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Nitrite and ammonia are two of themost common toxic nitrogenous pollutants

in aquatic ecosystem, which can pose a serious threat to the health of aquatic

organisms. Cladocerans, as an important part of freshwater ecosystem, will

inevitably be harmed by these pollutants. To evaluate the combined toxic

effects of these nitrogenous pollutants on cladocerans, we simulated

15 combinations of five nitrite concentrations (0, 0.5, 2, 4, 8 mg L−1) and

three ammonia concentrations (0, 0.1, 1 mg L−1) to study the changes of life

history traits of Daphnia pulex exposed to these combinations for 21 days.

Results showed that under the combined stress of nitrite and ammonia, the

survival time of D. pulex was shortened, the time to first batch of eggs and time

to first brood were delayed, the body size and tail spine length at maturation

were reduced, and the total offspring and the number of broods were

decreased. There were some synergistically negative effects between the

two nitrogenous pollutants. The presence of ammonia reduced the

tolerance of D. pulex to nitrite, and vice versa. These findings provided new

insights into the combined toxic effects of nitrite and ammonia on the life

history traits of cladocerans, and were of great significance for understanding

the population dynamics of specific species in cladocerans community under

the condition of compound nitrogenous pollutants.
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Introduction

The discharge from livestock and poultry breeding wastewater and the decomposition

of dead aquatic organisms in natural waters can produce a large amount of nitrogenous

pollutants, including ammonia and nitrite (Yang et al., 2011; Sun et al., 2012, 2013).

Nitrite is the intermediate product of nitrification reaction. When oxygen is sufficient, it

can be converted into nitrate with low toxicity under the action of microorganisms (van

Kessel et al., 2015), but it can also be converted into ammonia with high toxicity under

hypoxia (Tiso and Schechter, 2015). Therefore, ammonia and nitrite in some waters may

be maintained at a high level together, causing serious harm to aquatic organisms (Yang

et al., 2010; Lyu et al., 2013c; Wang et al., 2018). Specifically, nitrites can affect blood

parameters by oxidizing Fe2+ in hemoglobin to Fe3+ (such as methemoglobin), thereby
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reducing the oxygen carrying capacity of blood (Kroupova et al.,

2005), which will lead to asphyxia in severe cases. Studies on

some cultured aquatic animals has showed that nitrite can cause a

variety of physiological disorders (Jensen, 1996), resulting in

abnormal metabolic function and a variety of diseases. For

cladocerans, long-term exposure to environmentally relevant

concentrations of nitrite will delay development, reduce

fecundity, and even shorten survival time (Xiang et al., 2012).

Ammonia usually accumulates and even causes chronic

toxicity at low concentration 0.01 mg L−1 NH3-N (Badiola

et al., 2018). It has been reported that ammonia is a

neurotoxin, which can cause significant changes in the level of

amino acid in fish brain, especially for glutamate and glutamine

(Iwata, 1988; Ip and Chew, 2010). There are many adverse effects

of ammonia on aquatic organisms, such as slow growth (Atwood

et al., 2000), damage to tissue structure (Xu et al., 2021),

imbalance of immune function (Cheng et al., 2020), decreased

fecundity (Visek, 1984), reduced osmotic regulation ability (Yang

et al., 2010), disordered cell function (Xu et al., 2021). Zhu et al.

(2015) studied the comprehensive effects of ammonia and

microcystin on the life history characteristics of D. magna,

and found that with the increase of ammonia concentration,

the time to first batch of eggs and time to first brood of D. magna

were delayed, and the number of total offspring decreased.

Cladocerans, an important component of zooplankton, play

an irreplaceable role in transferring the energy fixed by primary

producer algae to higher trophic levels, and are extremely critical

to maintaining the health of aquatic ecosystem (Lyu et al., 2013a;

Sun et al., 2022). Moreover, as cladocerans are easy to be cultured

in the laboratory, have a short life cycle, and are sensitive to

pollutants (Freitas and Rocha, 2011), they are usually used as a

test species for ecotoxicological assays in waters (Sarma and

Nandini, 2006). Although there have been many studies about

the ecotoxicological response of cladocerans to a single

nitrogenous pollutant ammonia or nitrite (Lyu et al., 2013b),

there is still a lack of systematic research about the impact of

simultaneous increase of nitrite and ammonia concentrations on

the life history traits of cladocerans. In summer, the

concentration of nitrite in some waters can reach 50 mg L−1 or

higher (Kamstra et al., 1996), and the concentration of ammonia

even can reach 46 mg L−1 (Wang et al., 2013). To reasonably

evaluate the actual response of cladocerans to co-existing various

nitrogenous pollutants, in this study, we exposed Daphnia pulex,

a species of representative cladocerans, to simulated various

combinations of different concentrations of nitrite and

ammonia for 21 days, during which the life history traits were

recorded. We propose a scientific hypothesis that nitrite and

ammonia may interact with the life history traits of D. pulex, and

the presence of one harmful nitrogenous pollutant can reduce the

tolerance of D. pulex to another harmful nitrogenous pollutant.

In water environment, the potential accumulation of ammonia

and nitrite often co-exists, thus it was of practical significance to

study the combined effect of these two pollutants on cladocerans.

Materials and methods

Culture of daphnia and algae

Daphnia pulex, originally isolated from a fish pond near

Zhenjiang (32° 15 ‘58 ″ N, 119° 51′ four″ E), China (Huang

et al., 2020), was used in this study. TheD. pulexwasmaintained in

our laboratory for more than 3 years under the controlled

conditions (Huang et al., 2020): 25°C temperature, 40 µmol

photons m−2 s−1 light intensity, 14 h:10 h light: dark cycle in

COMBO medium (Kilham et al., 1998), and fed with

Scenedesmus obliquus. The alga S. obliquus was cultured in 2 L

sterile BG-11 medium (Gan et al., 2016), under the same

conditions for about 15 days and centrifuged at 3000 g for

15 min after reaching the exponential growth stage. After

diluted with ultra-pure water, the algae were stored in a

refrigerator at 4°C as food forD. pulex in the following experiment.

Preparation and determination of nitrite
and ammonia

We used sodium nitrite (NaNO2) and ammonium chloride

(NH4Cl) to simulate the mixtures of the two nitrogenous

pollutants. NaNO2 (CAS No. 7362–00–0, analytical pure) and

NH4Cl (CAS No. 12125–02–9, analytical pure, 99.5% purity)

were purchased from Aladdin (Shanghai, China). Before the

experiment, 200 mg L−1 and 2 g L−1 of NaNO2 and NH4Cl

stock solution were prepared by dissolving NaNO2 and

NH4Cl in de-chlorinated water, respectively, which were

diluted to the required concentrations in proportion during

the experiment. The accurate concentrations were determined

by colorimetric method and Nessler reagent spectrophotometry

(Wu and Cao, 2013). The concentrations of NH3-N were

calculated using the equation NH3=
[NH3+NH+

4 ]
[1+10(pKa−pH)], where pKa is

calculated based on the equation (Emerson et al., 1975)：pKa =

0.09018 + 2729.92/T (T is in K°C).

Experimental design

The third brood of neonates (<24 h) from the synchronously

female D. pulex was used in the experiment. During the

experiment, neonates were randomly placed into 50 ml

beakers, one for each beaker, which made it easy to record life

history traits. According to the environmentally relevant

concentrations of nitrogenous pollutants occurred in some

specific waters (Kamstra et al., 1996; Wang et al., 2013), we

set up 15 treatments, i.e. the combinations of five nitrite

concentrations (0, 0.5, 2, 4, 8 mg L−1) and three ammonia

concentrations (0, 0.1, 1 mg L−1). We set more concentrations

for nitrite to fit the change trend of life history traits using

appropriate function with ecological significance, whereas the
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TABLE 1 Two-way ANOVA results of survival, development, and reproductive traits of D. pulex under different ammonia and nitrite concentrations.

Life-history traits DF SS MS F p

Survival time

Ammonia 2 137,187 68.594 13.337 <0.001
Nitrite 4 907.751 226.936 44.124 <0.001
Ammonia ×Nitrite 8 170.540 21.317 4.145 <0.001

Time to first eggs

Ammonia 2 0.761 0.381 1.708 0.185

Nitrite 4 32.010 8.003 35.900 <0.001
Ammonia ×Nitrite 8 0.961 0.120 0.539 0.825

Time to first brood

Ammonia 2 0.647 0.323 1.854 0.161

Nitrite 4 16.994 4.248 24.349 <0.001
Ammonia ×Nitrite 8 1.516 0.189 1.086 0.377

Spine length at first eggs

Ammonia 2 45,848.55 22,924.27 50.325 <0.001
Nitrite 4 6232.454 1558.113 3.420 0.011

Ammonia ×Nitrite 8 2216.992 277.124 0.608 0.770

Relative spine length at first eggs

Ammonia 2 0.00780 0.00390 22.561 <0.001
Nitrite 4 0.000365 0.0000911 0.527 0.716

Ammonia ×Nitrite 8 0.000548 0.0000685 0.396 0.921

Size at first eggs

Ammonia 2 238,797.973 119,398.97 49.192 <0.001
Nitrite 4 118,166.249 29,541.562 12.171 <0.001
Ammonia ×Nitrite 8 114,277.206 14,284.651 5.885 <0.001

Size at first brood

Ammonia 2 235,110.986 117,555.49 42.305 <0.001
Nitrite 4 176,746.961 44,186.740 15.902 <0.001
Ammonia ×Nitrite 8 146,825.237 18,353.155 6.605 <0.001

Spine length at first brood

Ammonia 2 47,374.921 23,687.461 33.552 <0.001
Nitrite 4 16,300.458 4075.115 5.772 <0.001
Ammonia ×Nitrite 8 8082.034 1010.254 1.431 0.190

Relative spine length of first brood

Ammonia 2 0.00728 0.00364 12.846 <0.001
Nitrite 4 0.00144 0.000361 1.273 0.284

Ammonia ×Nitrite 8 0.00114 0.000142 0.502 0.853

Number of broods

Ammonia 2 16.870 8.435 3.981 0.021

Nitrite 4 267.857 66.964 31.603 <0.001
Ammonia ×Nitrite 8 36.352 4.544 2.145 0.036

Total offspring per female

Ammonia 2 7679.562 3839.781 7.250 0.001

Nitrite 4 128,648.30 32,162.075 60.728 <0.001

(Continued on following page)
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range of ammonia concentration was wide, representing no

pollution, light pollution, and heavy pollution levels,

respectively. Each treatment had ten replicates, and the

experiment lasted for 21 days. During the experiment, some

key life history traits that can fully show the survival,

development, and reproduction of D. pulex were recorded

every day: survival number, times to first batch of eggs and

first brood, sizes at first batch of eggs and first brood, spine

lengths and relative spine lengths at first batch of eggs and first

brood, number of broods, total offspring per female, and

number of offspring per brood. Although nitrite can be

converted into nitrate due to bacteria, this experiment

cannot be carried out under sterile conditions, as

cladocerans cannot survive and develop in a bacteria-free

environment (Akbar et al., 2020), and actually bacteria exist

under natural conditions. Thus, to ensure the relative stability

of nitrite and ammonia concentrations during the whole

experimental period, fresh COMBO media with

corresponding concentrations and 2 mg C L−1 S. obliquus

were replaced every 48 h (Lyu et al., 2013b; Cao et al., 2014)

for each replicate. All experiments were conducted under the

conditions as described above.

FIGURE 1
Effects of different nitrite concentrations (0, 0.5, 2, 4, 8 mg L−1) and ammonia concentrations (0, 0.1, 1 mg L−1) on the survival time, time to first
eggs, and time to first brood of D. pulex. A three-parameter Sigmoidal model y � a/1 + ( x

x0
)b was used to fit the survival time of D. pulex with the

increase of nitrite concentration under different ammonia concentrations to obtain the EC50 of nitrite for survival time. Significant differences are
represented by different lowercase letters. “*" indicates that there is significant difference between treatments with the same ammonia
concentration (p < 0.001), and differences within groups with the same nitrite concentration are indicated by lowercase letters.

TABLE 1 (Continued) Two-way ANOVA results of survival, development, and reproductive traits of D. pulex under different ammonia and nitrite
concentrations.

Life-history traits DF SS MS F p

Survival time

Ammonia ×Nitrite 8 5006.14 625.768 1.182 0.315

Number of offspring per brood

Ammonia 2 111.304 55.652 14.044 <0.001
Nitrite 4 835.825 208.956 52.730 <0.001
Ammonia ×Nitrite 8 48.598 6.075 1.533 0.152
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Data analysis

All data were presented in the form of mean values ±SE. Two-way

ANOVA andHoc Tukey’s test were used to analyze the comprehensive

effects of different nitrite and ammonia concentrations on survival,

development, and reproduction of D. pulex. The three parameter

Sigmoidal model y � a/1 + ( x
x0
)b was used to fit the variation trends

of survival time, total offspring number, average offspring number per

brood, and number of broods under different nitrite and ammonia

concentrations, where x represents ammonia concentration, x0
represents EC50, a and b are constants. p < 0.05 indicates significant

difference. Sigmaplot 14.0 was used for statistical analysis.

Results

Survival time

Two-way ANOVA showed that nitrite and ammonia

significantly reduced the survival time of D. pulex

respectively, and there was a significant interaction between

the two nitrogenous pollutants (Table 1). When ammonia

concentration was 0 mg L−1, low concentration nitrite

(0–4 mg L−1) had no significantly negative effect on the

survival days of D. pulex (Figure 1A), whereas in the case of

8 mg L−1 nitrite, some maternal D. pulex died, and the survival

time decreased to 17.1 d, which was significantly different from

the low nitrite concentration treatments. When the ammonia

concentration increased to 0.1 and 1 mg L−1, the survival time

decreased significantly with the increase of nitrite

concentration, and the average survival time under 8 mg L−1

nitrite decreased to 14 days and 10.3 days respectively, and

there was a significant difference among the low

concentration nitrite treatments.

According to the relationship between survival time and

nitrite concentration fitted by Sigmoidal model, the EC50

value of nitrite for survival time under the highest ammonia

concentration treatment was significantly lower than that under

0 mg L−1 and 0.1 mg L−1 ammonia (Figure 1B), which indicated

that the presence of ammonia impaired the tolerance of D. pulex

FIGURE 2
Combined effects of different nitrite concentrations (0, 0.5, 2, 4, 8 mg L−1) and ammonia concentrations (0, 0.1, 1 mg L−1) on size, spine length,
relative spine length at first eggs and first brood.
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to nitrite, resulting in D. pulex more sensitive to nitrite.

Compared with the treatment of different ammonia

concentrations under the same nitrite concentration, the

decrease amplitude was larger with the increase of nitrite

concentration under the same ammonia concentration, which

meant that the toxic effect of nitrite also reduced the tolerance of

D. pulex to ammonia (Figure 1A).

Development to maturity

The increase of nitrite and ammonia concentration delayed

the time to first batch of eggs and time to first brood of D. pulex,

but there was no interaction between nitrite and ammonia

(Table 1). At the same ammonia concentration, with the

increase of nitrite concentration, the time to first batch of

eggs and the time to first brood gradually delayed. At the

concentration of 8 mg L−1 nitrite, the delay effect reached the

maximum, with the time to first batch of eggs delayed by 1.2, 1.3,

and 1.3 days, respectively (Figure 1C), and the time to first brood

delayed by 0.7, 0.8, and 1.3 days (Figure 1D), respectively.

According to the results of two-way ANOVA, although both

nitrite and ammonia delayed development, the toxic effect of

nitrite on development time was stronger than ammonia in the

concentration range of this experiment.

Two-way ANOVA showed that nitrite and ammonia

significantly inhibited the time to first batch of eggs and the

size of maternal D. pulex at the first brood, and there was a

significant interaction between nitrite and ammonia (Table 1).

Compared with 0 mg L−1 nitrite, when nitrite concentration was

8 mg L−1 and ammonia concentration was 0, 0.1, and 1 mg L−1,

the size of D. pulex at first batch of eggs decreased by 9.4%, 5.8%,

and 9.5%, respectively, and the size at first brood decreased by

10.2%, 6.5%, and 9.9%, respectively. Similarly, the increase of

nitrite and ammonia concentration also significantly inhibited

the spine length and the relative spine length at first batch of eggs

and first brood (Figure 2). When nitrite concentration was

8 mg L−1 and ammonia concentration was 0, 0.1, and

1 mg L−1, the spine length of D. pulex at first batch of eggs

decreased by 4.7%, 6.5%, and 15.6%, respectively, and spine

FIGURE 3
The total offspring number, the number of offspring per brood and the number of broods of D. pulex under different nitrite concentrations (0,
0.5, 2, 4, 8 mg L−1) and different ammonia concentrations (0, 0.1, 1 mg L−1). The three-parameter Sigmoidal model y � a/1 + ( x

x0
)b was used to fit the

reproductive characteristics of D. pulex with the increase of nitrite concentration under different ammonia concentrations.
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length at first brood decreased by 6.8%, 7.5%, and 15.7%,

respectively. The results of two-way ANOVA showed that

within the concentration range of this experiment, ammonia

had a stronger toxic effect on the growth and development of D.

pulex than nitrite (Table 1). In addition, under different nitrite

concentrations (0, 0.5, 2, 4, 8 mg L−1) and ammonia

concentrations (0, 0.1, 1 mg L−1), the size, spine length,

relative spine length of D. pulex at first batch of eggs and first

brood showed various trends (Figure 2). Compared with the

treatment without nitrite and ammonia, the body size, spine

length and relative spine length of D. pulex in other treatments

showed a gradient decrease with the increase of the two

nitrogenous pollutants (Figure 2).

Reproductive performances

Under the same ammonia concentration, with the increase of

nitrite concentration, the total offspring per female and the

number of offspring per brood showed a significant downward

trend, and with the increase of ammonia concentration, the

downward trend became more sharply (Figure 3). Compared

with 0 mg L−1 nitrite, when nitrite concentration was 8 mg L−1

and ammonia concentration was 0, 0.1, and 1 mg L−1, the total

offspring per female decreased by 68%, 71%, and 78%, respectively.

In addition, nitrite and ammonia had significant inhibitory effects

on the number of broods of D. pulex. The results of two-way

ANOVA showed that there was an interaction between nitrite and

ammonia (Table 1). Similarly, compared with 0 mg L−1 nitrite,

when the nitrite concentration was 8 mg L−1 and the ammonia

concentration was 0, 0.1, and 1 mg L−1, the total number of broods

per individual for 21 days decreased by 33.3%, 50%, and 56.3%,

respectively (Figure 3).

Discussion

In recent years, the rise of nitrogenous pollutants has aroused

widespread concern. Aquatic organisms face the stress of nitrogenous

pollutants, amongwhich nitrite and ammonia nitrogen are two of the

most common and abundant pollutants in freshwater and coastal

ecosystems (Howarth et al., 2000). Especially in water bodies with

excess nutrients, it is found that high levels of nitrite and ammonia

will cause serious physiological disorders of aquatic animals and lead

to a large number of fish deaths (Medeiros et al., 2016). Through our

experiment, we concluded that nitrite and ammonia had obvious

toxic effects on D. pulex respectively, and nitrite and ammonia had

significant interaction on some life history traits ofD. pulex. Specially,

the presence of ammonia reduced the tolerance ofD. pulex to nitrite,

and vice versa. The above results well confirmed our scientific

hypothesis.

In this study, the survival rate of D. pulex decreased

significantly with the increase of nitrite concentrations, and

decreased more sharply under the condition of simultaneous

ammonia stress, indicating that there was a certain synergy

between the two nitrogenous pollutants. Some studies exposed

Daphnia magna to ammonium, nitrite, nitrate and phosphate

respectively for 7 days, and the mortality increased with the

increase of nitrite and ammonium concentration (Serra et al.,

2019), which was similar to the results observed in our experiment.

In addition, long-term nitrite and ammonia exposure Daphnia

obtusa andDaphnia similoides showed similar results (Xiang et al.,

2012). According to the EC50 value of survival time obtained from

Sigmoidal model, it can be found that the existence of ammonia

not only shortened the life span of D. pulex, but also reduced the

tolerance of D. pulex to nitrite. Conversely, nitrite also reduced the

tolerance of D. pulex to ammonia. Nitrite can diffuse into the red

blood cells of aquatic animals and oxidize the hemoglobin in the

red blood cells into methemoglobin, thereby reducing the oxygen

carrying capacity of the blood (Kroupova et al., 2005), destroying

the ion regulation and respiratory system, leading to oxidative

stress (Umbreit, 2007), finally suffocating aquatic animals. As for

the non-ionic ammonia, it has good liposolubility and is easy to

diffuse into aquatic organisms through cell membrane, causing

damage to important organs including gill tissue, resulting in

dyspnea, and inhibiting growth and development (Liu et al.,

2014). The non-ionic ammonia directly affects the metabolism

of enzymes, leading to disorder of enzyme metabolism, reducing

immunity, stimulating aquatic organisms to produce a series of

toxic reactions such as excitement and convulsion, and eventually

leading to death. In addition, ammonia can inhibit ATP synthesis,

resulting in that cladocerans do not have enough energy to

maintain their own growth and reproduction (Fan et al., 2018).

When studying the effects of external stress on the life history

traits of cladocerans, the time to first batch of eggs and body size at

maturation are generally used as important indicators to show the

development. In this study, the increase of nitrite and ammonia

concentration affected the development of D. pulex, which was

mainly manifested in the delay of the time to first batch of eggs and

time to first brood, and the reduction of body size, tail spine length,

and the relative tail spine length. When nitrite interacted with

ammonia, the growth and development of D. pulex were more

severely stressed. Within the nitrite concentration range less than

8 mg L−1, there was no delay in the time to first batch of eggs and the

time to first brood of D. pulex. When the nitrite concentration was

higher than 4 mg L−1, the body size and tail spine length of D. pulex

at maturation decreased, and the inhibition effect was significant.

When nitrite accumulates to a certain level, it will adversely affect the

endocrine system (Panesar and Chan, 2001), excretion process

(Cheng and Chen, 1998), and antioxidant system (Wang et al.,

2017) of D. pulex, impair its normal physiological function and

energy metabolism process, and cause the development of D. pulex

to be inhibited. Hannas et al. (2010) have proved that nitrite will be

toxic to the development and reproduction of cladocerans at

environmentally relevant concentrations, which may be also

because it is converted into nitric oxide in cells. Nitric oxide
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plays an important role in the regulation of multiple reproductive

functions of vertebrates and invertebrates (Nighorn et al., 1998), and

too high will cause many adverse consequences. Some studies have

reported the negative effects of nitrite or ammonia stress on the

development of aquatic organisms, for example, Yang et al. (2012)

found that with the increase of ammonia concentration, the

maturation time of D. magna were delayed, and fecundity was

decreased.

Compared with the treatment without pollutants, nitrite and

ammonia treatments significantly reduced the total offspring, the

average offspring per brood and the number of broods of D. pulex.

When nitrite concentration was 8 mg L−1 and ammonia

concentration was 1 mg L−1, the number of broods decreased by

50%, which may be due to the reproductive strategy response of the

maternalD. pulex to the stress. According to the EC50 value of brood

number obtained from Sigmoidalmodel, we found that the presence

of ammonia not only reduced the reproduction ofD. pulex, but also

decreased the tolerance of D. pulex to nitrite. Similarly, nitrite also

reduced the tolerance of D. pulex to ammonia. We speculated that

when cladocerans were exposed under adverse environmental stress,

they would invest part of their energy to resist stress. Due to the

combined effect of nitrite and ammonia, the energy consumption of

D. pulex was increased, and the energy invested in growth,

development, and reproduction was greatly reduced (Hanazato

and Dodson, 1995). Similarly, studies have found that the

development and reproductive characteristics of Daphnia similis

are inhibited under the conditions of ammonia and hypoxia, i.e., the

time to first brood is delayed, the body length is reduced, and the

number of offspring is decreased (Lyu et al., 2013a). The toxicity of

ammonia under the conditions of hypoxia and normoxia is

different, and hypoxia will greatly increase the toxic effect of

ammonia (Wajsbrot et al., 1991). This is similar to the

phenomenon revealed in this experiment, i.e., the interaction

between nitrite and ammonia may affect the balance of energy

distribution. Nitrite and ammonia stress can reduce the metabolic

rate of cladocerans, which increases the risk of death and reduces

reproductive output due to the imbalance of energy distribution

(Jensen, 1996; Ip and Chew, 2010; Medeiros et al., 2016; Fan et al.,

2018). Therefore, the reproduction decreased due to the stress of

nitrogenous pollutants, which eventually led to the decline of

cladocerans population and affect the stability of aquatic ecosystem.

Conclusion

The results of this study showed that environmentally

relevant or high concentrations of nitrite and ammonia

exposure had a significantly negative impact on the key life

history traits of D. pulex. Under nitrite and ammonia stress,

the survival time of D. pulex was shortened, the time to first

batch of eggs and the time to first brood were delayed, the

body size and tail spine length were reduced, and the number

of offspring and broods were decreased. There was a certain

synergistic negative effect between the two nitrogenous

pollutants. The presence of ammonia reduced the tolerance

of D. pulex to nitrite, and vice versa. In contrast, within the

concentration range set in this experiment, nitrite may have a

stronger toxic effect on the development and reproduction of

D. pulex. As these two nitrogenous pollutants often co-exist in

the water body, and can be transformed into each other, such

study provided new insights into the combined toxic effects of

nitrite and ammonia on the life history traits of cladocerans,

which was of great significance to understand the population

dynamics of cladocerans and the stability of aquatic

ecosystem under the condition of compound nitrogenous

pollutants.
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