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Rapid urbanization across the world has put an enormous burden on our environment.
Cities from developing countries, in particular, are experiencing high air pollution levels. To
address this challenge, the new WHO global air quality guidelines and various nations are
mandating cities to implement clean air measures. However, these implementations are
largely hindered by limited observations, siloed city operations, absence of standard
processes, inadequate outreach, and absence of collaborative urban air quality
management (UAQM) governance. The world is experiencing transformative changes
in the way we live. The 4th industrial revolution technologies of artificial intelligence, Internet
of Things, big data, and cloud computing bridge gaps between physical, natural, and
personal entities. Globally, smart cities are being promulgated on the premise that
technologies and data aid in improving urban services. However, in many instances,
the smart city programs and UAQM services may not be aligned, thereby constraining the
cumulative advantage in building urban resilience. Considering the potential of these
technologies as enablers of environmental sustainability, a conceptual urban computing
framework “SmartAirQ” for UAQM is designed. This interdisciplinary study outlines the
SmartAirQ components: 1) data acquisition, 2) communication and aggregation, 3) data
processing and management, 4) intelligence, 5) application service, 6) high-performance
computing- (HPC-) cloud, and 7) security. The framework has integrated science cloud
and urban services aiding in translating scientific data into operations. It is a step toward
collaborative, data-driven, and sustainable smart cities.
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1 INTRODUCTION

Globally, growing economic opportunities fuel rapid
urbanization (United Nations, 2019). While aiding the
economy, this growth is affecting the environment and living.
For instance, air pollution is among the top five global causes of
mortality (WHO, 2018; Lelieveld et al., 2020). At the same time,
short- and long-term pollution exposure have severe health
impacts, such as chronic respiratory diseases, asthma, cancer,
and dementia (Balakrishnan et al., 2019). For emerging
economies, this burden is unproportionate (Landrigan et al.,
2018; Anenberg et al., 2019). For example, air pollution is a
major health emergency in India, with 1.67 million deaths,
accounting for 17.8% of total deaths (Pandey, 2021). Over 100
Indian cities exceed the National Air Quality and WHO
standards (CPCB, 2019). This air pollution burden has
translated into incremental health expenses, causing a loss of
about $95 billion, amounting to a 3% of Indian GDP in 2019 (CII,
Dalberg, 2021). Recently, the COVID-19 pandemic has
exacerbated it (Achakulwisut et al., 2019; Khan et al., 2021).

Governmental programs, such as the national clean air
program and smart city initiatives, are steps toward addressing
these challenges (India Smart City, 2015; CPCB, 2019). However,
these programs often run in parallel, thereby diminishing the
opportunity to synchronize the activities toward the common
goal of improving quality of life. Though pollution mitigation
policies are defined, a significant gap remains when implementing
them (UNEP, 2021). Consequently, smart cities struggle to show
sustainability benefits (Komninos et al., 2015; Parisar, 2020).
With less than a decade remaining for Sustainable
Development Goals 2030, there is an urgent need for
overarching solutions for cities.

Data-driven solutions are important for monitoring the
progress toward sustainability goals. Its criticality is reflected
in the statement of the United Nations Secretary-General in
2018, “The availability of quality, accessible, open, timely and
disaggregated data is vital for evidence based decision-making
and the full implementation of the 2030 Agenda and realization
of its ambitions of leaving no one behind.” Accordingly,
integrated impact and data-based environmental services are
increasingly promoted (Baklanov et al., 2018; González et al.,
2021). These services entail seamless access to interdisciplinary
data and processing resources for different stakeholders (Bibri
and Krogstie, 2020).

Such a service, urban air quality management (UAQM),
encompasses multi-sectorial functions, data and information
exchanges on pollution sources, mitigation, health burden,
socioeconomic impacts, and policy formulation. For its
effectiveness, real-time and near-real-time data communication
is required. However, these data are often created in silos or not
available in cross-sectorial usable form, necessitating integrated
data governance translating data into knowledgeable
information. Despite the number of smart city concepts,
research on urban data governance for sustainable
development is underestimated (Paskaleva et al., 2017).

Smart city technologies, such as the 4th industrial revolution
(4IR) technologies of Internet of Things (IoT), artificial

intelligence (AI), and cloud computing, are providing solutions
to these problems by ubiquitous data creation, efficient predictive
and prescriptive analysis, and effective information dissemination
(ITU, 2015; Mabkhot, 2021). In this context, urban computing
(UC) is an emerging theme connecting urban sensing, data, and
city services such as environment, transport, energy, and
economy, bringing insights into sustainable operations
(Kindberg et al., 2007; ITU 2020; Lytras et al., 2020).

Given the significant role of UC in urban sustainability, this
study provides a conceptual framework for next-generation
UAQM as part of ongoing interdisciplinary research on
developing environmental cyberinfrastructure such as the
system of systems (Kaginalkar et al., 2022). The ultimate
objective is to provide a cross-sector data governance
ecosystem for smart cities built from the UC framework
derived from our understanding of empirical evidence of 4IR
technology applications (Kaginalkar et al., 2021) and participative
research (Kaginalkar et al., in preparation).

The study presents the design of SmartAirQ—an UC
framework with multi-sector real-time and strategic data
governance and technology integration. SmartAirQ is a hybrid
cross-sector data framework with varied stakeholders/users, such
as researchers (atmosphere, air quality, health, economics,
machine learning (ML), and information technology),
governance (policymaker, municipality environment
department, and regulatory boards), citizens, and non-
governmental organizations as end users. The system has a
high-end distributed backend data and computing ecosystem
and user-specific decision support system (DSS), disseminating
easily understandable information. Although the framework is
described with Indian smart cities, the FAIR (Findable,
Accessible, Interoperable, Reusable) data-based architecture is
scalable across world cities (Wilkinson et al., 2016). With
worldwide air pollution concerns, SmartAirQ has broad
relevance and is likely to be suitable for emerging cities
(Pinder et al., 2019).

Due to the space limitation, this study focuses on the data
governance and framework features. This study is organized as
follows: Section 2 discusses the air quality and smart city
context, Section 3 describes the methodology, Section 4
discusses the SmartAirQ building blocks considered for the
design, Section 5presents the derived conceptual SmartAirQ
architecture, and Section 6 has representative use cases,
highlighting the data flow and stakeholder actions. This
study is summarized in Section 7.

2 THE CONTEXT

Urban air pollution is influenced by geography, meteorology,
morphology, natural events, and anthropogenic activities (Oke
et al., 2017). Apart from local impact, long-range transport
contributes to pollution and climate change (Baklanov et al.,
2016). The UAQM is determined by the information on hyper-
local pollutant source-concentration, its residency period,
transport from other regions, and pollution impacts on
socioeconomic conditions.
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Managing the urban air quality is a cross-functional process,
from identifying emission sources to actual removal from the
atmosphere for protecting human beings (Gulia et al., 2015).
UAQM is often supported by scientific research, policies,
continuous assessment of mitigation measures, and awareness
programs (Baklanov et al., 2020). It has close linkages with other
city functions, such as solid waste management, traffic,
infrastructure, health, industry, urban planning, and social
welfare, requiring timely access to multivariate data.
Improvement in its effectiveness necessitates city governments
for capacity building of data governance and intelligent decision-
making (UNEP, 2021).

In this context of urban governance, globally, smart cities are
promulgated as engines of urban resiliency, attracting the
attention of researchers, practitioners, and governments
(Albino et al., 2015). Often, in these smart cities, information
and communication technology is considered an enabler for
social, economic, and environmental transitions and
collaborative governance (Nam and Pardo, 2011). A number
of studies have attributed technology key characteristics to these
transitions to smart cities, such as big data (Hashem et al., 2016;
Paskaleva et al., 2017; Bibri and Krogstie, 2020), IoT (Zanella
et al., 2014; Ahlgren et al., 2016), AI (Azevedo Guedes et al., 2018;
Allam and Dhunny, 2019), cloud computing (Khan et al., 2015),
crowdsourcing (Stojanovic et al., 2016; Alvear et al., 2018),
software architecture (Viqueira et al., 2020; Majumdar et al.,
2021), and city services (Lv et al., 2018; Badii et al., 2019). Despite
these studies, standardization of UAQM data acquisition,
advanced data processing, and stakeholder participation
methods are limited (Creutzig et al., 2019).

In this context, India’s smart city mission provides an
opportune platform for environmental data governance (India
Smart City, 2015). Even though the mission is expected to address
environmental sustainability, there is a disconnect between the
smart city services and plans mandated by the national clean air
program (CPCB, 2019). Moreover, current smart cities are driven
by technology vendors or built infrastructure and have a limited
focus on environmental services (Randhawa and Kumar, 2017;
Smith et al., 2019). Even through some air quality information
portals with in situ1 data, low-cost sensors (LCS),2 andmodel data
for a few Indian cities (Beig et al., 2015; Jena et al., 2021) are
available, a multi-functional participative DSS across the value
chain of UAQM is not yet evident (Parisar, 2020; Verma, 2021).
Consequently, cities face implementation ambiguity, siloed
operations of stakeholders, and limited progress toward
pollution reduction. These gaps necessitate a data and
technology ecosystem enabling seamless cross-sector functions.

UC plays a multi-faceted role in UAQM with operation
digitalization, real-time data acquisition, data processing, and
dissemination. For instance, IoT helps cities access granular city
data by connecting physical systems and humans seamlessly
(Toma et al., 2019). Fast data processing with AI and HPC-
cloud services enables real-time data analytics and metadata

sharing (Bibri, 2019). Above all, the open data priorities of
smart cities are bringing values to cyber-physical-governance-
human systems by accessing and hyper-looping back the data for
further intelligence building (Wilkinson et al., 2016; Allam and
Dhunny, 2019). Considering this potential, this study discusses
design aspects of an institutionalized framework as a smart city
service tool for data governance and individual decisions.

3 METHODOLOGY

The methodology is built to help answer the following research
questions:

(1) What are the different data elements of UAQM in the context
of emerging smart cities and the value they bring in as an
interoperable system?

(2) How can technologies be optimally connected for cross-
sector data acquisition, aggregation, processing, modeling,
stakeholder participation, and dissemination?

(3) What can be the overarching design of UC-enabled UAQM
as a standard platform, scalable across smart cities?

To address these questions, we adopted the triangulation
method (Figure 1) of qualitative analysis by developing
convergence evidence of causal relationships (Yin, 2016; Sekayi
and Kennedy, 2017). It includes systematic framework analysis of
UC evidence through literature review (Given, 2008), smart city
case studies (Baškarada, 2014), and empirical insights through
stakeholder analysis (Reed et al., 2009). Involving stakeholders in
designing the environmental solutions is increasingly adopted as
an effective way of co-production of climate services bringing the

FIGURE 1 | Triangulation qualitative research methodology with
empirical evidence through literature review, case study analysis, and
participative stakeholder interviews.

1https://app.cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing.
2(https://ncap.carboncopy.info/caaqms/).
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synergetic research-practice-research perspective (Lim et al.,
2018; Vincent et al., 2018; Fragomeni et al., 2020). In
accordance, we followed an idealized design approach, wherein
“information on the futuristic system” is sought from the users,
leading to product realization (Ballejos and Montagna, 2011).

UAQM involves national, regional, and local cross-sector
stakeholders. These can be classified as follows: 1) those that
have a role in environmental governance and policies; 2) those
who are enablers and solution providers broadly referred to as
researchers and practitioners; and 3) those impacted by the
decisions and solutions (e.g., industry and citizens). Eliciting
stakeholder requirements and perception on data and
technologies, we conducted focus interviews with ten
participants, including members from national and state
regulatory agencies, doctors, air quality modelers,
policymakers, non-governmental organizations, National
Green Tribunal members, and city environment managers.
The participants were selected using purposive sampling by
identifying the experts through their current role and prior
project experience of authors with the experts. The interviews
had the following broad questions:

(1) What are the functional inter-linkages between the
stakeholders and how and which data are typically used or
shared?

(2) What are the technical requirements and challenges faced
while performing the air quality functions?

(3) How do stakeholders view the integration of smart city and
UAQM services?

The interview responses were transcribed and coded with
MAXQDA software by applying thematic typology (Kaginalkar
et al., in preparation). It was found that UAQM in Indian cities
has a strong dependence on interagency coordination, requiring
knowledge and a decision-sharing ecosystem. The interview
synthesis highlighted cross-sector gaps and data challenges and
generated insights on the next generation UAQM with 4IR
technologies. For example, an urgent need for intelligent
cross-sectorial data access, such as real-time vehicular
distribution on the road, was felt by the modelers. On one
side, there is plethora of data being generated, on the other
side, there is general sentiment that due to the limited access
of the meta data, stakeholders can not perform air quality data
analysis effectively. For instance, one non-governmental
organization member shared that though 15-minute
monitoring data is available from the pollution control board
site, extracting the quality controlled data for specific locality or
duration is time-consuming. The discussions also drew attention
to the fact that though technology companies deploy sensors and
servers in smart cities, the data and facilities are not available in
real time as integrated application platforms to all the
stakeholders.

The city environment manager response showed that current
technology usage in UAQM is generally limited to
administration, rather than its active use as an enabling tool
for planning, controlling pollution, and communicating decisions
among stakeholders. The participative research also highlighted

the need for sub-scale monitoring and exposure data,
computational resources, interoperability issues due to data
heterogeneity and difficulty in translating complex scientific
data into user understandable information. Though all the
stakeholders found potential in IoT and big data analytics for
data-driven UAQM, the non-alignment of smart city plans and
clean air program was a major gap. A manuscript detailing the
stakeholder analysis method and its outcome will be available by
Kaginalkar et al. (in preparation). The research synthesis led to
strength, weakness, opportunities, and challenges (SWOC)
analysis of UC offerings (Figure 2). The summary is presented
in this section.

3.1 Strengths
Augmenting the traditional monitoring methods, data fusion of
in situ, IoT, model, and satellite data typically yields better
spatiotemporal mapping (Lau et al., 2019). Hyper-local
emission source estimation and concentration prediction using
multiscale models aid in neighborhood-scale pollution mitigation
and outreach (Jena et al., 2021). LCS, wearable devices, social
media, and smartphones enable citizen participation (Skjetne and
Liu, 2017; Nyhan et al., 2019; Yarza et al., 2020). AI methods
improve LCS calibration and model prediction performance and
facilitate the integration of newer data sources and faster
processing (Bellinger et al., 2017; McGovern et al., 2017;
Zimmerman et al., 2018; Ameer et al., 2019). The high-
granularity data from the LCS typically has uncertainty and
may have limited utility for daily real-time pollutant level
predictions. However, they can be advantageous in “fit-for-the-
purpose” approaches, for example, building awareness,
education, exposure reduction, air quality model validation,
source apportionment, epidemiological studies, and hot spot
identification (WHO, 2021).

The inherent uncertainty in high-resolution numerical model
data is augmented by coupling with ML for bias correction and
pattern analysis (Cho et al., 2020; Ma et al., 2020). For this, HPC-
cloud services provide cost-effective urban informatics solutions
(Molthan et al., 2014).

FIGURE 2 | Urban computing SWOC analysis for UAQM.
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3.2 Weakness
IoT-based monitoring is yet to mature due to calibration and
maintenance issues. Standardizing sensor measurements and
communication protocols with data privacy needs more effort
(Syed et al., 2021). At the same time, fully AI-based methods still
face trustworthiness and ethical issues. Complex higher granularity
models and huge databases demand large HPC resources to predict
sub-local air quality (Michalakes, 2020). IoT and social media smart
city data is affected by confidentiality, data leakage, and access
control issues (Toma et al., 2019).

3.3 Opportunities
The ubiquitous and fast processing characteristics make UC a
candidate for UAQM. Interoperable data options, improvements
in air quality predictions and services, and the ability to connect
cyber-physical systems with the city’s socioeconomic-
infrastructure systems that include natural and anthropogenic
feedbacks provide opportunities to develop better smart cities
through governance actions (Mondschein et al., 2021). Examples
include graded action plans for pollution reduction, prompting
systems to pause production (e.g., open burning in the
underprivileged neighborhood) or changes in traffic flow
patterns. Such aspects can be integrated within the Smart City
environmental service framework.

Shared computational and data platform through cloud
services aids developers in designing participative
governance. The large urban covariate data with
deciphering capability of structured and unstructured data
of AI are bringing insights by including newer observations.
For example, sentiment analysis of social media aiding
understanding of mental health impact of pollution (Zheng
et al., 2019). The open data and ubiquitous technologies
enable citizen participation in environmental governance
(Constant, 2018; English et al., 2018).

3.4 Threats
Data-driven service has a major threat to data privacy and security in
smart cities (Cui et al., 2018; Ismagilova et al., 2020). Misuse and
biased data interpretation can lead to a skewed decision. Black box AI
methods face trust issues. Better anonymization and cyber security
procedures with improved authentication, encryption algorithm, and
blockchain methods may serve the purpose (Gharaibeh et al., 2017).

Faster technological growth with newer solutions can sometimes
hamper developmental completeness, for example, a newer
processor in the market or enhance ML algorithms. This can be
augmented with modular technical enhancements, wherein the
architecture can have flexible component connections with the
interface layers.

The study findings are characterized and organized into various
components; cross-sector processes, data interoperability, and user
attributes. We then applied the multi-case analysis method by
mapping gaps, challenges’ actionable knowledge, and technology
solutions to stakeholder attributes. This approach combined
multiple monitoring methods, state-of-the-art multiscale and
multi-sector data and models on HPC-cloud platforms, source
apportionment methods, satellite data extraction, data processing,
data management, and dissemination.

4 BUILDING BLOCKS

This section seeks an answer to the first research question of
“What are the different data elements of UAQM in the context of
emerging smart cities and the value they bring in as an
interoperable system?”

Increasingly, urban aspects are reflected in the form of digital
information enabling city functions in amore coordinated way. This
digital information creation has a life cycle with value creation at
each stage (GPAI, 2020) and enhancing partnerships among
stakeholders, supported by data and technologies deriving
knowledge and executing meaningful decisions (Figure 3).

UAQM stakeholders need cross-sector data access (Table 1). The
stakeholders/users of SmartAirQ, including state and national
regulatory agencies, multidisciplinary researchers, non-
governmental organizations, city environment managers, local
municipal departments, smart city IT centers, and industry, have
varied data usage patterns (Tables 1–4). The UAQM users strongly
rely on timely access to the information existing in the form of
instrument data, written records, laboratory samples, complex
model output, and governmental reports. This section gives a
spectrum of scientific and administrative data and the associated
technologies useful for accessing, processing, and disseminating it.

4.1 Data
Many of the urban datasets are part of open data portals of
national and local governments, global websites of scientific data,
Internet, and smart city platforms. They have spatiotemporal
heterogeneity with different spatial scales (sub-local, local,
regional, national, and global), temporal scales (minutes,
hourly, daily, weekly, monthly, and annual), types (structured
and unstructured), and domains (scientific, social, economics,
infrastructure, and governance) (Supplementary Material). The
real-time, historical data and metadata are classified into four
main types considering the static and dynamic nature of the data:
1) city characteristics, 2) monitoring and observations, 3)
modeling, and 4) city services (Figure 4).

4.1.1 City Characteristics
These define city static/semi-static data such as demography,
morphology, Land Use Land Cover (LULC), urban planning,
climatic conditions, industry, and socioeconomic characteristics
(Supplementary Table S1). Geographical details of the city are
required, as the location of the city determines air pollution
dispersion patterns, for example, coastal city or city in a valley.
For understanding and modeling the pollutant formation and its
dispersion, morphological data such as road type and length, building
type, height, and density and trees is required (Cárdenas Rodríguez
et al., 2016). Realistic representation of urban LULC also aids in
stimulating the planetary boundary layer structure, calculating the
thermodynamic and air pollutant transport functions (Sun et al.,
2020). Satellite-derived LULC classification, for example, from
Landsat and Sentinel, is a viable source for capturing sub-scale
granularity and temporal transitions (Saraswat et al., 2017).

A city’s socioeconomic information such as projected population
growth, residential area, business hubs, recreation areas, and industry
location contribute to the anthropogenic emission source
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identification (Guttikunda et al., 2013). Geo-referenced ward-wise
shapefiles and point shapefiles are part of the city’s geospatial
database. Geographical information system (GIS) data such as
place of interest, roads, buildings, location layers, and hospital
information are important components of the interactive DSS.

4.1.2 Monitoring and Observations
These are classified depending on the mode of observation
(Supplementary Table S2).

4.1.2.1 In Situ
This includes real-time and historical daily manual and continuous
monitoring stations from regulatory agencies3 and research
programs (Beig et al., 2015). Recently, smart city LCS data are
available in the public domain4. Monitoring datasets also include
pollution data on specific events, such as music events, rallies, dust
storms (Kedia et al., 2018), correlating human activities and
observations from airshed regions.

Monitoring is augmented by periodic instrument
maintenance information. The quality control data with
calibration information such as sensor type, aggregated
network information, gateway node, sensor ID, location,
parameters to be tested, statistical analysis, missing values,
error flags, and number of operational stations are classified in
the calibration datasets of SmartAirQ (Chu et al., 2020; Sahu
et al., 2021).

Ground and remote satellite data complement the sparse
monitoring data (Martin, 2008). For instance, data from
TROMPMI over Sentinel-5P gives daily high-resolution
coverage for pollutant measurements (Sentinel-5P). Another
example is that satellite data retrieved PM2.5 is used in
operational UAQM (Geng et al., 2021; Jena et al., 2021). In
addition to pollutants, satellite images of dust, wildfire data help
understand the emission sources (Engel-Cox et al., 2004).

Continuous emission monitoring system (CEMS) data from
industries is accessed by regulatory agencies for compliance and
mitigation actions. Control measure reports include compliance
data of periodic site visits (e.g., power plants). Non-numeric data,
such as information on inspection of laboratory infrastructure,
show cause or closure notice to polluters and environmental

FIGURE 3 | Integrated 4IR technology (text on the sides of the box) mapping with UAQM value-chain component (box).

3https://prana.cpcb.gov.in/#/home.
4https://iudx.org.in/.
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TABLE 1 | User-specific decision support system functionalities.

Stakeholder Application
service use cases

City environment manager • Ward-wise emission source-concentration data analysis—past and future projection
• Road segment real-time emission load and concentration information with a pollution heat map
• Low emission zone area and tax planning
• Ward-wise AQI trend analysis
• Control measure efficacy analysis with GIS plots for applicability and expected % reduction
• Current and model prediction data-based graded action plan for mitigation
• Current and future reduction objectives
• Urban planning with other city departments with “what-if” spatiotemporal scenario model output for pollution reduction

and health impact assessment
• Access past and current emission source and pollution data for tree plantation
• Access to health exposure data for compliance (e.g., ban on open burning)
• Access to pollution heat maps for planning new monitoring station
• Use of drones for pollution abatement in a hotspot area
• Sensor calibration data
• PUC database

Health professional • Vulnerable patient treatment with reduced pollution exposure advisory
• Asthma trigger alert
• Mental health analysis and advisory
• “What-if” scenario pollution exposure and disease correlation analysis

City transport department • “What-if” scenario model output for route planning
• Design of low emission zones
• Directing traffic to alternate routes in extreme pollution episodes through command and control
• Transport service authorization linked to PUC certification
• Planning multi-modal trips minimizing air pollution

City energy department • Dynamic carbon footprint driven energy costing
• Access to urban heat island data and energy usage for demand-supply management
• Pollution scenario-based energy pricing
• Future energy scenarios and GHG emissions of the city

Traffic department • Less polluted route navigation advisory
• Emission-pollution data-based congestion management
• PUC database

Urban planner • What-if scenario-green space planning
• Planning waste management sites based on pollution heat maps
• What if scenario analysis for walkway and cycle track planning
• New building permission based on the pollution footprints
• Infrastructure related control measure efficacy analysis

Infrastructure department • What-if scenario-building permission based on UHI and emission projections
• Low emission zone planning based on pollution trend analysis and hotspot information

Regulatory agencies • Emission standard compliance data analysis
• New industry approval based on what-if scenario of emission projections
• Local and non-local emission source characterization data analysis
• Trend analysis of toxic air pollutants (e.g., benzene 3-butadiene and formaldehyde)
• COVID lockdown city pollution impact trend
• Legal cases database and impact analysis

Health department • Ward-wise pollution exposure data
• Vulnerable population information
• Ward-wise disease burden
• Hospital records
• Creating awareness campaigns

Researchers • Source apportionment data analysis—sub-scale source characterization
• Multiscale/multi-sector model workflow selection and execution
• Future scenario modeling and assessment
• Sub-scale dispersion model skill analysis
• Hybrid numerical model and AI model for prediction skill improvement
• Health exposure assessment with “what-if” emission reduction scenarios
• Sharing of model data with other covariate researchers (e.g., air quality data with health assessment researchers)
• Work with city environment department to translate scientific data into information

(Continued on following page)
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clearance records of industry, building, and commercial
establishments such as malls, and public hearing records from
critical governance database (Verma, 2021).

4.1.2.2 Field Campaign
This includes special study or campaign datasets such as emission
inventory (EI), specific emission source impact (e.g.,
construction-based pollutant level), and health impact
assessment data such as mortality, emergency visits, and
affected population. Granular EI has activity data from
emission sources multiplied by emission factor to give
emission loads in each city grid for various pollutants
(Supplementary Tables S5, S8). Periodic EI with activity data
of anthropogenic sources: mobility, open burning, residential
heating, diesel generators, traffic, vehicle type, restaurants,
business activities, and natural sources such as wildfire and
dust storm are required for source attribution, dispersion
modeling, and mitigation assessment (Dalvi et al., 2006;
Behera et al., 2011).

In addition, the UAQM data repository includes historical
monitoring datasets and metadata such as short- and long-term
control measure impact efficacy analysis. Source apportionment
datasets with laboratory reports and receptor models
characterizing the city emission sources with source profiles
are needed for planning mitigation actions (Mircea et al.,
2020). A health exposure assessment database is prepared with
disease characterization attributed to particular air pollutants and
hospital records (Braithwaite et al., 2019; Katoto et al., 2021). It
also includes newer sources of personal physiological impact
information from wearable devices (Ranscombe, 2019).

4.1.2.3 Crowdsourcing
This includes two types of observations: 1) pollution sensing
using LCS and mobile phones and 2) health impact
information through wearable devices, mobile phones, and
social media. These are further classified as passive and active
data (Ghermandi and Sinclair, 2019). Examples of passive data
include social media streaming (sky images, emission source
photos, Tweets, and sentiments), smartphone activity data,
google activity data, and citizen feedback, for example, extreme
pollution event, traffic congestion, and open burning from
these datasets (Jiang et al., 2015; Charitidis et al., 2019).
Examples of active data include specific purposes, for
example, pollution impact on vulnerable population such as
school or focused study of control measure efficacy (Wu Y. C.
et al., 2015; Alexeeff et al., 2018; Castell et al., 2018; Dirks et al.,
2018). It also includes data streaming from crowdsourced LCS
websites.5

4.1.3 Modeling
Modeling data is used for three major purposes: understanding
the pollution sources, assessing their impacts, and predicting
future conditions. These datasets can be long (1–3 months),
medium (3–10 days), short (1–3 days), and nowcasting
(6–12 h). It includes multiscale (global, regional, and local)
weather prediction, real-time and future projection air quality
model data, multi-observation atmospheric and chemical data
assimilation, health impact, emission factors, and chemical

TABLE 1 | (Continued) User-specific decision support system functionalities.

Stakeholder Application
service use cases

Citizens • Air pollution current and future information on a pollution heat map with data and infographics
• Control measure trend analysis
• Long-term location specific pollution trend analysis for residence selection
• Outdoor exercise/activity planning based on sub-scale pollution exposure data projection
• Geo-fencing based hotspot pollution alert on mobile app
• Selection of less polluted mobility option
• Pollution footprint calculation based on mobility choice
• Less polluted route navigation advisory
• Emission zone based congestion tax warning on mobile app/city billboards
• Contribution to monitoring with crowdsourced data feeds
• Emission and pollution status awareness through AR/VR using city data
• Reporting of polluting event, e.g., open burning in the locality along with geocoding or photos

Industry • Contributing CEMS data
• Receiving alerts for reduced production in the event of extreme pollution
• Contribute the emission monitoring data
• Access pollution data information for future planning
• Control measure model scenarios for clean technology adoption

Non-governmental agencies • Governance mitigation action advocacy based on pollution trend analysis
• Control measure efficacy analysis
• Outreach for sustainable lifestyle adaption
• Pollution awareness for reduced exposure actions
• Contribution to city pollution reduction goal setting usingmonitoring, control measure data, and current and future efficacy

projections

5openaq.org, https://ncap.carboncopy.info/caaqms/.
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profiles (Baklanov and Zhang, 2020) (Supplementary Table S3).
Meteorology data consist of wind speed, direction, turbulence,
surface and boundary layer temperature, precipitation, humidity,
cloud cover, reflectivity, boundary layer depth, and mixing height
affecting pollutant concentration. Boundary layer and lower
mixing heights influence the pollutant concentration, and
wind speed and direction are responsible for its transport
(Oke et al., 2017).

Source apportionment data generated in campaign mode
with chemical mass balance models giving source
characterization estimates of particulate matter with ions,
metals, carbon-specific composition data, and chemical
profiles of different emission sources (Pipalatkar
et al., 2014; Gargava and Rajagopalan, 2016) form a critical
database.

Health exposure assessment model data with mortality,
morbidity, and disability-adjusted life years prediction
information (Fotopoulou et al., 2016) are the most critical data
required for policy decisions and mitigation efficacy analysis. In
addition, information on bio air allergens transmissions
combined with chemical pollution forms a health database for
clinical advisory (Klein et al., 2012).

4.1.4 City services
These databases include static and dynamic data generated by city
service departments or national ministries. It consists of fuel type
information, vehicle emission standards, sector-wise emission
standards, emission factors, daily road segment traffic count,
CCTV images, energy demand-supply data, mobility data from
smartcards, hospital records, congestion information, different
LCS certification data, pollution under control data, smartphone

activity data from vendors, Twitter feeds, multi-modal ridership
system, route navigation, control measures implementation
current and future plans, types of emissions sources to which
they are applied and its socioeconomic impact, yearly urban
environmental status report, industry regularization reports, air
quality Right to Information responses from government
departments, and hazardous waste management data (Verma,
2021) (Supplementary Table S4).

4.2 Technologies
Before answering the second research question of “How can
technologies be optimally connected for cross-sector data
acquisition, aggregation, processing, modeling, stakeholder
participation, and dissemination?” we first discuss the
technology potential in this section. The 4IR technologies,
in addition to traditional technologies, enable seamless access
of cross-sector data (Section 4.1) and faster processing
of data.

4.2.1 IoT
IoT with ubiquitous measurements and faster communication
enables more granular and better-informed decisions. We
consider two types of IoT devices in SmartAirQ: LCS and
wearable devices.

LCS provide cheaper and more flexible monitoring options
complimenting the expensive reference-grade stations
(Hagan et al., 2019). Its flexibility to mount on multiple
platforms aids in capturing dynamic pollution
characteristics for campaign studies (Apte et al., 2017).
SmartAirQ considers LCS for non-regulatory monitoring,
hotspots identification, pollution impact assessment on a
vulnerable population, awareness, selection of location for
regulatory stations, citizen sensing, health exposure
assessment, and control measure efficacy analysis
(Morawska et al., 2018).

IoT-based wearable devices enable cost-effective
epidemiological and individual exposure assessment (Haghi
et al., 2018). Wearable devices aid practitioners in the
personalized treatment of pollution-related allergies and
respiratory diseases (Piedrahita et al., 2014). SmartAirQ
will enable the processing of health parameters data
derived from crowdsourced data with data privacy and
security protocols.

4.2.2 Smartphones
SmartAirQ processes smartphone mobility data to predict
traffic-related pollution levels to quantify neighborhood-
scale mitigation and geotagged photos for exposure
guidance (Donaire-Gonzalez et al., 2016; Gately et al.,
2017). They are also effective via media for crowdsourcing
LCS data, photos, awareness, and real-time data dissemination
through mobile App.

FIGURE 4 | DataHub featuring representative cross-sector data.

8https://catalogue.iudx.org.in/.
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4.2.3 Social Media
Social media provides a new avenue to gather pollution
information (Wang et al., 2017; Charitidis et al., 2019). The
best practice example shared in the stakeholder interview,

showed that the real time traffic information extracted from
the Google mobility data can help city transport planners with
better public bus fleet management. The semantic analysis of
tweets can be used for mental health impact analysis (Du et al.,

TABLE 2 | Extreme pollution alert use case.

SmartAirQ plane Use case processes Actors/enabling service

Data acquisition - Monitoring sub-service accesses Regulatory agency
- In situ, smart city LCS data, crowdsourced LCS, satellite data Meteorology service
- Haze images from phone IUDX4

- Twitter and Facebook posts City municipality data service (smart city command
and control centre)

- Hotspot pre simulated model scenario data Scientific platform
- Past extreme pollution observation data Social media analytics
- GIS data Big data repository
- Traffic sensors and CCTV images
- Covariate data from city data repository and smart city services
- Hyper-scale air quality model and hotspot CFD model prediction data
- Hotspot pollution level training datasets
- Data from transport models
- Control measures action repository
- City socioeconomic data with demographic data

Data communication and
aggregation

- Internet, WiFi, Bluetooth, ftp using National Knowledge network Smart city communication service
- Data wrangling and normalization with uniform gridding Edge processing
- Monitoring and modeling data classification IoT broker services

Data processing and
Management

- Data calibration using ML methods Data analytics service
- Pollution heat maps with exceedance data calculation City environment manager
- Correlation of pollution levels with emission source information such as industry,
dust, traffic, CCTV, route information, open burning, solid waste

- Impact data correlation such as vulnerable population, traffic pattern using
OpenStreetMap

Intelligence -Pollution heat maps with monitoring data and ML methods AI services
-AQI calculation using NOx, SO2, CO2, O3, PM10, and PM2.5 data of previous day
observation, air quality model predicted data, weather observations, and ML
methods
- Flagging off of extreme polluted current and predicted areas using data mining and
pattern recognition algorithm operated on pre-calculated CFD model scenarios on
city environment department interface

- User-specific advisory preparation based on ML driven intelligence advisory using
model predicted data, covariate data such as traffic flow, solid waste, industry
emission, economy, weather, vulnerable population, social information, cost-
benefit data of various control scenarios with their spatiotemporal data analysis

Application services - City environment engineer triggers the three-tier graded action plan to application
plane using control measure service module mapped with predicted pollutions for
implementing graded action: immediate, in 3 days and 10 days

Intelligence service

- Control measure implementation advisory is shared with different service interfaces
in pushmode, such as transport department gets an advisory alert on its dashboard
for real-time rerouting of traffic; based on pollution load on road sectors automatic
traffic signal synchronization for congestion management; and emission zone
surcharge display through phone navigation or billboard display for citizens, highly
polluted industries and their location

service

- Automated messaging alerts are disseminated via email, websites, Facebook,
twitter, radio, mobile app through publishing service

City environment Manager

- Extreme pollution location with AQI and alert is communicated to health
practitioners as shared service

Traffic Department

- Citizens access the alerts, AQI information in the local language, and the pollution
heat map through mobile phone or portal or city displays for planning outdoor
activities

Industry pollution regulation authority
Health professionals
Citizens
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2016; Upadhyay and Upadhyay, 2017; Zheng et al., 2019). These
datasets, in addition to other data in SmartAirQ DSS, enable city
managers to plan, evaluate the mitigation, and build awareness.

4.2.4 Satellite
Satellite data give concentration information along the column of
satellite sensors and on the ground. Geostationary satellite datasets
from NASA AQUA/MERRA MODIS and Sentinel-5P, NOAA
GOES-R, Hamamury, and CALLIPSO give continuous remote
sensed observations of AOD, PM2.5, PM10, OC, BC, NO2, SO2,
NH3, CO, VOC, and dust, aiding in emission trend analysis, filling
the observation gaps, sub-scale health exposure, and identifying non-
local sources (Wiedinmyer et al., 2011; Kulkarni et al., 2020). NASA

Landsat datasets characterize LULC features, source apportionment,
and extreme events (Gupta et al., 2006; Jena et al., 2021). SmartAirQ
has satellite-based LULC data creation; data fusion of in situ, LCS,
drones, ground sun photometer, and satellite data to create granular
pollution maps; and data assimilation in models, industry
compliance, and health impact assessment (Lau et al., 2019).
Recently, 1 km PM2.5 MODIS retrieved datasets for two decades
for India will be accessed through SmartAirQ (Dey et al., 2020).

4.2.5 Crowdsourcing
Citizen science brings an opportunity to conduct participative
governance, including policy design, awareness, and impact
assessment (Mahajan et al., 2020; Lepenies and Zakari, 2021).

TABLE 3 | Model as a Service HPC-cloud use case.

SmartAirQ plane Use case processes Actor/enabling service

Data acquisition - In situ, smart city LCS, satellite data (MODIS, LandSAT) initial and boundary
conditions from global ensemble weather forecast model

Regulatory agencies, meteorology agencies for global model
initial conditions

- Chemical boundary conditions from the global Mozart model
- Global and local EI
- Satellite-derived fire EI
- Population data
- Hospital health records
- Transport model data

Data communication and
aggregation

- ftp, API, internet Intelligence plane, cloud services
- Data wrangling with data classification
- Data calibration using ML methods
- Uniform gridding using land use regression methods
- Temporal classification (24 h average/8 h average)
- Units synchronization

Data processing and
management

- Weather and chemical data assimilation of satellite, in situ and smart city
LCS monitoring data

Air quality researcher, health researcher

- LCZ using WUDAPT tool (Ching et al., 2018)
- Regional WRF-Chem simulation for airshed region using EI and
meteorology data (Figure 5)

- “What-if” scenario simulation with integrated WRF-Chem, bio weather,
health exposure assessment model, and transport model

- Selection of computing resources using HPC-cloud service workflow
- Simulated data model repository with lossless compression

Intelligence plane - Data fusion of in situ, LCS, and satellite monitoring data using ML methods Hybrid modeling service, city municipality data service (smart
city command and control center)- Mapping of real-time gridded data with pre-calculated hotspot air quality

simulations of CFD model with data from WRF-Chem model as input
- Applying ML-based bias correction to CFD model output for improving
prediction accuracy

- Best fit selection using ML method such K-NN using previous years’ daily
data for training and previous day air quality and weather observation is
selected for accurate data prediction and for creating future projection
pollution heat maps using GIS

- AQI calculation using model
- Linking air quality model output with transport model output for creating
polluted route information

Application service - Model simulated gridded predicted and control scenario projection data
mapping to place of interest with pollution heat map

National, regional, and local regulatory board members,
citizen

- Visualization using 3D animation and VR software to view the pollution
transport across the city, e.g., in a densely built area

- Uploading of model-simulated data onto the DSS and dashboard service
- Selection of less polluted data service
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SmartAirQ enables crowdsourced emission-pollutionmonitoring
through LCS, mobile phone photos, and health impact data
acquisition.

4.2.6 Big Data and AI/ML
With the data mining of scientific and governance data, the urban
big data has utility in context-aware data-driven services such as
UAQM (Rathore et al., 2018). The UAQM data have big data
characteristics of large volume, variety with heterogenous data,
velocity with faster data processing, variability due to covariate
data dependency, and veracity with data privacy and security
(Fazziki et al., 2015; Octaviano et al., 2020). SmartAirQ data
architecture builds on the big data principles and technologies
such as Hadoop/MongoDB, SPARK, for real-time data
processing using cloud computing (Asgari et al., 2017; Huang
et al., 2018; Silva et al., 2018).

Hitherto, pollution studies and operational services were
limited to in situ observations and coarser models. With the
capability to interpret structured and unstructured data, ML
methods are used for data mining of large data by training the
data and pattern recognition. By building diagnostic, descriptive,
prescriptive, and predictive models from it, they enable better
actions (Sebestyén et al., 2021). For instance, Liu et al. (2021)
developed a correlation analysis of PM10, SO2, NO2, and O3 and
showed improvement in prediction data efficiency up to 86% by
applying regression models with reference-grade data and other
covariate data, such as meteorology using artificial neural
network. SmartAirQ uses such ML methods across UAQM
lifecycle, namely, random forest in improving LCS calibration
(Zimmerman et al., 2018), data fusion (Johansson et al., 2015; Lau
et al., 2019), parametrization (Wang et al., 2019), bias correction
(Haupt et al., 2021; Xu et al., 2021), extracting information from

TABLE 4 | Multi-variate data analysis use case.

SmartAirQ plane Use case processes Actors/enabling service

Data acquisition - Smartphone activity data (Google activity data), GPS data, CCTV images, in situ, smart city
LCS and weather observation data, traffic sensor, toll/emission zone RFID data through
real-time streaming

- IUDX8

- Social media posts, images - Regulatory agencies, meteorological
institutes

- Transport model data - Smart city traffic management service
- Crowdsourcing

Data communication and
aggregation

- ftp, API, internet, WiFi, Bluetooth, cellular network - Smart city ICT centre (command and
control centre)- Data wrangling with data classification

- Data calibration using ML methods
- Uniform gridding using land use regression methods
- Temporal classification (24 h average/8 h average)
- Units synchronization

Data processing and
management

- Real-time traffic data from sensors and CCTV images are accessed and tagged with date,
time, geospatial parameters

- Data fusion service citizens

- The data are dynamically classified with image processing for classifying 2, 3, 4W, buses,
trucks, number plate recognition using ML methods. The data also include crowdsourced
congestion images shared by citizens from smartphones and extracted from social media
posts

- Using the gridded monitoring and traffic data, real-time traffic emission estimates are
prepared. These data along with EI and dispersion model output are used to create
pollution load estimates along all road sectors. These estimates are then correlated with
satellite data extracted from AOD. Together, gridded dataset is created by pollution load
across the city grid

Intelligence plane - Hyper-local gridded pollution heat map is created using data fusion of different monitoring
source data

- AI services

- Data fusion methods are also applied for curating traffic data from traffic sensors, CCTV
images, toll data, and modeling data

- Using GPS navigation data, the travel time estimation of different routes with start and
destination points are created using covariate data from the GPS data and ML methods
and pollution route with time to travel dataset are created

- Geofencing with emission zone calculation

Application service - The alert information is pushed through mobile navigation app for drivers to choose the
routes

- DSS service

- Geofencing application alerts citizen about hotspot areas nearby and advise to take
actions such as wearing mask

- State regulatory agencies

- Updated pollution maps on web portal and mobile app - City environment department
- Emission zone toll charge activation - Smart city command and control centre

- Traffic police department
- Citizens
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unstructured data (Zheng et al., 2019), epidemiology (Bellinger
et al., 2017), and data sharing within the IoT devices (Ravì et al.,
2017).

4.2.7 Cloud Computing
The computing concept increasingly transitions to “moving
analysis to the data” rather than “data to analysis.” SmartAirQ
has cloud services with Data as a Service (DaaS), Model as a
Service (MaaS), and Platform as a Service (PaaS) connecting to
IoT devices, real-time and legacy data, models, and model
output to provide last mile services (Liu et al., 2017). It
supports data reusability through standardized data
workflows, user-specific metadata creation, and sharing.
SmartAirQ architecture has service orchestration tools
linking with smart city services such as transport, health,
economy, and energy. The technology stack has
cloud services and processing tools (Supplementary
Table S6).

4.2.8 Models
Modeling is an important tool for understanding
environmental processes and predicting future conditions.
SmartAirQ includes HPC-cloud service with cross-sector,
multiscale statistical, and numerical models such as
weather, global, regional, and local air quality models and
health impact assessment models (Baklanov and Zhang, 2020).
The top-down source apportionment method with receptor
modeling compares chemical and physical sample properties
with emission sources giving the type of the source and its
contribution information used in campaign mode (Gargava
and Rajagopalan, 2016).

The urban scale dispersion models use downscaled data of
initial and boundary conditions, emissions, observational data
assimilation, and chemical and physical equation calculations,
such as 3D turbulence, convection, boundary layer
calculations, transport, and urban heat island influences (Li
H. et al., 2020; Ghude et al., 2020; Ramacher et al., 2021).
Hyper-local computational fluid dynamics (CFD) models
capture pollutant flow around buildings and ventilation
coefficient (Santiago et al., 2017). SmartAirQ includes
health exposure assessment methods to understand the
cause-effect and the disease burden (Smith et al., 2017;
Ramos et al., 2018).

4.2.9 Decision Support System
Worldwide, DSS with model-based prediction and information
systems are gaining importance in air quality governance
activities (AirNow; Baklanov et al., 2020; LondonAir; Molina
et al., 2019). For example, Zheng et al. (2015) developed an air
quality prediction system using machine learning algorithm
application on current and past air quality and covariate data
such as point of interest, meteorology, traffic flow, and roads. By
integrating traditional data sources such as ground observation
and chemistry models with satellite, social media, and LCS data, a
prototype for hyper-local air pollution DSS (APDSS) for Hong
Kong has advanced data analytics and mining methods (Leung
et al., 2018). Through highlighting the importance of health risks,

the SMURBS6 system has an urban atlas derived from the fusion
of satellite data and sub-local exposure assessment data, real-time
LCS calibration tool, and emergency action module for industrial
accidents with data fusion of CAMS model, citizen observatory,
Sentinel-5P and MODIS data, and real-time source
apportionment. However, these modules appear as
independent components, and an integrated DSS facility is not
evident. Furthermore, very few of these go beyond the
information portal and include interactive data
communication leveraging the 4IR technology for sectorial
decisions (Zheng et al., 2015; Leung et al., 2018; Che et al., 2020).

The proposed SmartAirQ framework has not only the best of
the above features but also a multi-user secure and interactive
science cloud and linked operational service facility harnessing
cross-sector pollution mitigation and its integrated assessment,
including socioeconomic impacts supported by multiscale
modeling and data governance.

5 SmartAirQ ARCHITECTURE

The triangulation method synthesis addresses the third
research question of What can be the overarching design of
UC-enabled UAQM as a standard platform, scalable across
smart cities?

The literature prompts increasing interest in smart city
architecture (Santana et al., 2017; Habibzadeh et al., 2019).
However, its application context is often generic in nature or
addresses a single aspect of technology such as big data, IoT, or AI
(Fazziki et al., 2015; Ang and Seng, 2016; Dwevedi et al., 2018).
The SmartAirQ outlined in this study incorporates integrated
multiple 4IR technology applications by considering two major
aspects: scientific ecosystem and governance services executed
through HPC-cloud resources.

The SmartAirQ has utilities for national, regional, and local
users with bi-directional knowledge exchanges between
governance-governance (among different functional agencies),
citizens-governance (active participation and feedback), and
governance-citizens (dissemination). It builds on the living lab
concept, i.e., 1) creating value for stakeholders, 2) considering end
users as active partners, and 3) creating open processes for
interconnected socio-technological systems (Jensen and
Campbell, 2019; Steuri et al., 2020).

SmartAirQ system has a cloud-based plug-play ecosystem for
data analytics, modeling, aggregation, and user-specific
information built on advanced HPC resources and 4IR
technologies. It supports a data platform to create, simulate,
contribute, integrate, and disseminate data and metadata,
enabling cross-sector applications of pollution reduction
actions and policies (Figure 5). The SmartAirQ is designed
around modularity and flexibility as technology leapfrogs.

SmartAirQ has adopted multiple data planes typology with
service-oriented architecture (Habibzadeh et al., 2019). Some
planes operate independently and some as cross-functional

6https://smurbs.eu/solutions/.
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FIGURE 5 | SmartAirQ overview with cloud services and stakeholder access.

FIGURE 6 | SmartAirQ architecture with service planes.
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services (Figure 6). The data planes are characterized as (DI) data
acquisition plane, (DII) communication and aggregation plane,
(DIII) data processing and management plane, and (DIV)
application service plane with visualization. These planes are
supported by three cross-functional planes: (DA) intelligence
plane, (DB) data security and privacy, and (DC) HPC-cloud
service.

5.1 Data Acquisition Plane (DI)
Cross-sector data is collected from varied sources such as in situ
stations, LCS, weather observations, wearable devices,
smartphones, social media, different model outputs,
government records, city infrastructures, people, radars,
surveys, satellites, and GIS (Section 4.1). Each dataset has
different formats, access types, measurement intervals, and
time scales such as real-time, past, and future data
(Supplementary Table S7). These datasets are accessed
through open websites, ftp protocols, or service interfaces to
IoT devices or other smart city databases through RestAPI and
Spark streaming for social media or data portals. Acquired data
are mapped to Open Geospatial Consortium (OGC) standards
(van der Schaaf and Herzog, 2015) and IoT standards such as
SensorThingsAPI (Kotsev et al., 2018).

The data undergoes quality checks by removing garbage
data, range validation, missing values, and removing outliers.
The basic statistical methods such as root mean square error,
correlation coefficient, and mean bias are applied to check the
data quality. The LCS data is correlated with co-located
reference-grade stations for accuracy purpose. This plane
has provision for citizens to submit crowdsourced
monitoring and impact data. The data is anonymized with a
coding key.

5.2 Communication and Aggregation
Plane (DII)
This plane connects data from the acquisition plane to the
cloud environment. For real-time processing, low latency and
high throughput bandwidth is critical. The data from various
sources are communicated to the cloud layer through WiFi,
4G/5G network, internet, Bluetooth, or FTP. The data
transmission from the IoT network is facilitated by a
gateway using a wireless sensor network and IoT service
broker.

Then, the data are compressed or decompressed, stored,
normalized, and classified. It is classified as raw data or
metadata with data format information using data standards
(WCCD, 2021). The data classification has multiple ontologies,
such as parameter-wise, emission source types, ward-wise,
geotagged photos and tweets, exposure types, same temporal
interval, or same functionality datasets, for example, global,
regional, and urban weather, air quality model output, and
control measure scenarios. Data interoperability considers
various levels such as physical parameter, syntax, semantic,
pragmatic, dynamicity, spatial, temporal intervals, and data
constraints (Laniak et al., 2013). The interoperability is
achieved through the sensor web framework of Open

Geospatial Consortium, Web coverage service standards,
and API.

This layer has APIs for sharing the data with other smart city
services to process and manage interoperability issues.

5.3 Data Processing and Management
Plane (DIII)
This plane connects data from the communication plane and
creates metadata in response to the query from the application
service plane. It performs multi-functional processing using
mash-up web services methods (described below) with service
and user interface orchestration for integrating different city
services using the Hadoop environment (Atrouche et al.,
2015). The processing includes predictive, prescriptive, and
inferential analysis. This plane also has database management
and storage services using the HPC-cloud platform. The cloud
services are supported by Kubernetes and Docker tools. This
plane encompasses a variety of data processing methods
presented below.

5.3.1 Calibration
The monitoring data quality is improved by calibration
methods, such as range test, based on local climatic
conditions by mining historical extremes; single sensor
and sensor network spatial calibration using linear
regression coefficients with reference-grade sensors and
land use data (Masiol et al., 2018; Chu et al., 2020); and
persistence testing applied by calculating standard deviation
below the critical threshold, least square regression
(Morawska et al., 2018; Hagan et al., 2019), and multiple
regression trees (Simmhan et al., 2019). It also includes
CEMS sensor location calibration against standards
deployment protocols. This layer has statistical methods to
fill gaps in real-time and monitoring data either using
historical data mining or co-located station data.

5.3.2 Data analytics
The application query triggers different data processing methods,
including pollutant trend analysis, correlation, regression,
multivariate data analysis of weather, air quality, transport,
health exposure, energy cause-effect analysis, and interpolation
to create uniform gridded datasets. The statistical analysis is
performed using openAir libraries (Carslaw and Ropkins,
2012). This layer includes control measure efficacy analysis in
preventing and reducing polluting incidences, such as “what-if”
analysis change in vehicle emission standards and the impact on
air pollution levels in a region. Pollution heat maps of all the
criteria pollutants are processed for uniform gridding across the
city using the inverse-distance-weighing method and calculated
from past, current, or future data created from pollution data
fusion (Section 5.4).

This plane enables real-time micro-environment exposure
calculation based on real-time pollution data (Section 5.4),
mobility data, social media, wearable device data, and
pushing alerts or advisories through the application
service plane.
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5.3.3 Crowdsourced Data Processing
This layer conducts quality for the LCS as per the
crowdsourcing standards (EPA, 2015; Capineri et al., 2016).
Social media posts are processed with natural language
processing with taxonomy, language filters, and semantic
connections using ML methods (Charitidis et al., 2019;
Jiang et al., 2019). The classified data is then mapped to
create pollution data and impact database. Local climatic
zones (LCZ) with GIS are an important consideration due
to their ability to detail the localized LULC (natural and
anthropogenic) influences such as building height, building
cluster, open spaces, vegetation on pollutant concentration,
and dispersion (Wu J. et al., 2015; Shi et al., 2019).
Standardized LCZ classification methods and tools, such as
World Urban Database and Access Portal Tools (WUDAPT),
aid in better representation of LULC using crowdsourced
morphological data (Ching et al., 2018).

5.3.4 Air Quality Index Calculation
From the observation data, aggregated AQI is calculated for
awareness purposes with six categories: good, satisfactory,
moderately polluted, poor, very poor, and severe. AQ sub-
index and health breakpoints are evolved for eight pollutants
(PM10, PM2.5, NO2, SO2, CO, O3, NH3, and Pb). AQI are
predicted using past and current AQI, past and current
weather and model data, social media feeds, and ML
(Kosmidis et al., 2018; Castelli et al., 2020). SmartAirQ system
has query-based access to sub-local AQI values using GIS
visualization and advisory in infographics form for easy

understanding of impacted community and citizens, such as
the decision regarding school closure during extreme pollution
situation in Delhi.7

5.3.5 Workflow Orchestration
In response to the application service triggers, this layer
transforms the query requirements, connects different data
analytics components, allocates the cloud resources, and
automates the input-processing-output tasks with service-
oriented architecture services (Zanella et al., 2014). It involves
multiple job management with scripting and streaming
processing for real-time data access, batch processing, and
process optimization for DaaS, PaaS, and MaaS. The MaaS
connecting multi-sector model workflows with preprocessing,
simulations, and post-processing with model data exchanges has
OpenMI2.0 framework (Harpham et al., 2019). The workflows
run through the public and private cloud (Figure 7).

(1) Public cloud: end users will directly interact with the hosted
services that will expose various web applications developed
with angular, Django/spring boot framework. It will facilitate
users with data visualization using NCL graphics, Vapor, and
data analytics using openAir R libraries. OpenStreetMap used in
visualization will be exposed via GeoServer, and data can be
downloaded via ftp servers.

FIGURE 7 | Data processing and technology pipelines with public-private cloud and HPC.

7https://timesofindia.indiatimes.com/city/delhi/air-pollution-delhi-schools-to-
remain-shut-for-physical-classes-till-further-orders/articleshow/87831917.cms.
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(2) Private cloud: it will include middleware servers that host
several python, java-based microservices deployed as Docker
containers, which will be managed by Kubernetes.

5.3.6 Modeling
Various modeling interfaces can be integrated within the UAQM
(Kaginalkar et al., 2022). The modeling service layer has global
weather forecast models and global, regional, and urban air
quality models, such as source apportionment, statistical and
simple box dispersion and complex chemical transport models,
street-level CFD models, bioweather models, health exposure
assessment and socioeconomics impact evaluation models
(Baklanov and Zhang, 2020). The models are used for source-
concentration estimates, future predictions, and what-if control
scenario projections. The model workflow has data containers for
data acquisition of 1) global data weather forecast and chemistry
model datasets; 2) global, regional, and local EI datasets; 3) air
quality observations from regulatory stations, LCS, and satellite 4)
LULC data derived from LANDSAT datasets; and 5) weather and
air quality observations.

SmartAirQ prototype module consists of regional and
urban WRF, WRF-Chem model (Grell et al., 2005), and
CFD model OPENFOAM9. CFD modeling workflows can be
invoked in two streams: 1) running online CFD models for the
entire city and 2) running CFD models for hotspots as
precalculated scenarios and then pattern matching of real-
time data using ML methods. It also includes executing the
regional-urban-Gaussian dispersion model, such as AERMOD
(Cimorelli et al., 2005) to identify multiple hot spots and create
sector-specific graded action plans. Users can select further
data prediction improvement methods such as hybrid
modeling with lognormal/log-logistic statistical distribution
model (Gulia et al., 2017) for episodic cases or by running AI
models (Section 5.4).

Further, sub-local air quality models can be coupled with
health exposure models such as AirQ (AirQ+.) and BENMAP
(USEPA, 2014) for estimating exposure and “what-if” scenarios.
The model simulated data can be invoked through the query
system of the application service plane DSS (Section 5.5).

The model’s accuracy is improved by atmospheric and
chemical data assimilation, data fusion methods, and bias
correction using hybrid numeric and ML models. The air
quality models are executed in ensembles with different initial
conditions. The air quality models are supported by evaluation
tools for validation with observation data, such as AMET
(USEPA, 2016). The compute workloads needed for various
simulations and AI/ML engines using several libraries, such as
MPI, openMP, TensorFlow, Keras, CUDA, will be executed on
HPC clusters (Figure 7).

5.3.7 Database Management
Efficient data storage is critical in urban environment data
management as, every day, huge amounts of data are created
and processed. For example, daily three-day forecast Pune city

with 500 m WRF model generates ~17 GB, whereas ten-day
forecast for 400 m WRF-Chem model with a larger national
capital region of Delhi using chemical data assimilation
attributes to 210 GB. This layer is responsible for storing and
arranging data with spatiotemporal, sector-specific, impact-
specific labeling. It includes a raw data and metadata
repository with a periodic storage policy (e.g., few datasets);
weather and air quality observations are required as
climatology information for past trend analysis or training ML
models. For optimal storage, considering the end-user function of
the data, lossy or lossless compression techniques are adopted
depending on the data accuracy requirements. SmartAirQ
leverages distributed data access, wherein data will not always
be stored at a centralized location but organized on multiple
physical or virtual infrastructures. The repository also includes
information on apps, different model configurations, scripts, and
data connection between different models as workflows. Data
management services will have a big data framework using
Hadoop/MongoDB, which will house the data needed for
SmartAirQ. It will also have extraction transformation load
(ETL) channels implemented in spark, python, to ingest data
into the data store (Figure 7).

5.4 Intelligence Plane (DA)
This plane runs across all the above planes with AI methods,
improving the UAQM functionality and providing value addition
to the underlying technologies.

5.4.1 LCS and Model Data Calibration
ML-based calibration methods such as support vector machine,
random forest, K-nearest neighbor, and geospatial kriging are
applied to LCS data and covariate data to improve the accuracy
(Maag et al., 2018; Zoest et al., 2020).

5.4.2 Data Fusion
Overcoming the limitations of various monitoring methods, data
fusion processes monitoring data from in situ data, campaign
study data, satellite data, chemical transport models, and smart
city air quality LCS data using ML methods to create gridded
datasets of PM2.5, PM10, NO2, CO2, SO2, and O3 (Li et al., 2017;
Schneider et al., 2020; Viqueira et al., 2020).

Data fusion is executed in two ways: offline and real-time.
Generally, in the offline mode, data used in specific campaigns are
fused to create a newer dataset. For example, LCS, drones data,
and mobile LCS data on vehicles are combined to create an
emission source spatiotemporal map. These datasets are then
used to train the dataset for real-time feature extraction in data
fusion methods (Lau et al., 2019; Geng et al., 2021). Then, the data
created by data fusion method is compared with the in-situ
station data.

5.4.3 Cross-Sector Data Processing
Pollution reduction is dependent on emission source-
concentration information. Building scale LULC data is
prepared using satellite data and ML methods (Kerins et al.,
2020). This layer performs spatial (roads, buildings, place of
interest, and types of roads) and temporal classifiers based on9https://www.openfoam.com.
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artificial neural network and regression methods on cross-variate
data training models to improve pollutant concentration
predictability (Zheng et al., 2015). In this layer, ML methods
K-nearest neighbor and long short-term memory are applied for
traffic density assessment by vehicle count from traffic sensor
data, trajectory analysis, and visual classification from CCTV
images from smart city command and control data services for
congestion prediction (Majumdar et al., 2021). These datasets are
linked to pollutant level datasets and GIS data for less polluted
route navigation and emission zone surcharge advisory on the
mobile app.

LCS and social media data are used to identify emission
sources and control measures. This layer includes content
extraction and pattern recognition using natural language
processing and semantic analysis using ML methods (Zheng
et al., 2019). Data are then correlated to pollution
concentration data to predict future AQI and health impact
assessment data to be used by city managers and by health
practitioners (Yan et al., 2019). Satellite-derived emission
source data and pollutant and LULC data are correlated with
CEMS data for compliance monitoring (Kurinji and Ganguly,
2020).

This plane has provision for health impact data processing
using hospital records, traffic sensor data, mobile phone activity
data, wearable device data, ridership data, real-time and historical
meteorology data, social media, and gridded pollution data
generated from the data fusion layer and using ML methods
such as random forest, support vector machine, and multiple
regression methods giving pollution exposure information at a
location and time (Hu et al., 2014; Masiol et al., 2018).

5.4.4 Hybrid Models
ML methods are applied to air quality models, such as WRF-
Chem, to improve predictability by bias correction and for faster
processing (Ma et al., 2020). The processing is executed using
Keras, TensorFlow, PyTorch, NumPy, python scripts, and CUDA
environment.

The data processing pipelines involve various tools and
libraries, as shown in Figure 7 (Supplementary Table S6).

5.5 Application Service Plane (DIV)
Data processed in previous planes is accessed through a service
layer of the decision support system. This multi-user interactive
layer is activated through a GUI with query system, scheduler,
GIS, and data orchestration through the portal or mobile app
service (Table 1). The application services include sector-specific
raw data and metadata access and visualization. Public services
include alerts, pollution monitoring data, pollutant comparison
between different locations, exceptional events, future prediction,
and control scenario projection in the form of pollution
concentration maps, infographics, and virtual reality such as
dispersion trend analysis in a hotspot area. The pollution
maps created through data fusion of IoT data, model output,
and satellite, mapped with interactive GIS, enable citizens to
access localized pollution information through the query system,
such as deciding to reduce exposure (e.g., avoiding outdoor
exercise at selected location and time).

This smart city system has varied connotations for different
stakeholders, for example, for air quality researchers,
improving the accuracy of model prediction using high-
resolution models executed on advanced HPC systems or
using innovative methods using 4IR technology for reducing
pollution impact. In contrast, for non-governmental agencies,
it can be vulnerable location metadata derived from daily
station data for advocacy purposes or sub-local AQI
information to school authorities.

5.5.1 Visualization
Data visualization with GIS is an inherent component of the city’s
digital platform and DSS. Its usage runs across all the components
of SmartAirQ, from EI development to dissemination services
(Dalvi et al., 2006; Badach et al., 2020). WebGIS allows full view of
the city, standardized data access, interactive location-specific
query, and navigation (Gkatzoflias et al., 2013). SmartAirQ
architecture considers it a vertical plane running across all
other service planes.

Visual representation of data is triggered by user query or
sector-specific action in the form of infographics, plots, 3D
animation, augmented reality and virtual reality (AR/VR),
time-series graphs, trend analysis, correlation, exceedance,
prediction information, industry compliance reports, and AQI
display (Elbir et al., 2010; Li W. et al., 2020). The dynamic
visualization includes interactive navigation displaying
pollutant information along all the routes with an expected
time of arrival information. The application service has a
restful API for data exchanges. The scientific plots are viewed
through Vapor/NCL.

5.6 Data Privacy and Security Plane (DB)
As soon as the data are accessed, they are anonymized with
system-driven ID and personal or system-specific details,
such as department name, and the authority name is coded
into the independent key by applying cryptography
algorithms (Toma et al., 2019). The data has multi-layer
authorization. In an example of a collaborative research
case, first, the researcher creates EI with activity data and
emission factors in their own restricted space. Second, the
researcher provides permission to access this derived EI data
to the authorized member from the city environment
department through a password protection mechanism. In
the future, blockchain methods for secure data
communications can be explored (Benedict et al., 2019).

6 USE CASES

Moving now from theory to practice, we present use-case
scenarios that illustrate the applicability of the SmartAirQ
framework in UAQM functions.

These use cases present the cross-sector functionality
orchestration and decision services specific to the user
category. The consolidated actions undergo step-wise data
translation through different planes and technology
applications. The examples of use cases are drawn from
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Table 1. These use cases have stakeholders, users, and smart
city service components as actors. This section discusses the
example of the use case of emission control measure
mitigation. Additional use cases are presented in Tables 2–4.

6.1 Emission Control Measure Mitigation
Process Flow
6.1.1 Description
For pollution mitigation and its efficacy assessment, large data must
be brought together, linked, and inferred in the context in which it is
applied, which requires an efficient database management system
maneuvering cross-sector data and metadata.

In this use case, the control measures selection process is
instrumented by a local environment manager, considering the
business as usual scenario or future scenario projection data
analytics. It accesses the pre-simulated future projections using
dispersion models.

6.1.2 Data and Functionality Pathways
Emission factors and EI activity data generated from source
apportionment studies are uploaded by researchers through
the data acquisition plane (Figure 8). The system applies data
wrangling and data classification methods by data mining of
source categories and sub-categories. The city environment
manager selects business as usual scenarios and control
scenarios. The data are processed in the data processing plane
with a calculation of emission load, reduction factor, and
applicability ratio. Based on the query and user-selected
pollutant type, source type from the area, point or line,
scenario type, such as the closure of construction work in a
fixed time or banning diesel vehicles, emission factor selection,
and analytics mode, such as emission load in kg/year or ton/day, a
cumulated scenario is generated (Figure 9). The backend
calculations are executed using WRF-Chem and AERMOD
models projected simulations using cloud resources, and
analytics is conducted using R libraries.

FIGURE 8 | Cross-sector stakeholder functions for control scenarios orchestrated through the SmartAirQ planes.

Frontiers in Environmental Science | www.frontiersin.org April 2022 | Volume 10 | Article 78512919

Kaginalkar et al. SmartAirQ

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


6.1.3 Outcome
The total % reduction is displayed either as plots or GIS-based heat
maps (Figure 9). In the decision chain, the manager links the data
with energy, transport, traffic, infrastructure department, and state
pollution control board members. The concerned stakeholders view
the applicability and feasibility of control measures with interactive
pollutant, source, control scenarios selection, comparison between
two locations, and so forth. The selected control measures are then
implemented by respective stakeholders.

6.2 Extreme Pollution
This use case involves an extreme pollution event in a city. In
response, the orchestration of services from the city environment
manager, traffic manager, scientists, citizens, and SmartAirQ
middleware services are executed, as shown in Table 2.

6.3 Modeling
In real-time operations, there can be a trade-off between models
due to computational complexity. This use case involves scientists

running model workflows (Table 3) using standard operating
procedures at different entry points on HPC-cloud (Figure 10).

6.4 Traffic Management
This involves data processing and management, intelligence
plane, smart city service, and citizens as actors (Table 4).

7 SUMMARY

For successful environmental services in smart cities,
seamless data exchanges and their systematic interpretation
for cross-sectorial decisions are essential. UAQM is a
multidimensional service involving policy formulation,
monitoring, prediction, awareness, enforcement, health
impact assessment, and mitigation. In the backdrop of
NCAP and India’s smart city mission, it is imperative to
develop an integrated open data and smart city information
ecosystem for UAQM.

FIGURE 9 | Interactive decision support system for future control scenario projection visualization (Kaginalkar et al., 2022) © Copyright [19 Jan 2022] American
Meteorological Society (AMS). For permission to reuse any portion of this work, please contact permissions@ametsoc.org. Any use of material in this work that is
determined to be “fair use” under Section 107 of the U.S. Copyright Act (17 U.S. Code § 107) or that satisfies the conditions specified in Section 108 of the U.S. Copyright
Act (17 USC § 108) does not require the AMS’s permission. Republication, systematic reproduction, posting in electronic form, such as on a website or in a
searchable database, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. All AMS journals
and monograph publications are registered with the Copyright Clearance Center (https://www.copyright.com). Additional details are provided in the AMS Copyright
Policy statement, available on the AMS website (https://www.ametsoc.org/PUBSCopyrightPolicy).
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This study presented SmartAirQ, a conceptual integrated
data governance and 4IR technology framework for air
quality smart city service. It is primarily for researchers,
policymakers, and governance to enable actions for end-
users such as non-governmental organizations, citizens,
and health practitioners. The big data and cloud platform
built within SmartAirQ provide scalable, interoperable,
sustainable, and affordable solutions for scientific and last-
mile services. The cloud services enable participative UAQM
governance with data reuse and shared computing
resources, reducing the carbon footprint.

The data governance architecture opens up avenues to
formulate, implement, and evaluate control measures for
future actions and in real time at various scales and
sectors. SmartAirQ facilitates the inclusion of newer data
and citizen science information into the governance realm
with monitoring, exposure information, and perception. Its
predictive hybrid numerical and AI modeling system enables
cause (source apportionment) to effect (air quality
prediction) to impact (health assessment models) value
chain for hyper-local pollution risk reduction. It
brings two critical components under UAQM data
governance: cross-sector data with the computing
ecosystem and stakeholders as co-producers/co-owners
of data.

Well-defined data governance, harmonizing disparate data,
is the first step toward sustainable smart cities. With ever-
increasing urban data, a framework such as SmartAirQ is an
exemplary co-created smart city service with context-
dependent solutions for environmental issues that go
beyond the monitoring and modeling data information
portal. The SmartAirQ flexible architecture is scalable
across world cities, aiding in efforts toward Sustainable
development goals.

Although this conceptual framework is designed for ambient
urban air pollution, our follow-up work will report on the
interaction between the ambient and indoor air quality and
system deployment experiences.

The recent WHO global air quality guidelines (WHO,
2021) call for technologically driven, science-society
collaborative actions for pollution reduction. The
SmartAirQ framework is apt to facilitate these translations
for an effective UAQM.
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