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Antimicrobial resistance (AMR) is a serious public health concern. Many countries have
implemented AMR surveillance programs for humans and animals, but a scheme for
monitoring AMR in the environment has not yet been established. Class 1 integrons, which
can acquire antimicrobial resistance genes (ARGs) to gene cassettes, were proposed as a
candidate to evaluate the anthropogenic impacts on AMR. However, the association
between class 1 integrons and ARGs in aquatic environments is less studied and requires
further elucidation. This study used high-throughput quantitative polymerase chain
reaction (HT-qPCR) to characterize the pollution profiles of ARGs and mobile gene
elements (MGEs) in 24 urban rivers in Tokyo and its surrounding area. The abundance
of class 1 integron-integrase gene (intI1) and the array of class 1 integron gene cassettes
were also determined. In total, 9–53 target genes were detected per sample, and their
abundances increased following effluent discharge from wastewater treatment plants. The
river and wastewater samples were categorized based on their HT-qPCR profiles,
indicating that this method was useful for characterizing the pollution status in aquatic
environments. The prevalence of intI1 in the rivers was observed. Some ARGs and MGEs
were positively correlated with intI1, indicating that intI1 could be used as a proxy for
monitoring these ARGs and MGEs in urban rivers. Long-read sequencing of class 1
integron gene cassettes revealed that one to three ARGs were present in the gene
cassettes. Regardless of the sample type, blaGES-24, aadA2, and qacH were dominant in
the gene cassettes. The source and spread of class 1 integrons carrying these ARGs in
aquatic environments should be further monitored.

Keywords: Antimicrobial resistance gene, class 1 integron, gene cassette, high-throughput quantitative PCR, urban
river

INTRODUCTION

The health burden of antimicrobial resistance (AMR) is a crucial issue across the world (O’Neill,
2016). While the overuse or abuse of antimicrobial agents for humans and animals has led to the
emergence of antimicrobial resistant bacteria (ARB) and antimicrobial resistance genes (ARGs), the
recipient environments could serve as their reservoirs (Nnadozie and Odume, 2019). Therefore, One
Health, which is a comprehensive and multisectoral approach to address AMR issues in humans,
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animals, and the environment, serves as an essential initiative to
mitigate the spread of AMR in the society. Many countries have
implemented surveillance programs for pathogenic ARB in
humans and animals (WHO, 2021a). On the other hand, the
dimension of environmental AMR remains unknown (Larsson
et al., 2018; Samreen et al., 2021; Zhuang et al., 2021), and the
interaction between pathogens and environmental bacteria
carrying ARGs could be facilitated by horizontal gene transfer
(Martínez, 2019). WHO recently launched the Tricycle project,
which is aimed at One Health surveillance by focusing on
extended-spectrum beta-lactamase (ESBL)-producing
Escherichia coli (Pruden et al., 2021; WHO, 2021b). However,
monitoring targets and goals to control AMR in the environment
is still challenging owing to the lack of basic information such as
ARG abundance and diversity.

Metagenomic analysis and high-throughput quantitative
polymerase chain reaction (HT-qPCR) are promising tools for
the comprehensive surveillance of ARGs and mobile gene
elements (MGEs) in the environment. Metagenomic analysis is
a non-target screening method in which no preliminary
information of genes is known (Chen et al., 2019b;
Hendriksen et al., 2019; Liang et al., 2020; Lira et al., 2020).
HT-qPCR, which enables the simultaneous quantification of
hundreds of target genes, is generally more sensitive than
metagenomic analysis for ARGs and MGEs surveillance
(Waseem et al., 2019). Although HT-qPCR provides
semiquantitative data, it is still rapid and inexpensive for
screening complex AMR profiles in the environment.
Therefore, HT-qPCR has been employed to evaluate ARGs
and MGEs in various aquatic environments, including rivers
(Khan et al., 2019; Lai et al., 2021; Yu et al., 2021), water
sources (Han et al., 2020), drinking water (Xu et al., 2016),
urban sewage (Huang et al., 2019; Pärnänen et al., 2019;
Quintela-Baluja et al., 2019), and aquaculture systems
(Muziasari et al., 2016). HT-qPCR provides information to
help determine factors that shape environmental resistome,
such as bacterial community, antibiotic concentration (Han
et al., 2020), and ARG sources in the environment (Khan
et al., 2019).

In urban rivers, wastewater treatment plants (WWTPs) are
hotspots that release ARB and ARGs as well as residual antibiotics
(Michael et al., 2013; Mao et al., 2015; Guo et al., 2017; Amarasiri
et al., 2019). In a previous study, HT-qPCR based on 384 primer
sets was used for the comprehensive surveillance of ARGs and
MGEs in WWTP influent and effluent in seven European
countries, and 289 primer sets showed positive results
(Pärnänen et al., 2019). HT-qPCR revealed that the total
abundances of ARGs in recipient surface water bodies were
higher than those at upstream sites, suggesting that WWTP
effluent was a major source of ARGs in urban aquatic
environments (Huang et al., 2019; Quintela-Baluja et al., 2019;
Lai et al., 2021).

Representative indicators are useful for the efficient and
routine monitoring of various ARGs and MGEs. Class 1
integrons have been proposed as an anthropogenic pollution
marker for AMR (Amos et al., 2015; Gillings et al., 2015; Zheng
et al., 2019; Li et al., 2020). Integrons are bacterial genetic

elements that can incorporate multiple exogenous genes,
including ARGs, into gene cassettes (GCs) by the site-specific
recombination function of integrase (Gillings, 2014). Because the
incorporated genes can be expressed through the integron-
associated promoter (Collis and Hall, 1995), integron GCs
containing ARGs can spread multidrug resistance (Gillings,
2014). Five classes of mobile integrons (class 1–5) are involved
in the spread of ARGs as they are frequently associated with
transposons and conjugative plasmids (Gillings, 2014). The class
1 integron-integrase gene (intI1) was found to be prevalent in
wastewater and river water (Ma et al., 2017). A strong correlation
was observed between intI1 and ARGs, such as aminoglycoside
resistance genes and sulfonamide resistance genes, in aquatic
environments (Gillings, 2014; Ma et al., 2017; Dong et al., 2019;
Zheng et al., 2019; Agramont et al., 2020; Nguyen et al., 2021).
Previous studies further investigated class 1 integron GCs in
wastewater using clone library analysis or next-generation
sequencing (Gatica et al., 2016; Ma et al., 2017; An et al.,
2018). In wastewater, many ARGs conferring resistance to
aminoglycoside, beta-lactam, and trimethoprim were often
detected in class 1 integron GCs (Ma et al., 2017; An et al.,
2018). As there is a large diversity in the types of GCs (Moura
et al., 2009), they can be regarded as fingerprints of AMR in the
environment.

In Japan, several studies have reported the presence of
antimicrobial-resistant E. coli in rivers (Ham et al., 2012;
Urase and Sato, 2016; Gomi et al., 2017; Yamashita et al.,
2017; Suzuki et al., 2019; Tsutsui and Urase, 2019). Although
some studies investigated specific ARGs in rivers (Nguyen et al.,
2019; Liu et al., 2020), to the best of our knowledge, no
comprehensive profiles of ARGs and MGEs in urban rivers
have been reported in Japan. In the present study, HT-qPCR
was performed to determine the prevalence of 67 ARGs and
MGEs in 24 urban rivers in Tokyo and surrounding prefectures.
Based on the results of HT-qPCR, the applicability of intI1 as a
surrogate marker was assessed. The arrays of class 1 integron GCs
were determined by using nanopore long-read sequencing to
further evaluate the association between class 1 integrons and
ARGs in urban rivers.

MATERIALS AND METHODS

Sampling
From September 2019 to February 2020, river water samples (n =
30) from 24 rivers in Tokyo and its surrounding prefectures
(Kanagawa, Chiba, Saitama, and Ibaraki prefectures) were
collected. According to Ministry of Land, Infrastructure,
Transport and Tourism in Japan, sewage coverage rates in
Tokyo Metropolis, Kanagawa, Chiba, Saitama, and Ibaraki
prefectures in 2019 were 99.6%, 96.9%, 75.5%, 81.9%, and
63.0%, respectively. The sampling sites are summarized in
Figure 1 and Table 1. They were categorized into three
groups based on the rough estimation of the percentages of
treated effluent from WWTPs to river flow rates (annual
average) at the sampling sites (Table 1). Group A included
sampling sites with no WWTPs located upstream. Group B
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included sampling sites in which the percentages of effluent were
estimated to be <10% (1–6%, average: 2%). Group C included
sampling sites in which the percentages of effluent could be >10%
(11–100%, average: 43%). Additional pollution sources such as
the livestock industry and decentralized wastewater treatment
facilities were not considered in the grouping. In Tamagawa
River, Iruma River, and Arakawa River, water samples were
collected from upstream (TM1, TM2, IR1, and AR1) and
downstream sites (TM3, TM4, TM5, IR2, and AR2) to
evaluate the impact of treated effluent discharged between two
sites. Influent (Group INF) and treated effluent (Group EFF)
samples (n = 8) were collected from four municipal WWTPs
(WWTP A–D) in the region. All plants use a conventional
activated sludge process followed by chlorine disinfection to
treat domestic wastewater. The treatment capacities of WWTP
A–D were 20,000 m3/day, 140,000 m3/day, 290,000 m3/day, and
450,000 m3/day, respectively.

Water Quality Analysis
The water temperature, pH, and conductivity were measured
onsite using a portable Combo meter (Hanna Instruments, RI,
United States). Total coliforms and E. coli were cultured on
Chromocult coliform agar (Merck Millipore, MA,
United States) at 37°C for 24 h. The water samples were
filtered through 0.2-µm mixed cellulose ester membranes
(DISMIC-25 AS, Advantec, Japan) and subjected to
ammonium analysis. Ammonium concentrations were
measured using a salicylate method with a spectrophotometer
(TNT830A, DR2800-01B, Hach, CO, United States). Total cell

counts (TCC) were determined using a flow cytometer (Accuri
C6, BD, NJ, United States) by staining samples with SYBRGreen I
(Thermo Fisher Scientific, MA, United States) (Kasuga et al.,
2020).

DNA Extraction
The water samples (100 ml) were filtered through 0.22-µm
Isopore polycarbonate membrane filters (Merk Millipore, MA,
United States) to harvest bacteria. The filters were dissolved in
phenol:chloroform:isoamyl alcohol solution (25:24:1) (Nippon
Gene, Japan) and treated by bead beating using a FastPrep 24
Instrument (MP Biomedicals, CA, United States). DNA
extraction was performed by using the FastDNA SPIN Kit for
Soil (MP Biomedicals) (Kasuga et al., 2020). DNA concentrations
were measured with a Nanodrop ND-1000 spectrophotometer
(Thermo Fisher Scientific).

Quantitative Polymerase Chain Reaction
Bacterial 16S rRNA genes, intI1, sul1 (sulfonamide resistance
gene), and tetA (tetracycline resistance gene) were quantified
using LightCycler 480 SYBR Green I Master (Roche, Switzerland)
to compare the results of HT-qPCR, and human-specific cross-
assembly phage (crAssphage) (Dutilh et al., 2014; Stachler et al.,
2019) was quantified using LightCycler 480 Probe Master
(Roche). The primers and probes used in the analysis are
listed in Supplementary Table S1. PCR was performed in
triplicate using a LightCycler 480 II (Roche). The PCR
conditions for 16S rRNA genes, intI1, sul1, and tetA
comprised of 95°C for 5 min, followed by 45 cycles of 95°C for

FIGURE 1 |River water sampling sites. The sampling sites were categorized into Group A (noWWTP upstream), Group B (effluent percentage <10%), andGroup C
(effluent percentage >10%) according to the percentages of treated effluent fromWWTPs to annual average river flow rates. The map was adapted from the original data
of Geospatial Information Authority of Japan (https://maps.gsi.go.jp/).
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10 s, 55°C for 20 s, and 72°C for 20 s (detection). Melting curve
analysis was performed by increasing the temperature from 65 to
95°C to check for nonspecific amplification. The PCR conditions
for crAssphage comprised of 95°C for 5 min, followed by 45 cycles
of 95°C for 10 s, 60°C for 50 s, and 72°C for 1 s (detection). A 10-
fold dilution series (5.0 × 101 to 5.0 × 106 gene copies/µl) was
prepared for standard curves using an artificially synthesized
plasmid containing the target genes. The average PCR
amplification efficiencies of 16S rRNA genes, intI1, sul1, tetA,
and crAssphage were 99.3%, 93.7%, 98.5%, 92.5%, and 97.8%,
respectively.

High-Throughput-Quantitative Polymerase
Chain Reaction
The DNA extracts of 38 samples were sent to Resistomap Oy
(Helsinki, Finland) for HT-qPCR analysis using a SmartChip
Real-time PCR system (TaKaRa Bio, Japan) (Stedtfeld et al.,
2018). The target genes, including ARGs, MGEs, and 16S
rRNA genes, were analyzed using 68 primer sets validated by
Primer Set 2.0 (Stedtfeld et al., 2018) (Supplementary Table S2).
The PCR reaction mixture (100 nL) was prepared using 1×
SmartChip TB Green Gene Expression Master Mix (TaKara
Bio, Japan), nuclease-free PCR-grade water, 300 nM of each

primer, and 2 ng/μL DNA template. After initial denaturation
at 95°C for 10 min, PCR comprised 40 cycles of 95°C for 30 s and
60°C for 30 s, followed by melting curve analysis for each primer
set (Wang et al., 2014). The threshold cycle (CT) of 27 was
selected as the detection limit (Muziasari et al., 2016; Muziasari
et al., 2017). Amplicons with nonspecific melting curves and
multiple peaks were excluded. The mean CT of three technical
replicates in each reaction was used to calculate the ΔCT values
(CT of detected gene–CT of 16S rRNA gene). The relative
abundances of the detected gene to 16S rRNA gene were
estimated using the ΔCT method (Schmittgen and Livak, 2008).

Amplicon Sequencing of Class 1 Integron
Gene Cassettes
Class 1 integron GCs were amplified from all DNA extracts of
rivers and WWTPs samples using 5′CS (5′-GGCATCCAAGCA
GCAAG-3′) and 3′CS (5′-AAGCAGACTTGACCTGA-3′),
which are specific to the conserved segments of both ends of
class 1 integron GCs (Levesque et al., 1995; Ma et al., 2017; An et
al., 2018). The thermal conditions of the first PCR were as follows:
25 cycles of 94°C for 30 s, 55°C for 1 min, and 72°C for 2.5 min,
with a final extension at 72°C for 10 min. TaKaRa EX Taq Hot
Start version (TaKaRa Bio) was used for PCR. The first PCR

TABLE 1 | Sampling sites.

River Code Location Date Group category (average percentage of treated
effluent from WWTPs to river flow rates)
Group A: no WWTPs Group B: treated

effluent <10% Group C: treated effluent >10%

Tamagawa River TM1 N 35.8038, E 139.1941 1 September 2019 A
TM2 N 35.6975, E 139.3463 1 September 2019 A
TM3 N 35.6832, E 139.4125 1 September 2019 C (37%)
TM4 N 35.6438, E 139.5250 1 September 2019 C (38%)
TM5 N 35.6097, E 139.6246 1 September 2019 C (41%)

Tributaries of
Tamagawa River

Akikawa River AK N 35.7173, E 139.3172 1 September 2019 A
Yaji River YJ N 35.6867, E 139.3787 1 September 2019 A
Kitaasa River KA N 35.6803, E 139.3004 1 September 2019 A
Minamiasa River MA N 35.6622, E 139.3108 1 September 2019 A
Asakawa River AS N 35.6675, E 139.4199 1 September 2019 C (17%)
Nogawa River NO N 35.6238, E 139.6073 1 September 2019 A

Iruma River IR1 N 35.9117, E 139.1456 25 September 2019 A
IR2 N 35.8413, E 139.3685 25 September 2019 B (6%)

Arakawa River AR1 N 35.8923, E 139.5624 3 December 2019 B (1%)
AR2 N 35.8004, E 139.6471 3 December 2019 C (34%)

Hokota River HO N 36.1519, E 140.5123 5 February 2020 A
Koise River KI N 36.1634, E 140.2838 5 February 2020 B (3%)
Sakura River SK N 36.1131, E 140.1442 5 February 2020 A
Kokai River KK N 35.9268, E 140.1280 5 February 2020 B (1%)
Kinugawa River KN N 35.9674, E 139.9508 5 February 2020 B (1%)
Ohori River OH N 35.8731, E 139.9848 10 February 2020 A
Edogawa River ED N 35.7682, E 139.8809 10 February 2020 A
Sumida River SM N 35.6943, E 139.7888 10 February 2020 C (60%)
Nakagawa River NK N 35.7488, E 139.8625 10 February 2020 B (4%)
Shinshiba River SS N 35.7867, E 139.7485 10 February 2020 B (1%)
Motoara River MT N 35.8870, E 139.8362 10 February 2020 C (11%)
Sakawa River SW N 35.2746, E 139.1632 19 February 2020 B (2%)
Sagami River SG N 35.3738, E 139.3707 19 February 2020 A
Sakai River SI N 35.3226, E 139.4863 19 February 2020 C (52%)
Tsurumi River TR N 35.5347, E 139.6347 19 February 2020 C (100%)
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product was purified using the MinElute PCR Purification Kit
(Qiagen, Germany). The second PCR was performed using the
same primers with nanopore sequencing adapters (underlined):
5′CS-adp (5′-TTTCTGTTGGTGCTGATATTGCGGCATC
CAAGCAGCAAG-3′) and 3′CS-adp (5′-ACTTGCCTGTCG
CTCTATCTTCAAGCAGACTTGACCTGA-3′). The thermal
conditions of the second PCR were as follows: 15 cycles of
94°C for 30 s, 55°C for 1 min, and 72°C for 2.5 min. A final
extension at 72°C for 10 min was added. The second PCR
products were purified using the MinElute PCR Purification
Kit and checked by electrophoresis on 1.0% agarose gel at
100 V for 20 min.

For multiplex nanopore sequencing, barcoding adapters were
attached to the second PCR products using PCR Barcoding
Expansion Pack 1-96 (Oxford Nanopore Technologies,
United Kingdom) and LongAmp Taq 2× Master Mix (New
England BioLabs, MA, United States). The barcoding PCR
involved the following steps: initial denaturation at 95°C for
3 min, followed by 15 cycles of 95°C for 15 s, 62°C for 15 s,
and 65°C for 5 min. A final extension step at 65°C for 5 min was
added. The products were purified using AMPure XP (Beckman
Coulter, CA, United States). Finally, equal amounts of the
barcoded PCR products were pooled and mixed with DNA CS
(Ligation Sequencing Kit 1D, Oxford Nanopore Technologies),
NEBNext FFPE DNA Repair Buffer (New England BioLabs),
NEBNext FFPE DNA Repair Mix (New England BioLabs), Ultra
II End-prep reaction buffer (New England BioLabs), and Ultra II
End-prep enzyme mix (New England BioLabs). They were
incubated at 20°C for 5 min and at 65°C for 5 min. After
purification, adapter ligation was performed using the Ligation
Sequencing Kit 1D (SQK-LSK109) (Oxford Nanopore
Technologies). The prepared library was loaded onto an FLO-
MIN106D flow cell (R9.4.1) (Oxford Nanopore Technologies)
and sequenced on a MinION (Oxford Nanopore Technologies).
Base-calling and debarcoding were then performed using Guppy
(version 5.0.16) (Oxford Nanopore Technologies) with the super-
accuracy mode. Reads with shorter than 500 bp of sequence
length and lower than Q10 of mean quality were excluded using
Filtlong (version 0.2.0) (https://github.com/rrwick/Filtlong) from
further analysis. Error correction of the filtered reads was
performed using Canu (version 2.1.1) (Koren et al., 2017) with
default parameters. ARGs were detected using Staramr (version 0.
7.2) (https://github.com/phac-nml/staramr) with the setting of
identity ≥90% and overlap ≥60%. The nucleotide sequence data
are available at the DDBJ Sequence Read Archive under the
accession number DRA013066.

Microbial Community Analysis
Microbial community structures were analyzed for all samples
from rivers and WWTPs by amplicon sequencing of V4 regions
of 16S rRNA genes. A primer set of 515F (5′-
GTGCCAGCMGCCGCGGTAA-3′) and 806R (5′-
GGACTACHVGGGTWTCTAAT-3′) with the adapter
sequence was used (Caporaso et al., 2011). Paired-end
sequencing analysis was performed on the Miseq platform
(Illumina, CA, United States) using MiSeq Reagent Kit v3 kit
(2 × 300 bp) at Bioengineering Lab (Japan). Quality filtering was

conducted using the FASTX-Toolkit (version 0.0.14) (http://
hannonlab.cshl.edu/fastx_toolkit/) to extract reads, which
showed a perfect match with the primer sequences. Chimeric
sequences and noise were removed in DADA2 in QIIME 2.0
pipeline (version 2021.4) (Bolyen et al., 2019). Phylogenetic
analysis was performed using the q2 feature-classifier plugin of
QIIME 2.0 with reference sequences in Greengene (version 13_8)
(DeSantis et al., 2006). Operational taxonomic units were defined
by a sequence similarity threshold of 97%. The nucleotide
sequence data are available at the DDBJ Sequence Read
Archive under the accession number DRA013028.

Statistical Analysis
Statistical tests were performed using BellCurve for Excel (version
3.21) (Social Survey Research Information Co., Ltd., Japan).
Cluster analysis based on the Ward method and principal
coordinate analysis based on the Bray–Curtis dissimilarity
index was performed using R (version 4.0.5) with the vegan
package. Network analysis was performed based on Spearman’s
rank correlation coefficient between the relative abundances of
the target genes and the genus-level abundances of the microbial
community. Spearman’s rank correlation coefficient was
calculated using the psych package in R. Associations with a
correlation coefficient of >0.600 (p < 0.05) were visualized using
Gephi (version 0.9.2) (Bastian et al., 2009).

RESULTS

Comparison Between Quantitative
Polymerase Chain Reaction and
High-Throughput-Quantitative Polymerase
Chain Reaction
The ratio of target genes against 16S rRNA gene such as intI1/16S
rRNA gene, sul1/16S rRNA gene, and tetA/16S rRNA gene
assessed using conventional qPCR was compared with the
results of HT-qPCR to evaluate the quantitative performance
of HT-qPCR (Supplementary Figure S1). Both data showed
significantly positive correlations (Pearson’s correlation
coefficient r = 0.876 for intI1, r = 0.827 for sul1, and r = 0.613
for tetA; p < 0.05). However, the conventional qPCR results were
6.2, 2.6, and 5.0 times higher than those of HT-qPCR for intI1,
sul1, and tetA, respectively.

Detection Frequency of Antimicrobial
Resistance Genes and Mobile Gene
Elements in Rivers
Water samples were collected from 30 sites from 24 rivers. They
were categorized to Group A–C based on the percentages of
treated effluent from WWTPs to river flow rates. The water
quality parameters are summarized in Supplementary Table S3.
The abundance of E. coli in Group C (mean ± SD = 7.5 × 102 ± 7.5 ×
102 CFU/100ml, n = 9) was significantly higher than that in Group
A (2.2 × 102 ± 3.1 × 102 CFU/100ml, n = 13) and Group B (1.9 ×
102 ± 3.0 × 102, n = 8) (Steel–Dwass test, p < 0.05). In addition, the
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TCC of Group C (1.3 × 107 ± 1.1 × 107 cells/ml, n = 9) was
significantly higher than that of Group A (2.6 × 106 ± 1.7 × 106 cells/
ml, n = 13) (Steel–Dwass test, p < 0.05).

Among 67 target ARGs and MGEs, 9–37, 21–37, and 23–53
genes were detected in Groups A, B, and C, respectively. There was
a significant difference in the number of detected genes between
Groups A and C (Steel–Dwass test, p < 0.05). Furthermore, 56–60
and 28–42 genes were detected in Groups INF and EFF,
respectively. After the entry of WWTP effluent, the number of
ARGs and MGEs increased from 21 (TM2) to 41 (TM3), from 14
(IR1) to 36 (IR2), and from 37 (AR1) to 53 (AR2) in Tamagawa
River, Iruma River, and Arakawa River, respectively.

The genes that were frequently detected from >70% of river
water samples are listed in Table 2. ARGs conferring resistance to
aminoglycoside, beta-lactam, phenicol, multidrug, macrolide-
lincosamide-streptogramin B (MLSB), and sulfonamide were
included. For MGEs, class 1 integrons (intI1), transposons
(tnpA), and insertion sequences (ISPps and IS26) were
included. qacEdelta1 (multidrug resistance), aadA
(aminoglycoside resistance), and sul1 were detected in >90%
of the samples. These genes were also detected in most of the
influent and effluent samples. The average detection frequencies
of the top 20 genes were 71% (Group A), 85% (Group B), 85%
(Group C), 85% (Group INF), and 80% (Group EFF).

Profiles of River Water Resistome
The relative abundances of the ARGs and MGEs in the samples are
shown in Figure 2. There was a positive correlation between total
ARGs/16S rRNA genes and total MGEs/16S rRNA genes (Pearson’s
correlation coefficient r = 0.840, p < 0.05) (Supplemetary Figure S2).
The total relative abundances of the ARGs and MGEs were not
significantly different among Groups A, B, and C (Steel–Dwass test,
p > 0.05). ARGs conferring resistance to aminoglycoside, multidrug,
and sulfonamide were dominant among the analyzed ARGs in the
river water samples. No general relationship was noted between the
relative gene abundances and group category. The total relative gene
abundances of ARGs and MGEs at the downstream sites of
Tamagawa River, Iruma River, and Arakawa River were
2.4–4.7 times higher than those at the upstream sites. In particular,
the downstream site of Arakawa River (AR2), which was located
immediately after the effluent discharge of a largeWWTP in Arakawa
River, showed relative gene abundances equivalent to those of the
influent samples. The relative gene abundances of the influent samples
were generally higher than those of the other groups, whereas
wastewater treatment reduced the relative gene abundances by
30–62%. The abundances of MLSB and tetracycline resistance
genes in the influent samples decreased following treatment. In
contrast, the relative abundances of multidrug resistance genes as
well as aminoglycoside and sulfonamide resistance genes increased or
remained constant in the effluent samples. For MGEs, the samples
with higher abundances of ARGs/16S rRNA genes also showed higher
abundances of MGEs/16S rRNA genes. Extraordinary higher
abundances of MGEs/16S rRNA genes were observed at the
sampling site in Yaji River (YJ in Group A) than those at the sites
in the other tributaries of Tamagawa River.

The river and wastewater samples were grouped based on the
relative abundances of ARGs and MGEs by Cluster analysis, as

shown in Figure 3. They were categorized into three major
clusters: Clusters 1–3. Cluster 1 included wastewater samples.
Sub-clusters 1a and 1b contained effluent and influent samples,
respectively. The sampling sites of Sakai River (SI) and
downstream of Arakawa River (AR2) in Group C, which were
considerably affected by effluent, were also included in sub-
cluster 1a. The river samples in Groups A–C were mixed in
Cluster 2. Cluster 3 was separated into sub-clusters 3a, 3b, and 3c.
Sub-clusters 3a and 3b included the upstream sites of Tamagawa
River (TM1 and TM2 in Group A) and its tributaries, and the
downstream sites of Tamagawa River (TM3–TM5 in Group C)
and several other rivers were included in sub-cluster 3c.

As compositional changes in ARGs and MGEs were observed
between upstream and downstream sites in Tamagawa River,
the impact of effluent was also observed in cluster analysis for
Iruma River (IR1: Cluster 3a, IR2: Cluster 2a) and Arakawa
River (AR1: Cluster 3c, AR2: Cluster 1a). Furthermore, after
the entry of WWTP effluent into the river, the emergence or
increase of ARGs such as ESBL genes (blaVEB, cfxA, and
blaGES), MLSB genes (ermF and mphA), and tetracycline
resistance genes (tetQ, tetX, and tetE), as well as MGEs
(Tp614 and Tn3), were observed.

Microbial Community Structures
The microbial community structures were analyzed by amplicon
sequencing of 16S rRNA genes. Comamonadaceae, Flectobacillus,
and Flavobacterium were dominant in the river water samples.
Arcobacter, Acinetobacter, and Bacteroides were dominant in the
influent samples (Supplementary Figure S3). The community
structures were compared using principal coordinate analysis
(Figure 4). Axis 1 distinguished river water and wastewater
samples, whereas axis 2 distinguished influent and effluent
samples. The microbial community structures in Tamagawa River
(upstream and downstream) and its tributaries were similar. However,
the community structures in Ohori River (OH) and Hokota River
(HO) inGroupAwere different from those in the other sites inGroup
A. The community structures in Sakai River (SI), Tsurumi River (TR),
Sumida River (SM), and downstream of Aarakawa River (AR2) in
Group C were more related to those in effluent or influent features.
Although a clear transition of community structure driven by effluent
discharge was observed in Iruma River (IR1 and IR2) and Arakawa
River (AR1 andAR2), the difference was not clear in Tamagawa River
(TM1–2 and TM3–5).

The co-occurrence of microbial taxa with ARGs and MGEs was
visualized by network analysis, as shown in Figure 5. Four major
modules (Modules 1–4) were identified. Module 1 was composed of
taxa that were abundant in the intestinal flora, such as
Enterobacteriaceae, Clostridiales, Aeromonadaceae, Streptococcus,
Bifidobacterium, Prevotella, and Faecalibacterium. They were
correlated with genes conferring resistance to tetracycline (tetA,
tetE, tetQ, and tetX), aminoglycoside (aadA), beta-lactam (cfxA and
blaVEB),MLSB (ermF), and phenicol (catB3). Transposons (Tp614 and
Tn3) were also related to Module 1. Module 2 was composed of
Bacteroides,Arcobacter, andAcinetobacter, whichwere correlatedwith
ARGs such as aminoglycoside resistance genes (aadA1, aadA2, and
strB) as well as an insertion sequence (ISCR1). In Module 3, class 1
integrons and genes frequently associated with class 1 integron GCs
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(sul1 and qacEdelta1) were clustered with several taxa such as
Bacteroidales and Zoogloea. In Module 4, aminoglycoside
resistance gene (aadA6) and multidrug resistance gene (pcoA), as
well as MGEs (tnpA and IS26), were associated with several taxa such
as Pseudomonas and Parabacteroides.

Relationship BetweenClass 1 Integrons and
Other Genes
Two primer sets for class 1 integrons (AY293 and AY289) were
employed in HT-qPCR. These primer sets were validated for use in
HT-qPCR analysis (Stedtfeld et al., 2018). AY293 was originally
designed to target clinical class 1 integrons (Gillings et al., 2015),
andAY289was designed for optimizing qPCR (Muziasari et al., 2014).
Both primer sets demonstrated almost consistent results
(Supplementary Figure S4). Based on the HT-qPCR data, the
genes, that exhibited a positive correlation coefficient with class 1
integrons (AY293 and AY289) were screened (Pearson’s correlation
coefficient r > 0.400, p < 0.05) (Figure 6). The relative abundances of
ARGs and MGEs such as sul1, qacF/H (multidrug resistance), dfrA27
(trimethoprim resistance), tnpA, and qacEdelta1, were highly
correlated with class 1 integrons. Although most genes were
correlated with intI1 determined by both AY293 and AY289, some
genes, such as tetR (tetracycline resistance), dfrA1 (trimethoprim
resistance), ereA (MLSB resistance), IS26, and blaGES (beta-
lactamase), demonstrated significant correlation with either intI1
(AY293) or intI1 (AY289). In addition to ARGs and MGEs, qPCR
analysis also showed that intI1 was correlated with crAssphage
(Supplementary Figure S5, r = 0.600, p < 0.05).

Characterization of Class 1 Integron GCs in
River Samples
Class 1 integron GCs were analyzed by amplicon sequencing by a
MinION nanopore sequencer. Amplicon sequencing depths of
12.7–29.1 Mb with average raw read lengths of 512–1,080 bp were
obtained (Supplementary Table S4). The lengths of the most
GCs were found to range from <500 bp to 2000 bp after quality
filtering (Supplementary Figure S6). Then, 571–1,228 contigs
ranging from 500 to 4,580 bp detected in each sample were
analyzed (Supplementary Table S5). The median contig size
ranged from 593 to 1,489 bp (Supplementary Table S5). While
35% of the contigs did not contain ARGs, 57%, 8%, and 1% of the
contigs contained one, two, three ARGs, respectively. Overall,
148 GCs carrying ARGs were detected, including 65 GCs with
one ARG, 76 with two ARGs, and 7 with three ARGs
(Supplementary Table S6). The percentages of GCs without
ARGs were >65% in TM1, TM2, AK, KA, MA (upstream of
Tamagawa River and its tributaries), and IR1 (upstream of Iruma
River) in Group A (Supplementary Figure S7). Conversely,
>90% of the contigs in some rivers in Groups A–C and Group
INF carried ARGs (Supplementary Figure S7). In the upstream
and downstream sites of Tamagawa River and Iruma River, the
percentages of GCs with ARGs increased from 35% (TM2) to 63%
(TM3) and from 22% (IR1) to 68% (IR2), respectively
(Supplementary Figure S7). Figure 7 shows the relative
abundances of contigs of class 1 integron GCs containing
ARGs. The information of representative class 1 integron GCs
containing ARGs is summarized in Table 3. While ARGs
encoding resistance to aminoglycoside, beta-lactam, and

TABLE 2 | Target genes detected by HT-qPCR from >70% of river water samples. The percentages of positive samples in each group are shown.

Antimicrobial
category

Gene HT-qPCR Assay ID River WWTP

Total (n = 30) G (%)roup
A (n = 13)

G (%)roup
B (n = 8)

G (%)roup
C (n = 9)

G (%)roup
INF (n = 4)

G (%)roup
EFF (n = 4)

M (%)DR qacEdelta1 AY236 97 92 100 100 100 100
AMG aadA AY10 93 85 100 100 100 100
SUL sul1 AY245 90 92 88 89 100 75
MGE ISPps AY309 87 85 88 89 100 100
AMG aadA2 AY331 83 69 88 100 100 100
BLA blaGES AY125 83 62 100 100 100 75
AMG strB AY24 80 69 75 100 100 100
PHE cmlA AY41 80 77 100 67 75 75
MLSB ermF AY46 77 46 100 100 100 100
MLSB ermX AY546 77 54 88 100 50 50
PHE cmlA AY35 77 62 75 100 100 75
MGE intI1 AY293 77 77 88 67 100 75
MGE tnpA AY300 77 77 88 67 75 75
AMG aadA1 AY395 73 69 88 67 100 100
MDR qacEdelta1 AY218 73 77 50 89 100 75
MLSB ereA AY528 73 54 88 89 50 75
MGE intI1 AY289 73 77 75 67 100 50
MGE tnpA AY299 73 77 63 78 100 75
BLA blaVEB AY105 70 38 100 89 100 50
MDR emrD AY208 70 77 75 56 75 50
MGE IS26 AY512 70 77 63 67 75 100

Note: AMG: aminoglycoside, BLA: beta-lactam, MDR: multidrug resistance, MGE: mobile gene elements, MLSB: macrolide-lincosamide-streptogramin B, PHE: phenicol, SUL:
sulfonamide.
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multidrug were dominant, specific features were also observed in
different samples. blaGES-24 (beta-lactam resistance), aadA2, and
qacH (multidrug resistance) were prevalent in the GCs in most of
the samples. aac(6′)-31 and aadA1 (both aminoglycoside
resistance) were more abundant in the samples other than
some rivers in Group A. ere(A) (MLSB resistance) was
frequently detected in the river samples. At the same time, it
was not dominant in Groups INF and EFF. The GC containing
two ARGs (aadA2-qacH) was found in rivers and effluent, but it
was rare in the influent samples. Tandem array of aac(6′)-IIa-
blaOXA-21-catB3 (aminoglycoside resistance, beta-lactam

resistance, and phenicol resistance) was only detected in
influent samples of WWTP A and B.

DISCUSSION

AMR surveillance in wastewater and aquatic environments is
required to fill the gap of One Health. The present study was the
first to employ HT-qPCR to determine the prevalence of ARGs
and MGEs in urban rivers in Japan. Among the genes detected
from >70% of the river water samples, sul1 and qacEdelta1 were

FIGURE 2 | Relative gene abundances of ARGs and MGEs based on gene category: (A) ARGs and (B) MGEs. AMG: aminoglycoside, BLA: beta-lactam, MDR:
multidrug resistance, MLSB: macrolide-lincosamide-streptogramin B, PHE: phenicol, POL: polymyxin, QUI: quinolone, SUL: sulfonamide, TET: tetracycline, TMP:
trimethoprim.
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also reported as “core wastewater ARGs and MGEs”, which were
present in all influent and effluent samples of 12 WWTPs in
Europe (Pärnänen et al., 2019). Moreover, ARGs andMGEs, such
as aadA, strB, ermF, intI1, tnpA, and ISPps, were also categorized
as “persistent ARGs and MGEs”, which remained in >90% of the
effluent samples (Pärnänen et al., 2019). As these genes were
detected in most of the influent and effluent samples in the
present study, the core/persistent ARGs and MGEs associated

with wastewater could be prevalent in aquatic environments in
Japan. Because intI1 and ISPps were even detected at upstream
sampling sites of Tamagawa River (TM1) and Iruma River (IR1)
with lower human activity impact, these genes could possibly
serve as sensitive markers of anthropogenic pollution. Further
study is necessary to identify the prevalence and sources of these
genes in upstream area.

Effluent from WWTPs affect the resistome in recipient rivers
(Rodriguez-Mozaz et al., 2015; Cacace et al., 2019; Khan et al.,
2019; Pärnänen et al., 2019; Lai et al., 2021). The significantly
positive correlation between intI1 and crAssphage in the studied
rivers suggests that class 1 integrons and the associated ARGs and
MGEs could be originated from human feces (Chen et al., 2019a;
Karkman et al., 2019; Agramont et al., 2020; Nguyen et al., 2021).
Clear shifts in the relative abundances and profiles were observed
after the entry of treated effluent in Tamagawa River, Iruma
River, and Arakawa River, which is consistent with the qPCR
results in Tamagawa River (Liu et al., 2020). Drastic changes in
the microbial community were also observed from upstream to
downstream in Iruma River and Arakawa River, suggesting that
the microbial community in the effluent could mostly determine
the resistome in these rivers. The resistomes in downstream of
Arakawa River (AR2) and Sakai River (SI), which had higher
percentages of effluent in river flow (AR2: 34%, SI: 52%), were
clustered with the effluent resistome. The similarity in resistome
profiles between effluent and recipient rivers in urban areas was
also demonstrated using HT-qPCR (Huang et al., 2019; Khan
et al., 2019). Conversely, the classification of sampling sites based
on the ratio of effluent to river flow rates (Groups A–C) was not
always associated with the relative abundance and profiles of

FIGURE 3 | Cluster analysis of the ARG and MGE profiles.

FIGURE 4 | Principal coordinate analysis of the microbial community
structures.
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ARGs and MGEs. Even in Group A, exceptionally higher
abundances of ARGs and MGEs were observed in Yaji River
(YJ), Hokota River (HO), Sakura River (SK), and Ohori River
(OH). As categorization of the sites in this study was simple, the
actual contribution of effluent at the sampling occasion could be
different from the estimated percentages. The performance of
WWTPs in removing ARB and ARGs can fluctuate (Harnisz

et al., 2020), and additional pollution sources such as livestock
industry and decentralized treatment facilities in rural areas
should be considered, especially in rivers in rural area. More
intensive sampling considering watershed characteristics is
necessary to demonstrate the specific resistome profiles in
these rivers.

It is important to know the hosts of ARGs and MGEs to
determine the health risks. While single-cell sorting (Chijiiwa
et al., 2020; Wang et al., 2020); emulsion, paired isolation, and
concatenation PCR (Hultman et al., 2018); and high-throughput
chromosome conformation capture (Stalder et al., 2019) can
more directly identify the hosts of ARGs and MGEs, co-
occurrence of specific taxa and these genes is also informative
to explore potential hosts (Quintela-Baluja et al., 2019; Han et al.,
2020; Yu et al., 2021). Interestingly, popular taxa related to some
ESKAPE (Enterobacteriaceae, Acinetobacter, Aeromonadaceae,
and Pseudomonas) were screened by network analysis. The
associations observed in Enterobacteriaceae and
Aeromonadaceae (tetA, aadA, and catB3), Acinetobacter
(aadA1, aadA2, and strB), and Pseudomonas (aadA6) were
endorsed by the comprehensive antibiotic resistance database
(Alcock et al., 2020). Although network analysis showed that class
1 integrons and the related genes (intI1, sul1, and qacEdelta1)
were associated with miscellaneous taxa, the whole genome
database revealed that class 1 integrons are mostly carried by

FIGURE 5 | Network analysis of co-occurrence pattern among microbial taxa, ARGs, and MGE based on Spearman’s rank correlation coefficient. Associations
with Spearman’s rank correlation coefficient of >0.600 (p < 0.05) were selected. Different modules are shown in different colors. The size of nodes represents the number
of associations, and the width of lines is proportional to Spearman’s rank correlation coefficient.

FIGURE 6 | Genes with positive correlation coefficient with class
1 integron-integrase genes. Open bars indicate p > 0.05.
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three families: Enterobacteriaceae, Pseudomonadaceae, and
Moraxellaceae in Gammaproteobacteria (Zhang et al., 2018).
Spearman’s rank correlation coefficients between class 1 integrons
and these taxa, such as Enterobacteriaceae, Pseudomonas, and
Acinetobacter, were only 0.108–0.363, which suggests that other
methods should be used to validate the result of network analysis.

Many studies reported that class 1 integrons are a promising
indicator of anthropogenic pollution of ARGs (Gillings et al.,
2015; Pärnänen et al., 2019; Zheng et al., 2019). The high
prevalence and correlation with other ARGs and MGEs in the
river samples suggests that intI1 is a representative target in
rivers. Some ARGs and MGEs that showed stronger correlation

FIGURE 7 | Composition of contigs of class 1 integron GCs containing ARGs.

TABLE 3 | Representative ARGs present in class 1 integron GCs.

ARGs in GC (Phenotype) ResFinder search

Identity (%) (average) Overlap (%) (average) Accession number of
References sequence (length)

blaGES-24 (BLA) 99.6 99.9 AB914515 (864 bp)
aadA2 (AMG) 99.5 99.2 NC010870 (819 bp)
qacH (MDR) 99.4 62.7 FJ172381 (945 bp)
aadA2, qacH (AMG, MDR) aadA2 99.8 100 JQ364967 (792 bp)

qacH 99.3 62.8 FJ172381 (945 bp)
aadA5 (AMG) 99.6 99.8 AF137361 (789 bp))
aadA1 (AMG) 99.7 99.7 FJ591054 (792 bp)
aac(6′)-31 (AMG) 99.6 99.7 AM283489 (519 bp)
ere(A) (MLSB) 99.6 99.9 DQ157752 (1,221 bp)
dfrA32 (TMP) 99.5 100 GU067642 (474 bp)
ant(3″)-Ia (AMG) 99.3 91.1 X02,340 (972 bp)
aadA2b, blaOXA-1 (AMG, BLA) aadA2b 99.7 100 D43625 (780 bp)

blaOXA-1 99.8 100 HQ170510 (831 bp)
blaGES-5 (BLA) 99.5 98.0 DQ236171 (864 bp)
blaGES-3 (BLA) 99.5 100 AB113580 (864 bp)
blaOXA-21 (BLA) 99.5 99.5 AB626885 (828 bp)
aac(6′)-IIa, ere(A) (AMG, MLSB) aac(6′)-IIa 99.0 99.7 M29695 (555 bp)

ere(A) 99.4 100 DQ157752 (1,221 bp)
aac(6′)-IIa, blaOXA-21, catB3 (AMG, BLA, PHE) aac(6′)-IIa 99.1 100 M29695 (555 bp)

blaOXA-21 99.6 100 AB626885 (828 bp)
catB3 99.9 100 U13880 (633 bp)

dfrA27 99.4 100 FJ459817 (474 bp)
aac(6′)-IIc, catB8 (AMG, PHE) aac(6′)-IIc 99.5 100 NC012555 (582 bp)

catB8 99.7 100 AF227506 (633 bp)

AMG: aminoglycoside, BLA: beta-lactam, MDR: multidrug resistance, MLSB: macrolide-lincosamide-streptogramin B, PHE: phenicol, TMP: trimethoprim.
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with intI1 could be genetically associated with class 1 integron
GCs. For instance, sul1 and qacEdetlta1 are typically fused genes
in the 3′ conserved segment of class 1 integron GCs (Gillings,
2014). The other selected ARGs, such as dfrA27 (Wei et al., 2008),
dfrA1 (Zhao et al., 2020), strB (Le-Vo et al., 2019), ereA (Malek
et al., 2015), aadA6 (Mirahsani et al., 2016), aadA2 (Ahmed and
Shimamoto, 2004), and blaGES (Maehana et al., 2021), were also
detected from class 1 integron GCs of Gram-negative bacteria.
For MGEs, class 1 integron-dfrA5-IS26 element was found in
E. coli (Dawes et al., 2010), and transposition genes such as tnpA
were associated with class 1 integrons (Ghaly et al., 2017). These
reports were consistent with the results of HT-qPCR,
demonstrating that HT-qPCR can dissect the relationship
between class 1 integrons and other ARGs/MGEs in aquatic
environments.

ARGs conferring resistance to aminoglycoside, beta-lactam,
multidrug, MLSB, phenicol, and trimethoprim were frequently
acquired in class 1 integron GCs in urban rivers and wastewater
samples analyzed in the present study, which is consistent with
previous reports (Ma et al., 2017; An et al., 2018; Gatica et al.,
2019). The acquisition of specific ARG types by class 1 integrons
was demonstrated by whole-genome database analysis (Zhang
et al., 2018). Although various GC types were detected in the
present study, major GCs were not found in other studies
analyzing class 1 integron GCs in wastewater by amplicon
sequencing using the same primer set (Ma et al., 2017; An
et al., 2018). As the composition of class 1 GCs was found to
be different in river water, sewage, feces, and livestock wastewater
(Ma et al., 2017), the diversity of class 1 integron GCs in aquatic
environments could likely depend on geographical and
socioeconomic settings.

The percentage of GCs containing ARGs was lower in
upstream rivers in Group A than that in the other groups.
Moreover, the composition of GCs containing ARGs was not
necessarily identical among different rivers. Thus, GC profiles in
aquatic environments may indicate AMR fingerprints in each
watershed. Quantitative monitoring of class1 integrons and
qualitative features of its GCs can be integrated for efficient
resistome monitoring in aquatic environments. For example,
aac (6′)-31 and aadA1 in GCs were more abundant in the
samples other than upstream rivers, indicating the impact of
wastewater effluent. aadA2-qacH was present in rivers and
effluent but not in influent, suggesting that class 1 integron
GCs containing aadA2-qacH could be enriched in wastewater
treatment. While ere(A) was frequently detected in rivers and
wastewater samples, ere(A) acquired by class 1 integrons was
more abundant in rivers than influent and effluent samples. This
gap suggests that the genetic context of ere(A) could be different
in rivers and wastewater.

Common GC types containing blaGES-24, aadA2, or qacH were
observed in river (Groups A–C) and wastewater (Groups INF and
EFF) samples. HT-qPCR also revealed a significantly stronger
correlation between class 1 integrons and ARGs such as blaGES,
aadA2, and qacF/H. Class 1 integron GCs containing aadA2 or
qacH were previously reported in a riverine system (Amos et al.,
2018). The prevalence of blaGES in class 1 integron GCs in
wastewater effluent in Cyprus and Israel was demonstrated,

while blaOXA associated with class 1 integron GCs was
dominant in effluent samples in other European countries
(Gatica et al., 2016). Although the GCs containing aadA2 or
qacH were present in the database of integron GCs (INTEGRAL)
(Moura et al., 2009), the GC containing blaGES-24 has not yet been
registered in the database. blaGES-24 encodes a variant of GES,
which is class A beta-lactamase. GES-4, -5, -6, -14, which are
characterized by a substitution of Gly170Ser, show carbapenem
hydrolysis activity (Bontron et al., 2016). As GES-24 has the same
substitution, it has potential to hydrolyze carbapenem. blaGES-24
was carried by bacteria, such as Aeromonas hydrophila,
Citrobacter freundii, Enterobacter cloacae, Klebsiella
pneumoniae, and Pseudomonas aeruginosa (Alcock et al.,
2020). Four tandem copies of blaGES-24 were detected from
class 1 integron GCs on the plasmids of A. hydrophila, which
was isolated from clinical wastewater in Japan (Maehana et al.,
2021). Although Aeromonas spp. in aquatic environments could
be the key host of blaGES-24, it is also possible that a wide range of
bacteria can carry class 1 integron GCs containing blaGES-24. This
ARGwas prevalent in rivers in urban areas and wastewater as well
as in upstream rivers. More consideration should be given to the
dissemination and evolution of blaGES variants associated with
class 1 integrons in aquatic environments.

As revealed using conventional qPCR, the relative abundances
of the tested genes were 2.six to six times higher than those
revealed using HT-qPCR. As the same thermal conditions were
employed for all target genes in HT-qPCR, the amplification
efficiency may not always be optimized for each gene (Waseem
et al., 2019). Although the results of both methods were highly
correlated, the quantified values should be carefully interpreted
when they are compared with other studies. Moreover, a
hydrolysis probe-based HT-qPCR protocol should be
compared for more specific quantification (Khan et al., 2019).
The technical limitations of class 1 integron GCs analysis include
primer coverage of class 1 integron GCs and the accuracy of long-
read sequencing. The primer set for class 1 integron GCs (5′CS
and 3′CS) that were used in this study was also used in other
studies on amplicon sequencing of class 1 integron GCs in aquatic
environments (Ma et al., 2017; An et al., 2018). However, the
coverage of this primer set was 23.6% of 2,153 integrons in the
database (Zhang et al., 2018), which suggests a greater diversity of
class 1 integron GCs in the environment. Novel ARGs have been
discovered from class 1 integron GCs such as sul4 (sulfonamide
resistance) (Razavi et al., 2017) and gar (garosamine-specific
aminoglycoside resistance) (Bohm et al., 2020). Therefore, a
comprehensive approach such as metagenomic analysis and
the amplicon sequencing approach are necessary to reveal the
whole picture of class 1 integron GCs in aquatic environments. As
co-occurrence of class 2 and 3 integrons with specific ARGs have
been reported (Lai et al., 2021), the different integrons could
contribute to the spread of specific ARGs in aquatic environments
(Gillings, 2014; Deng et al., 2015; An et al., 2018). Regarding long-
read sequencing, nanopore technology can circumvent the
assembly errors of short reads, while the sequencing error
rates of long-read sequencing are generally higher (Weirather
et al., 2017). Although error correction of raw reads was applied
and ARGs with high identity and overlap values in the polished
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reads were explored in this study, the validation by short-read
sequencing with higher accuracy could compensate for the
limitations of long-read sequencing.
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