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It is crucial to realize themunicipal solid waste (MSW) classification in terms of its

treatments and disposals. Deep learning used for the classification of residual

waste and wet waste from MSW was considered as a promising method. While

few studies reported using themethod of deep learningwith transfer learning to

classify organic waste and residual waste. Thus, this study aims to discuss the

effect of the transfer learning on the performance of different deep learning

structures, VGGNet-16 and ResNet-50, for the classification of organic waste

and residual waste, which were compared in terms of the training time,

confusion matric, accuracy, precision, and recall. In addition, the algorithms

of PCA and t-SNE were also adopted to compare the representation extracted

from the last layer of various deep learning models. Results indicated that

transfer learning could shorten the training time and the training time of various

deep learning follows this order: VGGNet-16 (402 s) > VGGNet-16 with TL

(272 s) > ResNet-50 (238 s) > ResNet-50 with TL (223 s). Compared with the

method of PAC, waste representations were better separated from high

dimension to low dimension by t-SNE. The values of organic waste in terms

of F1 score follows this order: ResNet-50 with transfer learning (97.8%) >
VGGNet-16 with transfer learning (97.1%) > VGGNet-16 (95.0%) > ResNet-50

(92.5%).Therefore, the best performance for the classification of organic and

residual waste was ResNet-50 with transfer learning, followed by VGGNet-16

with transfer learning and VGGNet-16, and ResNet-50 in terms of accuracy,

precision, recall, and F1 score.
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1 Introduction

The explosion of population and the improvement of the living standard contribute to

a large number of municipal solid waste (MSW) generation (Ding et al., 2021). MSW

amount would be anticipated to reach up to 3.4*10̂9 tonnes in 2050 in the world (Kaza

et al., 2018). It is crucial to find a suitable way for the MSW treatment since it has a

potential risk to human health and the ecological environment (Ding et al., 2021).
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Landfills, composting, and combustion are the common way for

the MSW treatment, while the heterogeneity of MSW

composition limits the application of various MSW treatment

(Lin et al., 2022).

Landfills have become a popular way for the treatment and

disposal of MSWwith the advantages of low investment and easy

operation (Anshassi et al., 2022). However, the organic waste or

wet waste that ends up in landfills would increase the emission of

greenhouse gases and also take up a larger number of land, which

is posing a great threat to megacities (Tahmoorian and Khabbaz,

2020). As for incineration or thermal treatment, the most notable

advantages of this method are reducing solid-waste mass and

volume, saving energy, as well as hygienic control (Lin et al.,

2019). However, the high moisture in the organic waste or wet

waste would have a negative impact on the efficiency of

combustion and lead to producing some pollutants in flue gas

like polycyclic aromatic hydrocarbons and nitrogen oxides. The

advantages of composting are improving the fertilizing of soil

and reducing costs, while the presence of residual waste would

have an unfavorable effect on the quality of compost products.

Therefore, it is crucial to take some measures to realize the MSW

classification in terms of its treatments and disposals.

However, the traditional methods of MSW classification are

main about manual and semi-screening, which would consume

the amount of manpower and material resources, as well as

accelerate virus spread (Alom et al., 2019). Therefore, it is urgent

to find a more efficient and intelligent method for MSW

classification. Data about semismic images can be used to

identify hydrocarbon structure to help classify wet waste and

residual waste (Radad et al., 2016; Hadiloo et al., 2017; Mousavi

et al., 2022). The application methods in indentifying

hydrocarbon resevoirs and structure related to hydrocarbon

also have been discussed (Soleimani and Balarostaghi, 2016;

Farrokhnia et al., 2018; Khayer et al., 2022a; Khayer et al.,

2022b; Hosseini-Fard et al., 2022). Recently, great attention

has been caught to applying deep learning for the waste

classification related to computer version (CV) with the

development of computer hardware (Nasri et al., 2020).

Compared with traditional CV algorithms like scale-invariant

feature transform (SIFT), supporting vector machine (SVM), and

principal component (PCA) (Soleimani, 2016a,b; Lu and Chen,

2022), deep learning has the ability to automatically extract the

representation and equips with more applicability, robustness,

generalization, and scability (Lin et al., 2022; Mafakheri et al.,

2022; Saad and Chen, 2022).

Several studies have adopted this method to realize waste

classification. SVM and deep residual learning were employed to

classify the TrashNet, the waste image dataset with a total of

2527 images, and achieved an accuracy of 63% and 87%,

respectively (Yang and Thung, 2016). Davis et al. designed a

deep convolutional neural network to classify 7 typical

construction waste (second fix timbers, shuttering timbers,

particle boards, hard plastics, wrapping plastic, bricks and

concrete, cardboards and polystyrene) (Davis et al., 2021).

This method was also employed for the polyethylene

terephthalate (PET) classification by Bobulski and Piatkowski,

(2018).

The essence of deep learning is the data-driven model, thus,

measures like data augmentation and fine-tuned hyper-

parameters of deep learning structure could improve the

performance (Lin et al., 2022). RecycleNet, combined with

transfer learning and DenseNet-121, obtained 95% accuracy

on the test dataset (Bircano�glu et al., 2018). AquaVision,

integrated deep learning with transfer learning, was proposed

to detect the waste in waster bodies (Panwar et al., 2020). In

addition, this method, deep learning with transfer learning, has

been employed in the classification of recyclable waste (Olugboja

Adedeji, 2019). However, few studies reported using the method

of deep learning coupled with transfer learning for the

classification of organic waste and residual waste.

Therefore, this study aims to discuss the effect of transfer

learning on deep learning structures like VGGNet-16 and

ResNet-50 for the classification of organic waste and residual

waste. Meanwhile, the performance of these deep learning

architectures was also compared. In addition, the algorithms

of PCA and t-SNE were also adopted to extract the features from

the last layer of the deep learning model. The flowchart of this

study was shown in Figure 1.

2 Materials and methods

2.1 Data collection and preparation

22010 images of MSW in total were collected from one open-

source (https://www.kaggle.com/techsash/waste-classification-

data), including organic waste (16572) and recyclable waste

(5438), as shown in Figure 2. The numbers for the training,

validating, and testing datasets were 15846, 1761, and 4403,

respectively. Details of the experimental platform are given in

Table 1.

2.2 VGGNet-16 and ResNet-50 structure

VGGNet architectures were proposed by the Visual

Geometry Group of Oxford University (Simonyan et al., 2014)

and won first and second place in the localization and

classification in ImageNet Large Scale Visual Recognition

Challenge (ILSVRC 2014). VGGNet-16 is consisted of

3 consecutive convolution operations per convolution

segment, as shown in Figure 3). This state-of-the-art model

enhances the performance of model classification by

increasing model depth with a 3×3 convolutional layer. This

point is the most different from other CNN structures like AleNet

and GoogleNet. VGGNet models use a smaller 3×3 convolution
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kernel instead of a larger one, which enlarges the perception field

of the output feature map of each layer andmakes the CNNs have

a stronger feature learning ability.

ResNet-50 is a network-in-network architecture that relies on

several stacked residual units, which was first introduced by He

et al, (2016) and considered the best performance in ImageNet

classification, as shown in Figure 3B. It consists of two deep

building blocks: bottleneck 1 and bottleneck 2. Convolutions of

three layers 1×1, 3×3 and 1×1 blocks in bottleneck 1 and

bottleneck 2, where the function of the 1×1 layer is reduced

but the dimension of input is increased, making the 3×3 layer a

bottleneck with small input/output dimensions (He, 2016).

Identity mapping is a key measure for addressing the

degradation issue, how it works is introduced as follows:

As shown by bottleneck 2 in Figure 3B), x, y, and F(x, {wi})
represents the input, output vectors, and residual mapping for

learning, respectively. F(x, {wi}) + x is conducted by a shortcut

connection (Fulkerson, 1996) and an element-wise addition, by

which the degradation problem can be effectively avoided, as

given by Eq. 2-1.

y � F(x, {wi}) + x (2–1)

It is noted that average pooling was introduced and linked to

the fully connected layer in stage 4, where the activation function

of the rectified linear unit (ReLU) was adopted to predict classes

based on the highest probability given by the input data, which

can be expressed as Eq. 2-2:

Pr (Y � i|v, W, b) � Sof tmaxi(Wv) + b � ewiv+bi

∑j e
wjv+bj (2–2)

in which, elements of W and b represent the weights and bias,

respectively. Index j was used to normalize the posterior

distribution. The model prediction is the class with the

highest probability, as given by Eq. 2-3:

yprediction � argmaxiPr(Y � i | v, W, b) (2–3)

The elements of weights and bias in deep ResNet structure

were also optimized by the error backpropagation algorithm,

which is used as an error metric to calculate the distance between

the true class labels and the predicted class labels. Cross-entropy

function (2–4) was chosen as the loss function to be minimized

for dataset V.

L(V, Y) � −1
n
∑
n

i�1
y(i) ln a(v(i)) + (1 − y(i)) ln(1 − a(v(i)))

(2–4)
in which, L represents the loss function; Here, V �
{v(1), v(2), v(3), ..., v(n)} is the set of input samples in the

training dataset; Y � {y(1), y(2)} is the set for labeling: organic

FIGURE 1
The flowchart of this study.
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waste and residual waste; a(v) represents the output of the ResNet

corresponding to an input v.

2.3 Transfer learning

VGGNet-16 or ResNet 50 was trained with ImageNet,

consisting of 12 million images and 1,000 categories. The

model of VGGNet-16 or ResNet 50 learned the weight and

bias during the training process (Sinno and Yang, 2010).

FIGURE 2
Example of organic waste and residual waste.

TABLE 1 Experimental platform for training TLVGGNet model.

Item Parameters

CPU Intel (R) Core (TM) i7-10900K @ 3.70 GHz

Language Python 3.8; Pytorch 1.7.1+cul10

Hard drive 1T

Operating system Windows10

Random access memory (RAM) 128 G

Graphic Processing Unit (GPU) NVIDIA GeForce RTX 3080
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Firstly, keeping the weight and bias of each layer before the last

layer of the VGGNet-16 or ResNet 50 during transfer learning.

Secondly, removing the last layer of VGGNet-16 or ResNet

50 and inputting the waste dataset, only retraining the last

layer of VGGNet-16 or ResNet 50. Consequently, the excellent

performance of the model for waste classification can be

obtained. In addition, the total trainable parameters in

VGGNet-16, VGGNet-16 with TL, ResNet-50, and ResNet-50

with TL were 134 million and 235 million, respectively.

2.4 Method of evaluation and visualization

2.4.1 Evaluations
Confusion metrics, sensitivity, precision, F1 score, accuracy,

receiver operating characteristic (ROC), and area under the curve

(AUC) were used to evaluate the performance of MSWNet.

Sensitivity, precision, F1 score, and accuracy were defined as

follows:

Sensitivity � TP
TP + FN

(2–5)

Precision � TP
TP + FP

(2–6)

F1 score � 2 × TP
2 × TP + FP + FN

(2–7)

Accuracy � TP + TN
TP + FN + TN + FN

(2–8)

in which, TP, TN, FN, and FP are the numbers of true

positives, true negatives, false negatives, and false positives,

respectively.

2.4.2 Visualization
Algorithms of principal component analysis (PCA) and

t-distributed stochastic neighbor embedding (t-SNE) were also

adopted to create low-dimensional data representing and

interpreting waste classification. As for the PCA and t-SNE

detail, they can be seen in the reference (Maaten and Hinton,

2008; Thomaz and Giraldi, 2010; Retsinas et al., 2017).

FIGURE 3
(A) VGGNet-16 structure; (B) ResNet-50 structure.
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TABLE 2 Effect of transfer learning on the performance of VGGNet-16 and ResNet-50 in the training dataset and validation dataset.

Item VGGNet ResNet

VGGNet-16 VGGNet-16 with TL ResNet-50 ResNet-50 with TL

Average Training time (s/epoch) 402 272 238 223

Loss in Training dataset 0.478 at 1rst ~ 0.032 at 100th 0.12 at 1rst ~ 0.003 at 100th 0.451 at 1rst to 0.247 at 100th 0.259 at 1rst to 0.002 at 100th

Accuracy in Training dataset 85.82% at 1rst ~ 98.78% at 100th 96.35% at 1rst ~ 99.89% at 100th 79.68% at 1rst ~ 90.31% at 100th 91.85% at 1rst ~ 99.93% at 100th

Loss in validation dataset 0.245 at 1rst ~ 0.312 at 100th 0.06 at 1rst ~ 0.542 at 100th 0.451 at 1rst to 0.247 at 100th 0.259 at 1rst ~ 0.002 at 100th

Accuracy in validation dataset 90.40% at 1rst ~ 95.65% at 100th 97.77% at 1rst ~ 98.16% at 100th 79.68% at 1rst ~ 90.31% at 100th 91.85% at 1rst ~ 99.93% at 100th

FIGURE 4
A 2-D feature visualization of an image representation of waste images by the method of PCA: (A) VGGNet-16; (B) VGGNet-16 with TL; (C)
ResNet-50; (D) ResNet-50 with TL; Note: TL was represented to transfer learning.
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3 Results and discussion

3.1 Effect of transfer learning on the
performance of VGGNet-16 and ResNet-
50 in the training dataset and validation
dataset

Table 2 shows the effect of transfer learning on the

performance of VGGNet-16 and ResNet-50 in the training

dataset and validation dataset. The training time of various

deep learning follows this order: VGGNet-16 (402 s) >
VGGNet-16 with TL (272 s) > ResNet-50 (238 s) > ResNet-50

with TL (223 s). This result suggested that transfer learning could

shorten the training time. Although more parameters in ResNet-

50 than that in VGGNet-16, as mentioned above, the training

time in ResNet-50 is less than that in VGGNet-16. The reason for

this phenomenon can be ascribed to the function of identity

mapping.

The tendency of loss from VGGNet-16 and ResNet-50 gets

decreased with the increase of the epoch number both in the

training dataset and the validating dataset, from 0.478 at the 1rst

epoch to 0.032 at the 100th epoch and from 0.451 at the 1rst epoch

to 0.0247 at the 100th epoch the training dataset in Table 2,

respectively. The loss from VGGNet-16 with transfer learning

FIGURE 5
A 2-D feature visualization of an image representation of waste images by the method of t-SNE: (A) VGGNet-16; (B) VGGNet-16 with TL; (C)
ResNet-50; (D) ResNet-50 with TL; Note: TL was represented to transfer learning.
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and ResNet-50 with transfer learning in the training dataset and

validating dataset also show similar trends. Namely, the epoch

number increased with the loss values for both the training

dataset and validating dataset decreased, while the loss in the

training dataset and validation data from VGGNet-16 with

transfer learning and ResNet-50 with learning is lower than

that without transfer learning. This result suggested that

transfer learning could reduce the loss both in the training

dataset and validating dataset.

As for accuracy, it from VGGNet-16, VGGNet-16 with

transfer learning, ResNet-50, and ResNet-50 with transfer

learning in the training dataset and validation dataset show an

upward trend with the increase of the epoch number. In terms of

loss and accuracy, transfer learning could promote VGGNet-16

and ResNet-50 to reach the convergent state and enhance the

accuracy of recyclable sorting, which is in line with other studies

(Rehman et al., 2019; Alghamdi et al., 2020). In addition,

compared with VGGNet-16, ResNet-50 showed better

performance in the training dataset and validation dataset in

terms of average time, loss, and accuracy.

3.2 Visual explanation

Figure 4 Feature maps can provide insights into the internal

representation of local feature extractors, which could interpret

what kind of features are detected or preserved, and make the

CNN model more transparent and accountable (Xia et al.,

FIGURE 6
Confusion matrix from models runs on the test dataset: (A) VGGNet-16; (B) VGGNet-16 with TL; (C) ResNet-50; (D) ResNet-50 with TL; Note:
TL was represented to transfer learning.
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2020). Method of PCA was adopted to provide the distribution

of organic waste and residual waste dataset. Figure 3 shows 2-

dimension extracted representations from the last layer of

various models obtained from the PCA algorithm. The

distribution of features from VGGNet-16 and VGGNet-16

with transfer learning shows “radiolucent” in Figure 3A and

Figure 3B. While the shape of features distribution in ResNet-

50 and ResNet-50 with transfer learning showed semantic

clustering. In addition, the feature of organic waste and

residual waste was clearly separated by the method of PCA.

The feature of organic waste and residual waste were

obtained from different deep learning models by the

method of t-SNE in Figure 5. It can be found that the

fetures from the last layer of VGGNet-16 (Figure 5A) and

VGGNet-16 with TL (Figure 5B) were well separated although

some of features about residual waste and wet waste is

overlapped. In terms of Figure 5C) and 5 days), the

distribution of features from ResNet-50 with TL were more

cleaner distinguish than that from ResNet-50 by the method of

t-SNE. Compared with the method of PAC, waste

representations were better separated from high dimension

to low dimension by t-SNE. This was due to t-SNE creating a

reduced feature space with similar samples modeled by nearby

points and similar samples modeled by remote points with

greater probability (Gisbrecht et al., 2015).

3.3 Effect of transfer learning on the
performance of VGGNet-16 and ResNet-
50 in test dataset and validation dataset

3.3.1 Confusion matrix
Figure 6 shows the confusion matrix of the assessment in

model performance for VGGNet-16, VGGNet-16 with transfer

learning, ResNet-50, and ResNet-50 with transfer learning. The

number of waste images (organic waste and residual waste) along

the diagonal line means correct classifications, while the values

that do not present along the diagonal line represent unpaired

FIGURE 7
Effect of transfer learning on the performance of VGGNet-16 and ResNet-50: (A) Accuracy; (B) Precision; (C) Recall; (D) F1 score.
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labels and images. For example, for organic waste, the number of

TN, FN, and FP was 3162, 153, and 180, respectively, (Figure 6A).

It is noted that compared with the other three state-of-art models

in Figure 6A), b), c), and d), the majority of organic images

(3257) and residual waste images (997) were found along the

diagonal line in ResNet-50 with transfer learning, indicating that

ResNet-50 with transfer learning provided a better performance

on the classification of organic and residual waste.

3.3.2 Accuracy, precision, recall, and F1 score
As shown in Figure 7A, the accuracy of various deep learning

models followed this order: ResNet-50 with transfer learning

(96.6%) > VGGNet-16 with transfer learning (95.6%) >
VGGNet-16 (92.4%) > ResNet-50 (88.6%). The result

suggested that transfer learning could greatly improve the

performance of ResNet-50 and VGGNet-16 models. In

addition, VGGNet-16 shows better performance in the

classification of organic and residual waste than ResNet-50.

The shortcomings of the method in accuracy assessment are

particularly pronounced when the data are unbalanced (Allouche

et al., 2006). Here, precision, recall, and F1 score were also

adopted for further quantitative evaluations of the

performance of different deep learning models being applied

in the classification of wet and residual waste.

Precision was denoted using the ratio of correctly predicted

positive items to the total predicted items. Figure 7B shows

ResNet-50 with transfer learning better performance

compared to the other three CNN models in organic waste

(97.3%) and residual waste (94.5%). While poor precision was

found in ResNet-50 with 91.9% of organic waste and 78% of

residual waste.

The corresponding meaning of recall was the number of

positive items correctly identified. VGGNet-16 with transfer

learning shows better performance than the other three CNN

models in organic waste (98.0%) in Figure 7C, while the best

performance for the residual waste classification was also found

in ResNet-50 (91.6%).

F1 score was a balance between recall and precision. The

values of organic waste in terms of F1 score follows this order:

ResNet-50 with transfer learning (97.8%) > VGGNet-16 with

transfer learning [(97.1%) > VGGNet-16 (95.0%)] > ResNet-50

(92.5%), as shown in Figure 7D. The value of the F1 score for

residual waste also shows the same trends: the best performance

was found in ResNet-50 with transfer learning (93.0%), followed

by VGGNet-16 with transfer learning (90.9%) and VGGNet-16

(84.5%), and the poorest performance was found in the ResNet-

50 (76.4%).

In conclusion, the best performance for the classification of

organic and residual waste was ResNet-50 with transfer learning,

followed byVGGNet-16with transfer learning andVGGNet-16, and

ResNet-50 in terms of accuracy, precision, recall, and F1 score.

4 Conclusion

Results indicated that transfer learning could shorten the

training time and the training time of various deep learning

follows this order: VGGNet-16 (402 s) > VGGNet-16 with TL

(272 s) > ResNet-50 (238 s) > ResNet-50 with TL (223 s). The

distribution of features from VGGNet-16 and VGGNet-16

with transfer learning shows “radiolucent”, While the shape

of features distribution in ResNet-50 and ResNet-50 with

transfer learning showed semantic clustering. In addition, the

feature of organic waste and residual waste was clearly

separated by the method of PCA. Compared with the

method of PAC, waste representations were better

separated from high dimension to low dimension by

t-SNE. This was due to t-SNE creating a reduced feature

space with similar samples modeled by nearby points and

similar samples modeled by remote points with greater

probability. The best performance for the classification of

organic and residual waste was ResNet-50 with transfer

learning, followed by VGGNet-16 with transfer learning

and VGGNet-16, and ResNet-50 in terms of accuracy,

precision, recall, and F1 score.

Data availability statement

The raw data supporting the conclusion of this article

will be made available by the authors, without undue

reservation.

Author contributions

FW designed the research, performed the calculation and

analysis and drafted the manuscript. HL carried out the main

revisions of contents and figures.

Funding

This work is financially supported by University-industry-

university cooperation program of Fujian Province (No.

2022N5007).

Conflict of interest

The authors declare that the research was conducted

in the absence of any commercial or financial

relationships that could be construed as a potential

conflict of interest.

Frontiers in Environmental Science frontiersin.org10

Wu and Lin 10.3389/fenvs.2022.1043843

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1043843


Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Alghamdi, A., Hammad, M., Ugail, H., Abdel-Raheem, A., Muhammad, K.,
Khalifa, H. S., et al. (2020). Assessing the accuracy of species distribution models:
Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43 (6), 1223–1232.
doi:10.1111/j.1365-2664.2006.01214.x

Alom,M. Z., Taha, T.M., Yakopcic, C.,Westberg, S., Sidike, P., Nasrin, M. S., et al.
(2019). A state-of-the-art survey on deep learning theory and architectures.
Electronics 8 (3), 292. doi:10.3390/electronics8030292

Anshassi, M., Smallwood, T., and Townsend, T. G. (2022). Life cycle GHG
emissions of MSW landfilling versus Incineration: Expected outcomes based on US
landfill gas collection regulations.Waste Manag. 142, 44–54. doi:10.1016/j.wasman.
2022.01.040

Bircano�Glu, C., Atay, M., and Bes¸Er, F. (2018). RecycleNet: Intelligent waste
sorting using deep neural networks: 2018 Innovations in Intelligent Systems and
Applications (INISTA), 03-05 July 2018, Thessaloniki, Greece. 2058–2062.

Bobulski, J., and Piatkowski, J. (2018). PET waste classification method and
plastic waste DataBase - WaDaBa. Adv. Intelligent Syst. Comput. 681, 57–64. doi:10.
1007/978-3-319-68720-9_8

Davis, P., Aziz, F., Newaz, M. T., Sher,W., and Simon, L. (2021). The classification
of construction waste material using a deep convolutional neural network.
Automation Constr. 122, 103481. doi:10.1016/j.autcon.2020.103481

Ding, Y., Zhao, J., Liu, J-W., Zhou, J., Cheng, L., Zhao, J., et al. (2021). A review of
China’s municipal solid waste (MSW) and comparison with international regions:
Management and technologies in treatment and resource utilization. J. Clean. Prod.
293, 126144. doi:10.1016/j.jclepro.2021.126144

Farrokhnia, F., Kahoo, A. R., and Soleimani, M. (2018). Automatic salt dome
detection in seismic data by combination of attribute analysis on CRS images and
IGU map delineation. J. Appl. Geophys. 159, 395–407. doi:10.1016/j.jappgeo.2018.
09.018

Fulkerson, B. (1996). Pattern recognition and neural networks. Cambridge:
Cambridge University Press.

Gisbrecht, A., Schulz, A., and Hammer, B. (2015). Parametric nonlinear
dimensionality reduction using kernel t-SNE. Neurocomputing 147, 71–82.
doi:10.1016/j.neucom.2013.11.045

Hadiloo, S., Radad, M., Mirzaei, S., and Foomezhi, M. (2017). Seismic facies
analysis by ANFIS and fuzzy clustering. Methods Extr. Channel Patterns 2017 (1),
1–5. doi:10.3997/2214-4609.201700917

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image
recognition. NV, USA: Las Vegas, 770–778.

Hosseini-Fard, E., Roshandel-Kahoo, A., Soleimani-Monfared, M., Khayer, K.,
and Ahmadi-Fard, A. R. (2022). Automatic seismic image segmentation by
introducing a novel strategy in histogram of oriented gradients. J. Petroleum Sci.
Eng. 209, 109971. doi:10.1016/j.petrol.2021.109971

Kaza, S., Yao, L., Bhada-Tata, P., and Van Woerden, F. (2018).What a waste 2.0:
A global snapshot of solid waste management to 2050. U.S.A: World Bank
Publications.

Khayer, K., Roshandel Kahoo, A., Soleimani Monfared, M., Tokhmechi, B., and
Kavousi, K. (2022b). Target-Oriented fusion of attributes in data level for salt dome
geobody delineation in seismic data. Nat. Resour. Res. 31 (5), 2461–2481. doi:10.
1007/s11053-022-10086-z

Khayer, K., Roshandel-Kahoo, A., Soleimani-Monfared, M., and Kavoosi, K.
(2022a). Combination of seismic attributes using graph-based methods to identify
the salt dome boundary. J. Petroleum Sci. Eng. 215, 110625. doi:10.1016/j.petrol.
2022.110625

Lin, K., Kuo, J-H., Xiong, K., Lin, C-L., and Liu, J. (2019). Effect of phosphorus
concentration on alkali and heavy metals transformation under agglomeration/
defluidization during fluidized bed simulated sludge Co-combustion. Waste
Biomass Valorization 11 (12), 6903–6916. doi:10.1007/s12649-019-00913-5

Lin, K., Zhao, Y., Kuo, J-H., Deng, H., Cui, F., Zhang, Z., et al. (2022). Toward
smarter management and recovery of municipal solid waste: A critical review on
deep learning approaches. J. Clean. Prod. 346, 130943. doi:10.1016/j.jclepro.2022.
130943

Lu, W., and Chen, J. (2022). Computer vision for solid waste sorting: A critical
review of academic research. Waste Manag. 142, 29–43. doi:10.1016/j.wasman.
2022.02.009

Maaten, L. V. D., and Hinton, G. (2008). Visualizing data using t-SNE. J. Mach.
Learn. Res. 9, 2579–2605.

Mafakheri, J., Kahoo, A. R., Anvari, R., Mohammadi, M., Radad, M., and
Monfared, M. S. (2022). Expand dimensional of seismic data and random noise
attenuation using low-rank estimation. IEEE J. Sel. Top. Appl. Earth Obs. Remote
Sens. 15, 2773–2781. doi:10.1109/JSTARS.2022.3162763

Mousavi, J., Radad, M., Soleimani Monfared, M., and Roshandel Kahoo, A.
(2022). Fault enhancement in seismic images by introducing a novel strategy
integrating attributes and image analysis techniques. Pure Appl. Geophys. 179
(5), 1645–1660. doi:10.1007/s00024-022-03014-y

Nasri, S., Nejati Kalate, A., Roshandel Kahoo, A., and Soleimani Monfared, M.
(2020). New insights into the structural model of the Makran subduction zone by
fusion of 3D inverted geophysical models. J. Asian Earth Sci. 188, 104075. doi:10.
1016/j.jseaes.2019.104075

Olugboja Adedeji, Z. W., and Wang, Z. (2019). Intelligent waste classification
system using deep learning convolutional neural network. Procedia Manuf. 35,
607–612. doi:10.1016/j.promfg.2019.05.086

Panwar, H., Gupta, P. K., Siddiqui, M. K., Morales-Menendez, R., Bhardwaj, P.,
Sharma, S., et al. (2020). AquaVision: Automating the detection of waste in water
bodies using deep transfer learning. Case Stud. Chem. Environ. Eng. 2, 100026.
doi:10.1016/j.cscee.2020.100026

Radad, M., Gholami, A., and Siahkoohi, H. E. (2016). A fast method for generating
high-resolution single-frequency seimic attributes. J. Seismic Explor. 25, 11–25.

Rehman, A., Naz, S., Razzak, M. I., Akram, F., and Imran, M. (2019). A deep learning-
based framework for automatic brain tumors classification using transfer learning.
Circuits Syst. Signal Process. 39 (2), 757–775. doi:10.1007/s00034-019-01246-3

Retsinas, G., Stamatopoulos, N., Louloudis, G., Sfikas, G., and Gatos, B. (2017).
“Nonlinear manifold embedding on keyword spotting using t-SNE,” in 2017 14th
IAPR International Conference on Document Analysis and Recognition (ICDAR),
Kyoto, Japan, 09-15 November 2017, 487–492.

Saad, O. M., and Chen, Y. (2022). Deep denoising autoencoder for seismic
random noise attenuation. Geophysics 85 (4), 367–376. doi:10.1190/geo2019-0468.1

Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for
large-scale image recognition. arXiv. Available at: https://arxiv.org/abs/1409.1556.

Sinno, J., and Yang, Q. (2010). A survey on transfer learning. IEEE Trans. Knowl.
Data Eng. 22 (10), 1345–1359. doi:10.1109/tkde.2009.191

Soleimani, M., and Balarostaghi, M. (2016). Seismic image enhancement in post
stack depth migration by finite offset CDS stack method. J. Pet. Explor. Prod.
Technol. 6 (4), 605–615. doi:10.1007/s13202-016-0235-9

Soleimani, M. (2016a). Seismic image enhancement of mud volcano bearing
complex structure by the CDS method, a case study in SE of the Caspian Sea
shoreline. Russ. Geol. Geophys. 57, 1775–1786. doi:10.1016/j.rgg.2016.01.020

Soleimani, M. (2016b). Seismic imaging by 3D partial CDS method in complex
media. J. Petroleum Sci. Eng. 143, 54–64. doi:10.1016/j.petrol.2016.02.019

Tahmoorian, F., and Khabbaz, H. (2020). Performance comparison of a MSW
settlement prediction model in Tehran landfill. J. Environ. Manage. 254, 109809.
doi:10.1016/j.jenvman.2019.109809

Thomaz, C. E., and Giraldi, G. A. (2010). A new ranking method for principal
components analysis and its application to face image analysis. Image Vis. Comput.
28 (6), 902–913. doi:10.1016/j.imavis.2009.11.005

Xia, C., Pan, Z., Fei, Z., Zhang, S., and Li, H. (2020). Vision based defects detection
for keyhole TIG welding using deep learning with visual explanation. J. Manuf.
Process. 56, 845–855. doi:10.1016/j.jmapro.2020.05.033

Yang, M., and Thung, G. (2016). “Classification of trash for recyclability status,”.
CS229 Projection Report2016. Available at: https://cs229.stanford.edu/proj2016/
report/ThungYang-ClassificationOfTrashForRecyclabilityStatus-report.pdf
(Accessed Dec 9, 2016).

Frontiers in Environmental Science frontiersin.org11

Wu and Lin 10.3389/fenvs.2022.1043843

https://doi.org/10.1111/j.1365-2664.2006.01214.x
https://doi.org/10.3390/electronics8030292
https://doi.org/10.1016/j.wasman.2022.01.040
https://doi.org/10.1016/j.wasman.2022.01.040
https://doi.org/10.1007/978-3-319-68720-9_8
https://doi.org/10.1007/978-3-319-68720-9_8
https://doi.org/10.1016/j.autcon.2020.103481
https://doi.org/10.1016/j.jclepro.2021.126144
https://doi.org/10.1016/j.jappgeo.2018.09.018
https://doi.org/10.1016/j.jappgeo.2018.09.018
https://doi.org/10.1016/j.neucom.2013.11.045
https://doi.org/10.3997/2214-4609.201700917
https://doi.org/10.1016/j.petrol.2021.109971
https://doi.org/10.1007/s11053-022-10086-z
https://doi.org/10.1007/s11053-022-10086-z
https://doi.org/10.1016/j.petrol.2022.110625
https://doi.org/10.1016/j.petrol.2022.110625
https://doi.org/10.1007/s12649-019-00913-5
https://doi.org/10.1016/j.jclepro.2022.130943
https://doi.org/10.1016/j.jclepro.2022.130943
https://doi.org/10.1016/j.wasman.2022.02.009
https://doi.org/10.1016/j.wasman.2022.02.009
https://doi.org/10.1109/JSTARS.2022.3162763
https://doi.org/10.1007/s00024-022-03014-y
https://doi.org/10.1016/j.jseaes.2019.104075
https://doi.org/10.1016/j.jseaes.2019.104075
https://doi.org/10.1016/j.promfg.2019.05.086
https://doi.org/10.1016/j.cscee.2020.100026
https://doi.org/10.1007/s00034-019-01246-3
https://doi.org/10.1190/geo2019-0468.1
https://arxiv.org/abs/1409.1556
https://doi.org/10.1109/tkde.2009.191
https://doi.org/10.1007/s13202-016-0235-9
https://doi.org/10.1016/j.rgg.2016.01.020
https://doi.org/10.1016/j.petrol.2016.02.019
https://doi.org/10.1016/j.jenvman.2019.109809
https://doi.org/10.1016/j.imavis.2009.11.005
https://doi.org/10.1016/j.jmapro.2020.05.033
https://cs229.stanford.edu/proj2016/report/ThungYang-ClassificationOfTrashForRecyclabilityStatus-report.pdf
https://cs229.stanford.edu/proj2016/report/ThungYang-ClassificationOfTrashForRecyclabilityStatus-report.pdf
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1043843

	Effect of transfer learning on the performance of VGGNet-16 and ResNet-50 for the classification of organic and residual waste
	1 Introduction
	2 Materials and methods
	2.1 Data collection and preparation
	2.2 VGGNet-16 and ResNet-50 structure
	2.3 Transfer learning
	2.4 Method of evaluation and visualization
	2.4.1 Evaluations
	2.4.2 Visualization


	3 Results and discussion
	3.1 Effect of transfer learning on the performance of VGGNet-16 and ResNet-50 in the training dataset and validation dataset
	3.2 Visual explanation
	3.3 Effect of transfer learning on the performance of VGGNet-16 and ResNet-50 in test dataset and validation dataset
	3.3.1 Confusion matrix
	3.3.2 Accuracy, precision, recall, and F1 score


	4 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


