such a heavy reliance on energy is responsible for high
greenhouse gas (GHG) emissions. According to the World Bank,
16.2% of world energy consumption is associated with the
transport sector (Cozzi et al., 2020).

Similarly, the transport sector emits the second-highest level of
greenhouse gases (EIA, 2020). Further, according to Energy
Information Administration, the transport sector is responsible
for almost 22% of global carbon emissions (EIA, 2020). Recently,
Tunde et al. (2022) analyzed the trends (i.e., forecasting) of
sectoral carbon emissions and concluded that the transport
sector emissions experienced the highest trend. Hence proper
environmental planning in the transport sector is inevitable for
sustainable growth (ibid). Not only this, but the transport sector’s
emissions also affect EG. Rehman et al. (2022) argued that carbon
emissions from various sectors have an asymmetric impact on
EG. In particular, the transport sector emissions have an
asymmetric effect on both the short- and long-term growth.

Against the backdrop of increasing climate risk resulting from
greenhouse gas emissions and a global effort to achieve carbon
neutrality by 2050, reducing transport-related carbon emissions
(COE) is crucial. Therefore, it is critical to explore the drivers of
COE. The literature presents several factors that explain transport-
related carbon emissions (COE), such as economic growth (EG)
(Arvin et al., 2015; Berg et al., 2017; Nasreen et al., 2020; Godil et al.,
2021), non-renewable energy consumption (Nathaniel and Iheonu,
2019; Sharif et al., 2019; Destek and Sinha, 2020; Sharma et al.,
2021), renewable energy consumption (Dong et al., 2017; Lee et al.,
2017; Hu et al., 2018; Amin et al., 2020; Naderipour et al., 2021),
urbanization (Zhang et al., 2020; Hanif, 2018; Liu et al., 2018; Zhou
et al., 2021), and environmental policies (Huisingh et al., 2015; Xie
et al., 2017; Bhowmik et al., 2020; Chan, 2020; Moran et al., 2020;
D’Orazio and Dirks, 2022; Hussain et al., 2022), etc. Parallel to
these factors, environmental technologies are the eminent drivers
that can help to limit COE (Kwon et al., 2017; Raza et al., 2019;
Chen and Lee, 2020; Nguyen et al., 2020; Rissman et al., 2020).
Further, climate change mitigation technology related to the
transport sector (CCMT) is among the critical factors that play
a vital role in curbing COE (Wang et al., 2018; Fan et al., 2019).
CCMT is referred to as the technological advancements that
escalate the energy efficiency and share of renewables in the
transport sector. The literature disregards the CCMT while
modeling COE (Lee et al., 2017; Durmaz, 2018), which is
necessary to shape policies related to sustainable transportation.
CCMT upsurges the energy efficiency, thereby helping to reduce
COE. Moreover, CCMT can also escalate the use of renewable
energy products, which, in turn, mitigate COE.

Rudyk et al. (2015) examines the impact of CCMT on COE for
European countries and found that CCMT helps in reducing
COE. Su and Moaniba (2017) report that CCMT curbs COE for
selected 70 countries. In the case of 30 Chinese provinces, Xu and
Lin (2015) find similar results. Alatas (2021) reported that CCMT
impedes COE in selected OECD economies. Although these
studies mentioned above explain the impact of CCMT on
COE, no study covers the issue of individual and unobserved
heterogeneity. On top of this, no research outlet examines the
impact of CCMT on low-, middle-, and higher levels of COE.
Therefore, the present study addresses these aforesaid drawbacks
of the existing literature.

Based on the above-reported arguments, the objective of this
study is to reinvestigate the impact of CCMT onCOE for the top five
carbon emitters of the transport sector2 (i.e., China, India, Russia,
United States, and Brazil). This set of countries is also the world’s
leading economy, with a significant rate of EG. Also, these countries
consume a major chunk of global energy, thereby emitting a
profound quantity of greenhouse gas emissions. Besides, these
countries lead the world in terms of population and area.
Therefore, they consist of an extensive transportation system that
requires tons of energy and produces enormous emissions.

Hence, the current study has three contributions compared to
the existing body of knowledge. First, this is the first strive to
explore the impact of CCMT on COE for top emitters of the
transport sector, namely China, India, Russia, the US, and Brazil.
Second, based on our best knowledge, this is the first endeavor
that employs the panel quantile regression (PQR) approach to
discern the impact of CCMT on COE. The panel quantile
regression (PQR) methodology captures the heterogeneous
impact of CCMT on various quantiles of COE. Third, we
employ Dumitrescu and Hurlin (2012) causality test
(henceforth D-H test), which is insusceptible to cross-sectional
dependence, slope heterogeneity, and unobserved heterogeneity,
and thus provides reliable results (Husnain et al., 2022).

LITERATURE

This section is segregated into two parts. The first part explores
the drivers of aggregate/total carbon emissions, while the second
section highlights the determinants of emissions in the transport
sector. Also, the summary of literature in a smart chart format is
depicted in Figure 1.

Determinants of Aggregate/Total Carbon
Emissions
A plethora of literature related to environmental economics
discerns the impact of EG on emissions, with the
Environmental Kuznets Curve (EKC) being the most critical
hypothesis to test (Grossman and Krueger, 1991). Energy

2https://www.wri.org/insights/everything-you-need-know-about-fastest-growing-
source-global-emissions-transport#:~:text=The%2010%20countries%20with%
20the,%2C%20Germany%2C%20Mexico%20and%20Iran.
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efficiency also plays a pivotal role in curbing COE. For instance,
Liobikienė et al. (2019) noted that EG reduces COE in the
presence of improved energy efficiency. Contrarily, EN is a
key determinant of COE. Several researchers conclude that
non-renewable energy is accountable for COE (Erdogan et al.,
2020). Since renewable energy is considered low-carbon energy,
its use will result in the decline of COE (Lee et al., 2017; Hu et al.,
2018). Syed et al. (2022) investigate whether economic policy
uncertainty affects emissions in BRICST countries, and the
outcomes of the study document that policy uncertainty
escalates emissions. Syed and Bouri (2021) apply bootstrap
ARDL to examine whether policy uncertainty affects emissions
in the United States. The authors find that policy uncertainty has
a heterogeneous effect on carbon emissions across the long- and
short-run. Similarly, Bhowmik et al. (2022), using a dynamic
ARDL approach, shows that monetary policy uncertainty
increases emissions, fiscal policy uncertainty impedes
emissions, and trade policy uncertainty does not affect the
volume of emissions. Like policy uncertainty, geopolitical risk
can also affect emissions. Anser et al. (2021a) found that
geopolitical risk leads to higher emissions in BRICS countries.
Hashmi et al. (2021), using the bootstrap ARDL approach,
observed that higher geopolitical risk triggers the use of non-
renewables which escalates emissions. Anser et al. (2021b) test the
validity of the Environmental Phillips Curve (EPC) in BRICST
economies and found that the EPC holds true. Similar findings
are reported by Bhowmik et al. (2022) in the United States.
Valeria and Giovanna (2022) show that corporate governance
strategies reduce firm-level emissions. In the case of India, Irfan
et al. (2022) divulge that technological and infrastructural factors,
in consort with financial and political factors, are the key barriers
to biomass energy, which impedes emissions levels. Tang et al.
(2022) validate the financial resource curse hypothesis and also

confirm that business regulations moderate the finance-resources
relationship. Gentile et al. (2022) reveal that the CCMT reduces
carbon emissions and is cheaper to plunge emissions than the
conventional emissions capture system. Khan et al. (2022) argue
that energy trilemma and clean energy transition improve the
environmental quality. Likewise, Zhang et al. (2022) revealed that
ICT decreases emissions while education and EG escalate the
levels of emissions in selected developing countries. Parallel to
this, Kassouri (2022) uses a quantile-based approach and reports
that fiscal decentralization has an asymmetric impact on public
energy research development and demonstration in selected
developed countries. Muhammad and Khan (2021) noted that
EG, FDI, and globalization escalate emissions. Similarly, Murshed
et al. (2021) reveal that EG, globalization, urbanization, and
renewable electricity are the key drivers of carbon emissions.
Hussain et al. (2022) mentioned that environment-related
technology can decrease environmental degradation in
developing countries by gradually switching from old to
modern technologies. Yu and Du (2019) point out that
environment-friendly technology or innovation significantly
reduces emissions. Wang et al. (2019) noted that the impact of
new technological development significantly mitigates emissions.
Similarly, Cheng et al. (2021) find that technological innovation
significantly mitigates emissions in OECD countries. Moore et al.
(2021) also highlight that CCMT has a significant role in
decreasing emissions.

Determinants of Carbon Emissions in the
Transport Sector
Several studies highlight that economic growth (EG) is an
indispensable driver of emissions in the transport sector
(Andreoni and Galmarini, 2012; Chandran and Tang, 2013).

FIGURE 1 | Summary of literature.

Frontiers in Environmental Science | www.frontiersin.org June 2022 | Volume 10 | Article 9163563

Bhowmik et al. Climate Change Mitigation Technology and CO2 Emission From the Transport Sector

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Zhang and Nian (2013) use the STIRPAT model to explore
transport-related emissions and found that EG, EN, and
population increase emissions. Liddle (2015) validates the EKC
for the transport sector. In the transport sector, energy is
undoubtedly a key driver of emissions. Anwar et al. (2021)
showed that public-private investment is also a key driver of
emissions. EN is an essential source of transport emissions
(Mohsin et al., 2019). Lu et al. (2020) explore the direct and
indirect effects of EN on emissions. The study reports that the
level of emissions witnessed an upsurge due to the transportation
sector development in China. Ahmed et al. (2020) also found
similar results in India- that the EN causes an upsurge in emissions.

Recently, Pani et al. (2021) investigated the drivers of
transport emissions in India and highlighted that
urbanized areas produce higher emissions than the less
urbanized regions. Similar findings are reported by Habib
et al. (2021) in G20 countries. Robaina and Neves (2021)
explore the relationship between the transport sector, EG,
and emissions in Europe. The study notes that an upsurge in
the number of electric vehicles reduces carbon emissions.
Georgatzi et al. (2020) examined whether CCMT affected the
transport sector emissions in selected European countries
and noted that CCMT significantly plunges emissions. Sajid
et al. (2022) highlighted that investment in technology can
help to decrease emissions in the transport sector.

MODEL AND DATA

This section briefly presents the empirical model and provides
details on the selected dataset. In the literature on environmental
economics, the EKC framework is considered a core empirical
model to explore the socio-economic drivers of COE (Syed and
Bouri, 2021). Therefore, following the study of Hashmi et al.
(2021), this study also uses the EKC framework to test the impact
of CCMT on COE. The model used in this study is highlighted as
follows:

COE � FEG, EG2, EN, CCMT (1)
COE denotes carbon dioxide emissions in the transport sector,

EG reflects GDP per capita, EG2 represents the square of GDP
per capita, EN denotes energy consumption, and CCMT is
climate change mitigation technologies related to the transport
sector. To validate the EKC hypothesis, EG should be positive,
while EG2 needs to be negative. Further, the expected sign for EN
is positive, while we expect CCMT to be negative as it has GHG
reducing effect. It is worth noting that the EKC3 is a widely used
theoretical and empirical framework in the literature on
environmental economics. The theory of EKC argues that EG
escalates emissions whereas it decreases emissions once EG
exceeds a certain level (Bilgili et al., 2016). The EKC, which is
an inverted U-shape relationship between EG and emissions,
notes that EG is linked with emissions through scale,

composition, and technique effect. Similarly, EN (i.e., a control
variable in this study) also theoretically affects emissions as
energy sources mostly contain fossil fuels that transmit
emissions (Syed et al., 2022). CCMT improves energy
efficiency, which in turn plunges emissions. Moreover, CCMT
has also been upsurging the use of renewable energy, which is
regarded as low carbon energy, and hence emissions witnessed a
reduction (Georgatzi et al., 2020).

Regarding the details of the dataset, the present study uses
panel data covering 1999–2015 for the top five carbon emitter
countries4, namely China, United States, India, Brazil, and Russia.
Next, COE (measured in percentage of total fuel combustion) is
used as a dependent variable. While EG (GDP per
capita—measured in constant $2015), EG2 (square of EG),
and EN (energy consumption—measured in kg oil equivalent
per capita) are employed as control variables. The independent
variable of interest is climate change mitigation technologies in
the transport sector (CCMT), which is measured as the ratio of
environment-related patents in total patents. The data on the
COE, EG, and EN are collected from the World Development
Indicators (WDI), whereas the OECD database is used to obtain
the data on CCMT. It is worth reporting that we converted the
entire dataset into a natural logarithmic formation.

The descriptive statistics of the data used in the study is
summarized in Table 1. EG has the highest mean value, while
COE has the lowest mean value. Likewise, EG has the highest
variation, and COE contains the lowest deviation. The entire
dataset is positively skewed. In contrast, kurtosis confirms that
the dataset does not contain the fat tail. Finally, the entire dataset
is distributed non-normally except for EG, which has a normal
distribution. It is extensively reported in the prior literature that
traditional least square-based methodologies can come up with
unreliable results if the dataset is non-normally distributed
(Khalid et al., 2021; Syed et al., 2022). This motivates the
application of the PQR approach, which is reliable even if the
dataset follows a non-normal distribution (Li et al., 2022).

This study also uses the q-q plot to explore graphically whether
the dataset is normally distributed. Figures 1–4 depict q-q plots

TABLE 1 | Descriptive statistics.

Statistic CCMT COE EN EG

Mean 127.72 22.11 3094.39 14704.01
Std. Dev. 249.52 14.06 2644.52 19097.11
Skewness 2.51 0.57 0.68 1.43
Kurtosis 9.32 1.72 1.93 3.20
Jarque-Bera test (0.06)* (0.01)** (0.03)** (0.35)

(.) is p-value. While *and **represent the level of sig. at 10% and 5%, respectively.
Note: CCMT- mitigation technologies in the transport sector; EN- Energy
consumption–measured in kg oil equivalent per capita; EG-GDP per capita–measured in
constant $2015; COE: carbon emission for the transport sector (measured in percentage
of total fuel combustion).

3For the detailed theortetical understanding on the EKC approach, please see Bibi
and Jamil (2021).

4In 2015, the per capita carbon dioxide emissions in the selected countries are as
follows: 44.75 metric tons per capita (MTPC) in Brazil, 8.60 MTPC in China, 11.47
MTPC in India, 16.24 MTPC in Russia, and 33.39 MTPC in the United States.
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for the considered variables. In the q-q plots, the diagonal line
represents the normality of data, while the blue dotted line shows
the actual distribution of the variable. The deviation of the blue
dotted line from the diagonal line expresses that the data are non-
normally distributed. In Figures 2–5, the blue dotted line diverges
from the diagonal line for all variables, indicating that the dataset
used in the study is distributed non-normally.

METHODOLOGY

In the prior literature, it is well-cited that OLS regression gives an
unbiased estimator with a minimum variance if: 1) disturbance
term in OLS regression contains zero mean, and it follows an
identical distribution (iid); and 2) disturbance term is normally
distributed. Da Silva et al. (2016) noted that these assumptions
mentioned above are not satisfied most of the time, leading to

unreliable results. To avoid the deficiency of OLS regression,
Koenker and Bassett (1978) put forward the quantile regression
(QR) approach. Quantile regression (QR) has certain merits, for
instance, 1) the QR does not use any assumption related to the
occurrence of moment function (Zhu et al., 2016); 2) QR gives
relatively truthful and robust outcomes if outliers and fat tail
distribution occur in the dataset (Bera et al., 2016); 3) Quantile
regression (QR) does not establish any assumption related to the
distribution (Sherwood and Wang, 2016). Based on these
properties of Quantile regression (QR), this study employs this
methodology.

Qyi (∅|xi) � xi
′α∅ (2)

Equation 2 yields the conditional quantile Yi in a given xi,
however, ∅ is the quantile. While applying the Quantile
regression (QR) approach in the panel dataset, unobserved
heterogeneity is taken into account, which compels us to use

FIGURE 2 | COE.

FIGURE 3 | EG.

FIGURE 4 | CCMT.

FIGURE 5 | EN.
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the Panel Quantile Regression (PQR) approach with a fixed effect.
The Panel Quantile Regression (PQR) approach allows to control
for the unobserved individual heterogeneity. The Panel Quantile
Regression (PQR) model with fixed effect is reported as follows.

Qyit (∅k|φi, xit) � φi + xit
′α(∅k) (3)

In Eq. 3, φi expresses the fixed effect that also brings the
incidental parameter problem (Lancaster, 2000). In the case of
fixed time-series observations for each cross-sectional unit, the
estimator is found to be inconsistent if the cross-sectional unit
approaches infinite value (Galvao and Kato, 2016). So, traditional
linear approaches cannot be applied in the Panel Quantile
Regression (PQR) model. Therefore, Koenker (2004) put
forward a method, recognized as the shrinkage method, to
resolve the aforesaid issue of the Panel Quantile Regression
(PQR). The method develops a penalty term to abolish the
unobserved fixed effects. The parameters of the model are
estimated as follows.

(α̂(∅k, η), { φi (η)}Ni � 1)

� argmin∑K

k
∑T

t
∑N

i
Ωkρ∅k(yit − φi

− xit
′α(∅k)) + η∑N

i

∣∣∣∣φi

∣∣∣∣
(4)

In Eq. 4, i and t respectively note country and year. k shows the
quantile while ρ∅k notes the quantile loss functions. Ωk is the
assigned weight that is provided to kth quantile.Ωk delineates the
contribution of different quantiles. Following Lamarche (2011),
we also set Ωk � 1/k. η is tunning term/parameter that is used to
decrease the individual effect to zero for better estimation of slope
coefficients in the model. Following the studies of Li et al. (2022),
this study set η=.

EMPIRICAL FINDINGS

The current section presents the empirical findings, and the
steps we follow are depicted in Figure 6. While handling the
panel dataset, the occurrence of cross-sectional dependence
(CSD) can be critical for the reliability of the results. The CSD
holds if the shock in any of the cross-sections has a spillover
effect to other cross-sections. Hence, it is indispensable to test
for the CSD to check for the reliability of the findings. Various
CSD testing approaches have been developed in econometrics
literature, Pesaran (2007) CSD test other being the most
extensively used test. Hence, including Pesaran (2007) CSD
test, we use the other three tests, namely, i.e., Pesaran test,
Frees test, and the Friedman test, to discern the presence of
CSD in this study.

Table 2 highlights the findings from the CSD tests. The Ho of
these tests mentioned above is the absence of CSD where the
alternate hypothesis assumes vice versa. As shown in Table 2, we
can reject theHo for all tests. Hence, it could be noted that there is
an occurrence of CSD in our case.

After testing the CSD, we perform the unit root test. It is
crucial to test for the unit root as disregarding it could lead the

pseudo findings. In panel data econometrics, second-generation
unit root tests have been extensively used because of their ability
to handle the CSD. Therefore, we also apply the second-
generation unit root test (i.e., the CIPS test). The findings
from the CIPS test are provided in Table 3. The Ho of the
CIPS test assumes of the absence of unit root where the alternate
hypothesis vice versa. As depicted in Table 3, we cannot rejectHo
at level, indicating that the dataset contains the unit root at the
level. Contrarily, we can reject theHo at the first difference for the
entire dataset, implying that the dataset is stationary at the first
difference.

The next step is to discern the cointegration, which notes
whether there is a long-run relationship among the chosen
variables. To this end, we employ Westerlund (2007) test,
which can handle the CSD. The Ho of this test mentioned
above expounds no cointegration while the alternate
hypothesis notes vice versa. The outcomes from Westerlund
(2007) test are presented in Table 4. We can reject the Ho in
the case of all four statistics of the Westerlund test. Thus, it
confirms that cointegration holds among the chosen variables of
this study.

Thereafter, we report the findings from the panel quantile
regression (PQR) approach at 10th, 25th, 50th, 75th, and 90th
quantiles. We also estimate the fixed effect model to compare
its results with the panel quantile regression (PQR) approach
and included the results in Table 5. With regard to the findings
from the fixed-effect model, the EG is statistically significant
with a positive coefficient, while EG2 is insignificant.
Therefore, we conclude that the Environment Kuznets
Curve (EKC) hypothesis does not hold in the case of the
top five transport emitter countries as it requires both EG
and EG2 to be statistically significant with a positive and
negative coefficient, respectively. Next, EN–in kg oil
equivalent per capita is negative and statistically significant,
implying that the use of renewable energy mitigates COE.
Finally, CCMT is negative and statistically significant,
indicating that CCMT reduces emissions. The value of
CCMT is 0.136, indicating that a 1% increase in CCMT
reduces emissions by 0.136%. It is worth mentioning that
the fixed-effects model assumes the normality assumption,
and some of the findings from this model (e.g., results of the
EKC and EN) are not in line with the theory. Thus, applying
the quantile regression (QR) approach is inevitable if the
normality assumption violates.

In the case of the panel quantile regression (PQR) approach,
the 10th and 25th quantiles are regarded as the lower quantiles,
the 50th quantile is considered the middle quantile, while 75th
and 90th quantiles are considered are the higher quantiles. EN is
statistically significant and positive across the quantiles,
whereas EG2 is negative and statistically significant across all
quantiles. This implies that EG escalates COE, and after a
certain level, it curbs the COE. Thereby, we conclude that
the EKC holds in this analysis. The results are also backed
by the studies of Bilgili et al. (2021), Anser et al. (2021a), Anser
et al. (2021b), and Bilgili et al. (2022). The sign of EN is positive
with statistical significance at a 1% level across the distribution.
This indicates that energy use escalates transport-related carbon
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emission COE in low-, middle-, and higher- emitters. Moreover,
the impact of EN is relatively high at lower quantiles. Similar
outcomes are reported by Bilgili et al. (2016) and Bashir et al.
(2022).

Regarding CCMT, the coefficient is negative and statistically
significant at all quantiles except the 10th quantile, which is
insignificant. This implies that an increase in CCMT mitigates
COE in top emitter countries at the 25th, 50th, 75th, and 90th
quantile. At the 10th quantile (countries with lower levels of
transport sector emissions), CCMT is found to be ineffective. The
latent reasons could be that these CCMT are not properly used in

the transport sector. The high cost of CCMT, complex procedure
to adopt CCMT, and lack of bindings from the government to use
CCMT could hinder inappropriate usage of CCMT in the low
emitter countries. At the 25th, 50th, and 75th quantile, CCMT is
0.013. This indicates that a 1% upsurge in CCMT decreases the
COE by 0.013%. These results highlight that CCMT improves
energy efficiency and exacerbates renewables use. As a result, the
proper usage of the CCMT curbs emissions. Next, the CCMT is
−0.022 at the 90th quantile, reporting that a 1% growth in CCMT
decreases the COE by 0.22%. It is worth reporting that the impact
of CCMT is heterogeneous across the quantiles, which could not
be captured using conventional methodologies (e.g., fixed effect
model, etc.). These results are almost similar to Alatas (2021),
which argues that environment-related technologies curb
transport-related emissions in OECD countries. The key
findings from the PQR approach are graphically delineated in
Figure 7.

Next, we employ a pooled mean group-auto regressive
distributed lags (PMG-ARDL) approach as a sensitivity
analysis to see whether our baseline findings from the PQR
approach are consistent with a dynamic regression approach
(i.e., PMG-ARDL model). The findings are reported in
Table 6.

As depicted inTable 6, all coefficients are statistically significant in
both the short- and long-run, which implies that EG, EN, and CCMT
affect COE. In the long-run, the coefficient of CCMT is -0.13,
expressing that a 1% increase in CCMT plunges the COE by
0.13%. While EG and EG2 are positive and negative, respectively,
and this shows that the EKC holds in the long-run. Further, the
coefficient on EN is positive, indicating that energy consumption leads
to higher COE. Similarly, in the short-run, the coefficient of CCMT is
−0.06, which illustrates that a 1% increase in CCMT fosters a 0.06%
reduction in COE. We also validate the existence of the EKC in the
short-run. Further, the positive coefficient of EN indicates that energy
use contributes to COE. It is worth reporting that the key findings

FIGURE 6 | Route of Methodology.

TABLE 2 | Testing CSD.

CSD tests

Pesaran CSD test Friedman CSD test Frees CSD test

COE= f (EG, EG2, EN, CCMT) [0.00]*** [0.00]*** [0.00]***

[.] is p-value while ***p < 0.01.

TABLE 3 | CIPS test.

Indicator CIPS test

Level 1st difference

COE −1.02 −2.97***
EG −1.91 −2.99***
EN −1.02 −3.96***
CCMT −1.37 −3.71***

***p < 0.01
Note: COE: carbon emission for the transport sector (measured in percentage of total fuel
combustion); EG-GDP per capita–measured in constant $2015; EN- Energy
consumption–measured in kg oil equivalent per capita; CCMT- mitigation technologies in
the transport sector.

TABLE 4 | Testing cointegration.

Statistic Value

Gt −12.21 [0.00]***
Ga −7.31 [0.00]***
Pt −12.23 [0.00]***
Pa −6.09 [0.00]***

[.] denotes p-value. ***p < 0.01.
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from the PMG-ARDL approach are supported by the findings of the
PQR approach, which divulges that CCMT impedes COE.

Finally, we employ the D-H causality test to inspect the
direction of causality, and the result is presented in Table 7. As
shown in Table 6, there is unidirectional causality from CCMT to
COE, indicating that a change in CCMT will affect COE, whereas
any change in COE will not alter CCMT. Further, there is
unidirectional causality from CCMT to EN, which implies that
CCMT affects the use of energy, but vice versa is not valid. We
observe the bidirectional causality between EG and CCMT. This

notes that economic growth leads to higher CCMT, and CCMT
also impacts economic growth. Next, we find a unidirectional
causality from EG to EN, which shows that economic growth
leads to higher energy use. Thus, we validate the conservation
hypothesis in top emitters in the transport sector.

Future research should apply dynamic panel data methods to
explore the long- and short-run impact of CCMT on emissions.
Further, the asymmetric impact of CCMT on emissions can also
be discerned in the future.

CONCLUSION AND POLICY
RECOMMENDATIONS

The transport sector is a leading sector in terms of energy
consumption, thereby emitting tons of carbon, especially in
the last few decades. The emission from transport sectors is
likely to increase due to increasing demand for transport.
Therefore, policymakers, environmental scientists, and
economists have been questing to explore the drivers of the
transport sector emissions in consort with the factors that can
curb emissions. Climate changemitigation technology (CCMT) is
considered an option that can plunge emissions. However, there
is scant empirical evidence on the nexus between CCMT and
greenhouse gas (GHG) emissions. Hence, the present study
explored whether CCMT impedes transport sector emissions
(COE) in the top five transport sector emitters countries. We

TABLE 5 | Empirical findings from the panel quantile regression (PQR) approach.

Indicator Fixed effects Panel quantile regression

10th 25th 50th 75th 90th

GDP per capita–in constant $2015 (EG) 1.011*** 0.532*** 0.503*** 0.512*** 0.502*** 0.561***
GDP per capita Square- in constant $2015 (EG2) 0.001 −0.001*** −0.001*** −0.0001*** −0.005*** −0.003***
Energy consumption–measured in kg oil equivalent per capita (EN) −0.002*** 0.021*** 0.009*** 0.04*** 0.003*** 0.003***
Mitigation technologies in the transport sector (CCMT) −0.136*** −0.010 −0.013*** −0.013*** −0.013*** −0.022***

***p-value < 0.01.
Note: COE: carbon emission for the transport sector (measured in percentage of total fuel combustion) is the dependent variable; EG-GDP per capita - measured in constant $2015; EN-
Energy consumption - measured in kg oil equivalent per capita; CCMT- mitigation technologies in the transport sector.

FIGURE 7 | Graphical representation of the key findings.

TABLE 6 | Findings from PMG-ARDL model.

Coefficient p-value

Long-run estimates
EG 0.04***
EG2 −0.01***
CCMT −0.13***
EN 0.16***

Short-run estimates
EG 0.05***
EG2 −0.01***
CCMT −0.06***
EN 0.11***

Note: The value of the error correction term (ECT) is -0.08
***We just report the coefficients on the current time “t”. The detailed findings in consort
with the diagnostics are available upon request.

TABLE 7 | D-H causality test.

Ho p-value

COE ≠> CCMT 0.86
CCMT ≠> COE 0.00***
EN ≠> CCMT 0.62
CCMT ≠> EN 0.00***
EG ≠> CCMT 0.00***
CCMT ≠> EG 0.00***
EG ≠> EN 0.07*
EN ≠> EG 0.21

≠> denotes does not Granger cause. * and *** represent the level of sig. at 10% and 1%,
respectively.
Note: COE: carbon emission for the transport sector (measured in percentage of total fuel
combustion) is the dependent variable; EG-GDP per capita - measured in constant
$2015; EN- Energy consumption–measured in kg oil equivalent per capita; CCMT-
mitigation technologies in the transport sector.
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used the panel quantile regression (PQR) approach, which
examines the heterogeneous impact of CCMT on low-,
middle-, and high-level emissions. We found the validity of
the environmental Kuznets curve (EKC) hypothesis. The
findings revealed that at the lowest quantile (i.e., 10th
quantile), CCMT does not affect emissions. Next, CCMT
mitigated emissions at all other quantiles. Also, the impact of
CCMT on emissions is the strongest at the highest quantile
(i.e., 90th quantile). Next, EN upsurged the COE at all quantiles.

Additionally, the D-H causality test findings reported that
unidirectional causality runs from CCMT to COE and EN. In
contrast, bidirectional causality was observed between EG and
CCMT. Finally, unidirectional causality runs from EG to EN. We
propose few policy recommendations. First, the validity of the EKC
hypothesis confirms that EG is an avenue to curb COE. Therefore,
the selected countries need to focus on improving EG by initiating
policies that help achieve higher EG. Next, to achieve a higher EG
without deteriorating the environmental quality, the selected
countries need to use renewable energy resources. Further, there
should be an investment in human capital, R&D, and innovations
that might lead to sustainable EG. Since EN upsurges the COE,
policies should be initiated to discourage non-renewable energy
sources. For this purpose, environmental/carbon taxes should be
introduced on non-renewables, while renewable energy usage
should be encouraged. The positive impact of CCMT in curbing
COE in all quantiles, except the 10th quantile, implies that there
should be more and more utilization of CCMT in the lower-,
middle-, and high-emission countries. To escalate the use of
CCMT, these countries should invest in R&D related to
environmental technology. The high-emission countries need to
pay attention to increase the number of CCMT since the role of
CCMT is the strongest for the high-emission countries.

Next, to increase CCMT, there should be social awareness
programs. To get benefit from the CCMT, countries should share
their technologies with each other. Not only this, countries should
collaborate to produce efficient CCMT. Also, there should be
incentives for individuals (e.g., tax exemptions, etc.) for the
individuals who use products having high levels of CCMT.
The governments of selected countries should escalate
subsidized public transport services which will decrease the
privately-owned transportation (e.g., vehicles, ships, jets, etc.).
Not only this, governments should introduce public
transportation with high CCMT, which will reduce COE. The
causality analysis shows that EG and CCMT cause each other;
therefore, achieving higher levels of CCMT can be an option to
escalate EG, and vice versa. Next, the validity of the conservation
hypothesis notes that policies to conserve energy will not
adversely impact EG; therefore, the selected countries should
initiate energy conservation policies.

Regarding the limitations of this study, the data on CCMT is
unavailable for most developing countries, which hinders exploring
the CCMT-COE nexus in the aforesaid countries. Also, a relatively
small dataset does not allow for incorporating several control
variables because, by doing so, the model could be comprised of
a low degree of freedom. Next, a relatively small panel dataset
discourages us from using several recent methodologies, such as the
dynamic panel quantile regression approach by Harding et al.
(2020). Regarding future research directions, researchers can
employ dynamic panel methodologies such as CS-ARDL, AMG,
and CCMG estimators. Moreover, the CCMT-COE nexus could be
explored for other sectors, such as the industrial and commercial
sectors, among others.
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