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Background: Aedes aegypti mosquitoes transmit dengue, yellow fever, Zika,

and chikungunya viruses. Their range has recently been expanding throughout

the world, including into desert regions such as Arizona in the southwestern

United States. Little is understood about how these mosquitoes are surviving

and behaving in arid environments, habitat that was previously considered

inhospitable for the vector. The goal of this study is to create quarterly

species distribution models based on satellite imagery and socioeconomic

indicators for Ae. aegypti in Maricopa County, Arizona from 2014 to 2020.

Methods: Trapping records for Ae. aegypti in Maricopa County, Arizona from

2014 to 2020 were split into 25 quarterly time periods. Quarterly species

distribution models (Maxent) were created using satellite imagery-derived

vegetation and moisture indices, elevation, and socioeconomic factors

(population density, median income) as predictors. Maps of predicted habitat

suitability were converted to binary presence/absence maps, and consensus

maps were created that represent “core” habitat for the mosquito over 6 years

of time. Results were summarized over census-defined zip code tabulation

areas with the goal of producing more actionable maps for vector control.

Results: Population density was generally the most important predictor in the

models while median income and elevation were the least important. All of the

25 quarterly models had high test area under the curve values (>0.90) indicating
good model performance. Multiple suburban areas surrounding the Phoenix

metropolitan core area were identified as consistent highly suitable habitat.

Conclusion: We identified long term “core” habitat for adult female Ae. aegypti

over the course of 6 years, as well as “hotspot” locations with greater than

average suitability. Binary maps of habitat suitability may be useful for vector

control and public health purposes. Future studies should examine the

movement of the mosquito in this region over time which would provide

another clue as to how the mosquito is surviving and behaving in a desert

region.
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Introduction

Aedes aegypti mosquitoes are vectors of great public health

importance as they are capable of transmitting dengue, Zika,

chikungunya, and yellow fever viruses (Pialoux et al., 2007;

Guzman and Harris, 2015; Monath and Vasconcelos, 2015;

Musso and Gubler, 2016). Importantly, although this

mosquito initially spread throughout the world hundreds of

years ago, their range has rapidly expanded into new regions

and environments (Kraemer et al., 2015), putting an even greater

number of people at risk of contracting these diseases. This vector

lives in close proximity to human settlements, is active during

daytime hours, and feeds preferentially on humans for blood

meals, making the mosquito an efficient vector of diseases

(Christophers, 1960). Aedes aegypti mosquitoes need water for

larval development and generally reside in warm, tropical regions

of the world, as their survival and reproductive cycles are greatly

impacted by temperature (Brady et al., 2014). Their range has

been expanding into more temperate regions of the world, such

as the United States and Europe, driven by human movement,

human development, and changes in land use and land cover

(Kraemer et al., 2019; Wilke et al., 2020). With some exceptions

of greater distances traveled, this mosquito is generally found to

have a small range of about 100–200 m over the course of their

lifetime (Harrington et al., 2005; Juarez et al., 2020), so their

distribution is generally not homogeneous over an entire urban

area but rather depends on habitat availability and

microenvironment characteristics.

Past studies have focused on identifying the areas of a city

well suited to hosting Ae. aegypti and identifying characteristics

of the well-suited areas that can be targeted for mosquito control

purposes. One approach to these studies has been to utilize

species distribution models and satellite imagery to better

understand the landscape characteristics that may be

associated with Ae. aegypti populations. The goal of species

distribution modeling is to predict the distribution of a

species across a landscape given information about

environmental variables (Franklin, 1995). Environmental

variables may include weather or climate variables, soil

variables, topographic variables, or landscape variables

(Franklin, 1995). Species distribution models are based in

ecological niche theory, the idea that the distribution of a

species is limited by environmental characteristics

(Vandermeer, 1972). Maxent is a popular freely available

machine learning technique for species distribution modeling

that uses presence-only observations of a species along with

environmental variables to predict the probability of presence of

the species throughout the study region (Phillips et al., 2006;

Phillips and Dudík, 2008). This method has been used by several

studies in the past in combination with remote sensing to predict

the occurrence of Ae. aegypti (Arboleda et al., 2012; Espinosa

et al., 2016; Estallo et al., 2018; Andreo et al., 2021; Hopperstad

et al., 2021). One advantage of this approach is the creation of

habitat suitability maps that could be useful for identifying

consistent hot spots of the mosquito and for vector control

planning.

Past studies using Maxent have been conducted in tropical

areas, where diseases caused by pathogens transmitted by Ae.

aegypti greatly impact populations. In Argentina, two studies

used satellite imagery and socioeconomic factors to predict the

distribution of larval habitat of Ae. aegypti, but seasonal or

temporal trends were not evaluated (Espinosa et al., 2016;

Estallo et al., 2018) while in Florida one study that combined

land cover, climatic variables, and human population data to

predict larval habitat suitability for Ae. aegypti using 6 weeks of

larval collection data found that remotely sensed variables were

more predictive than locally collected data (Hopperstad et al.,

2021). Other studies created multiple species distribution models

for one mosquito season (Andreo et al., 2021) or over multiple

years (Arboleda et al., 2012) to identify core larval habitat for the

vector and areas of the city that may benefit most from vector

control activity. Some studies have used a similar but slightly

different approach than the study presented in this manuscript

by utilizing climate variables rather than satellite imagery to

predict habitat suitability for Ae. aegypti using Maxent

(Abdelkrim et al., 2021).

The goal of this study is to build on this previous research in

order to create quarterly species distribution models based on

satellite imagery and socioeconomic indicators for Ae. aegypti in

Maricopa County, Arizona from 2014 to 2020. Maricopa County

is located in the Sonoran Desert, habitat that may not naturally be

suitable for the mosquito vector. However, anthropogenic

modifications to the environment have created an oasis in the

desert that has allowed this mosquito vector to thrive in this area.

According to adult mosquito trapping data and information

provided by the Maricopa County Environmental Services

Vector Control Division (MCESVCD), the Ae. aegypti

population in Maricopa County, Arizona has been increasing

over the last decade, and the mosquito is now routinely trapped

year-round in this region. Aedes aegypti has been identified in

Arizona as far back as 1931 and 1946 in Tucson (Bequaert, 1947;

Murphy, 1953) and 1951 in Yuma (Richards et al., 1956).

However, the mosquito was not identified in routine

surveillance for decades despite no specific efforts to reduce

its population in Arizona (Engelthaler et al., 1997). It is

possible that the Pan American Health Organization

campaign to eradicate Ae. aegypti in the Americas contributed

to the mosquito not being detected in Arizona in the mid-20th

century, but the exact cause of the perceived disappearance of the

mosquito remains unclear (Uribe, 1983; Engelthaler et al., 1997;
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Hotez, 2016). In the mid-1990s, Ae. aegypti was once again

trapped in Tucson and along the Arizona-Mexico border

(Engelthaler et al., 1997). By studying routine trapping data

from the past 15 years, it is now clear that the population of

the vector is generally increasing in Maricopa County. In 2020,

the number of Ae. aegypti trapped decreased substantially, and

the reasons for the decrease are unclear; however, 2021 was the

biggest year on record as of September.

Past studies have attempted to create multitemporal species

distribution models for Ae. aegypti using satellite imagery and

socioeconomic factors as predictors either by creating multiple

models within one mosquito season or by creating yearly models

over the course of multiple years. This project has extended this

research by creating multiple seasonal models per year over the

course of 6 years, which allowed the evaluation of both seasonal

and long-term trends in habitat suitability for Ae. aegypti in

Maricopa County. Similar to previous studies, we hypothesized

that we would identify areas in Maricopa County that

consistently support Ae. aegypti populations over multiple

seasons and years. We also anticipated that, given the close

relationship the vector has with human populations, human

population density would be an important predictor in the

models. Finally, given that the mosquito prefers a humid or

tropical environment, we expected that increased vegetation

would be associated with increased Ae. aegypti presence in

Maricopa County.

This project is also the first of its kind, as far as we are aware,

to utilize satellite imagery and socioeconomic predictors to

predict habitat suitability for Ae. aegypti using Maxent in an

arid desert environment, habitat into which this vector has

recently expanded. This project will be a step toward the

long-term objective of developing an understanding of the

underlying geographic distribution and movement of the

mosquito vector Ae. aegypti in Maricopa County, Arizona

and, more broadly, in arid desert environments. In addition to

contributing to the growing body of research that is attempting to

understand the distribution of this vector, especially in territories

into which the mosquito has recently expanded, the findings of

this study will be beneficial to vector control and public health

efforts as the mosquito population increases and outbreaks of

disease occur.

Materials and methods

Maricopa County, Arizona: Study location
and climate

Maricopa County is located in south central Arizona in the

southwestern United States. The county comprises

approximately 24,000 square kilometers of land and contains

Arizona’s capital and most populous city, Phoenix, along with

over 20 additional recognized cities and towns (Maricopa

County, 2021). The population of Maricopa County is

approximately 4.5 million residents (Maricopa County, 2021).

The county is located in a desert climate with generally low

humidity. Phoenix has an average annual rainfall of 20.4 cm, an

average maximum temperature of 41.2°C for the hottest month,

July, and an average minimum temperature of 7.1°C for the

coldest month, December (Schmidli, 1996). Rainfall is scarce and

sporadic for most of the year, while monsoon season in July and

August can bring torrential rains (Schmidli, 1996). Like most

desert climates, the temperature can fluctuate drastically between

the daytime high and the nighttime low with variations of 15°C or

more in 1 day being common (Schmidli, 1996). For this study, we

chose not to include weather predictors due to the relatively small

study area that should have fairly consistent weather and climate

and also due to the lack of availability of this type of data at the

scale of our other predictors (30 m).

Maricopa County, Arizona is an at-risk location for potential

importation of Ae. aegypti-transmitted pathogens due to the

established presence of the mosquito vector and a high

volume of travelers crossing the border into Arizona from

areas with endemic Ae. aegypti-transmitted pathogens, such as

Mexico and Central America. On average, over 25 million

travelers cross the border from Mexico into Arizona each year

(United States Department of Transportation, 2022). Further, all

travelers crossing the land border from Mexico into Arizona,

regardless of their origin, will cross through an area that regularly

experiences outbreaks of disease associated with Ae. aegypti,

which creates the risk that viremic travelers could introduce

pathogens to the mosquito vector population in Arizona. Sonora,

Mexico, which is just south of the Arizona-Mexico border,

recorded over 300 laboratory-confirmed cases of Zika virus

(Secretaría de Salud, 2018) (the most cases of all Mexican

states) in 2018 and 982 and 2,606 probable cases of dengue

(Secretaría de Salud, 2019) in 2018 and 2019, respectively, which

raises concerns about the pathogens that cause these diseases

spreading to and becoming established in the Ae. aegypti

population in Arizona. In Arizona, seventeen travel-related

cases of dengue infection were reported in 2019, twelve of

which were identified in Maricopa County (Arizona

Department of Health Services-Office of Infectious Disease

Services, 2019). Furthermore, as recently as 2014, outbreaks of

dengue resulting in nearly 100 reported cases have occurred

along the Arizona-Mexico border in Yuma, Arizona which is less

than 200 miles from densely populated Maricopa County (Jones

et al., 2016).

Trapping data and data organization

MCESVCD performs regular CO2 trapping of adult

mosquitoes throughout Maricopa County, but with traps

concentrated in the Phoenix metropolitan area, by setting up

more than 800 overnight CO2 traps for a 12-h period each week.
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The trapping program in Maricopa County is one of the most

comprehensive programs in the country, both in the amount of

area covered and in the regularity with which traps are placed.

Through an established partnership with MCESVCD, we gained

access to this trapping data for the years 2014–2020. The

provided data includes the trapping date, number of adult

mosquitoes trapped, species and sex of the mosquitoes,

identification number of the trap, and latitude and longitude

values.

To create the multitemporal models for this study, we divided

the study period into quarters that roughly reflect four seasons of

the year with varying levels of mosquito activity. The quarters

were defined as follows: February 1–April 30, May 1–July 31,

August 1–October 31, and November 1–January 31 (Table 1). To

suit the requirements of Maxent, the species distribution model

used for this study, trapping data were converted to presence only

records for each quarter by creating a list of observations at

unique locations defined by latitude and longitude and then

removing duplicate observations for each location in each

quarter. Due to missing data for three quarters (8/1/2018–10/

31/2018, 11/1/2018–1/31/2019, and 11/1/2020–1/31/2021),

presence only records were available to create 25 quarterly

models from 2014 to 2020.

Remote sensing predictors

Google Earth Engine (Gorelick et al., 2017) was used to

download Landsat 8 OLI satellite imagery (Irons et al., 2012)

clipped to Maricopa County, Arizona. For each quarter, all

TABLE 1 Quarters with descriptive statistics and results. This table shows the quarter number, dates, number of observations used in model building,
average test area under curve (AUC) from Maxent output, the threshold used to convert the suitability output to binary presence/absence data
using a 10 percent omission threshold, the percentage of area calculated as suitable after converting to binary data, and themost important predictor
with the permutation importance.

Quarter Dates Number of
Obs. Used
in model

Avg. Test
AUC

Threshold to
convert to
binary map

Area predicted
as suitable
(%)

Most important
predictor/permutation importance

1 2/1/14–4/30/14 73 0.942 0.52 9.99 Pop. Dens./89.4

2 5/1/14–7/31/14 233 0.950 0.50 7.83 Pop. Dens./82.4

3 8/1/14–10/31/14 778 0.900 0.68 12.09 Pop. Dens./66.4

4 11/1/14–1/31/15 382 0.900 0.60 14.31 Pop. Dens./62.1

5 2/1/15–4/30/15 326 0.928 0.58 10.81 Pop. Dens./67.8

6 5/1/15–7/31/15 571 0.917 0.56 13.02 Pop. Dens./76.8

7 8/1/15–10/31/15 587 0.913 0.54 11.17 Pop. Dens./61.0

8 11/1/15–1/31/16 337 0.924 0.60 10.14 Pop. Dens./70.5

9 2/1/16–4/30/16 247 0.933 0.64 8.97 Pop. Dens./80.9

10 5/1/16–7/31/16 484 0.921 0.62 9.88 NDMI/59.5

11 8/1/16–10/31/16 702 0.915 0.56 10.75 Pop. Dens./67.8

12 11/1/16–1/31/17 511 0.921 0.56 11.00 Pop. Dens./68.9

13 2/1/17–4/30/17 299 0.933 0.54 11.50 Pop. Dens./90.8

14 5/1/17–7/31/17 613 0.908 0.60 12.08 Pop. Dens./55.0

15 8/1/17–10/31/17 763 0.908 0.62 11.17 Pop. Dens./53.1

16 11/1/17–1/31/18 388 0.924 0.60 11.75 Pop. Dens./57.8

17 2/1/18–4/30/18 121 0.942 0.60 10.51 Pop. Dens./85.4

18 5/1/18–7/31/18 580 0.921 0.58 10.77 Pop. Dens./71.0

19 8/1/18–10/31/18 n/a n/a n/a n/a n/a

20 11/1/18–1/31/19 n/a n/a n/a n/a n/a

21 2/1/19–4/30/19 304 0.920 0.66 11.23 Pop. Dens./84.7

22 5/1/19–7/31/19 711 0.911 0.62 11.33 NDMI/57.1

23 8/1/19–10/31/19 705 0.900 0.58 13.17 NDMI/49.4

24 11/1/19–1/31/20 383 0.930 0.58 9.33 Pop. Dens./77.8

25 2/1/20–4/30/20 210 0.919 0.52 11.57 Pop. Dens./83.8

26 5/1/20–7/31/20 612 0.915 0.62 10.77 NDMI/47.5

27 8/1/20–10/31/20 479 0.925 0.66 9.43 NDMI/56.7

28 11/1/20–1/31/21 n/a n/a n/a n/a n/a
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available Landsat 8 images with top of atmosphere reflectance

were downloaded. Then, any pixels with a cloud score of 1 or

cloud shadow confidence score of 3 were masked. For each

Landsat 8 image available, the Normalized Difference

Vegetation Index (NDVI) and the Normalized Difference

Moisture Index (NDMI) were calculated using bands 5 and

4 or bands 5 and 6, respectively. Finally, the mean NDVI and

mean NDMI values were calculated for each pixel using all

Landsat 8 images in that quarter. Landsat 8 imagery has a

resolution of 30 m, so the resulting NDVI and NDMI

products for each quarter in turn also had a 30-m resolution.

Elevation data from the NASA Shuttle Radar Topography

Mission (SRTM) were also clipped to Maricopa County,

Arizona in Google Earth Engine (Farr et al., 2007). The

images were exported from Google Earth Engine to be used

with Maxent. The resample function from the raster package

(Version 3.5–11) was used to ensure that the elevation raster

matched the extent and cell size of the NDVI and NDMI rasters

exactly (Hijmans, 2021).

Socioeconomic predictors

Socioeconomic predictors were also included due to the close

relationship that Ae. aegypti mosquitoes have with humans.

Socioeconomic predictors were downloaded from the

United States Census TIGER/Line Shapefiles with Selected

Demographic and Economic Data from the American

Community Survey 5-Year Estimates from 2019 at the block

group resolution (US Census Bureau, 2021). Data were

downloaded for all of Arizona, so only those block groups

that have their centroid in Maricopa County were selected for

further use using ArcMap (Version 10.7.1).

Socioeconomic predictors of interest were population density

and median income. Predictors were chosen based on a priori

assumptions about potential influences on the suitability of

habitat and the availability of blood meals for the vector.

Population density was included because the vector generally

prefers to feed on humans for blood meals (Christophers, 1960),

so areas with more people may be better able to support Ae.

aegypti populations. Further, a similar study found human

population density was the most influential factor for

predicting habitat suitability for Ae. aegypti in an Argentinian

city (Estallo et al., 2018). Median income was included after

conversations with MCESVCD staff indicated a potential

correlation between Ae. aegypti populations and higher

income areas, potentially due to an increased use of water for

landscaping, water features, or pools.

Population density was calculated by dividing the population of

each block group by the area of each block group in square

kilometers. The polygon layers for these two variables of interest

were converted to rasters using the Polygon to Raster tool in

ArcMap (Version 10.7.1) using the setting MAXIMUM_AREA;

extent and cell size was set to match that of the NDVI rasters

downloaded from Google Earth Engine. The rasters for population

density and median income were exported from ArcMap (Version

10.7.1) in ASCII format. Before continuing with further analysis, the

socioeconomic predictor rasters were imported to RStudio (Version

1.4.1717) along with the NDVI, NDMI, and elevation rasters (R

Core Team, 2021). The resample function from the raster package

(Version 3.5-11) was used to ensure that the socioeconomic rasters

matched the extent and cell size of the NDVI, NDMI, and elevation

rasters exactly (Hijmans, 2021).

Modeling/Maxent

The first step in the modeling process involved evaluating the

correlation of the five rasters (NDVI, NDMI, elevation,

population density, median income) from each quarter to

ensure that no rasters had a correlation of >0.7, as was done

in Estallo et al. (2018) and Abdelkrim et al. (2021). Next, we

determined the best settings with which to run Maxent for each

quarter individually using the ENMeval package (Version 2.0.2)

in RStudio (Version 1.4.1717) using 10-fold cross validation

(Kass et al., 2021; R Core Team, 2021). The possible settings

from which we chose the best model included the features L, LQ,

H, LQH, LQHP, LQHPT (L, Linear; Q, Quadratic; P, Product; H,

Hinge; T, Threshold) with a regularization multiplier between

1 and 5 (Phillips, 2005; Merow et al., 2013). The best settings for

each quarter were chosen based on the model with the lowest

delta corrected Akaike Information Criterion (AICc) (Hurvich

and Tsai, 1989). Using the ENMeval package, a bias file was also

created based on the observations for each quarter. Bias files help

address the issues that arise when sampling is not random

throughout the study area by biasing the background points

selected to be in the same area where the majority of observations

occurred, thereby reducing potential bias towards predicting

higher suitability in areas that are simply more accessible and

therefore more sampled. This approach is preferred over filtering

observations when the species is expected to be spatially

clumped, as is the case for Ae. aegypti, which would be

expected to have greater populations around densely

populated areas (Kramer-Schadt et al., 2013).

Next, we ran Maxent (version 3.4.0) for each quarter using

the bias file created for each quarter and the best settings possible

as described above. Each Maxent model was created using 10-

fold cross validation, and the average output across all 10 folds

was further evaluated. Supplementary Table S2 for the feature

settings and regularization multiplier used for each quarter.

Output manipulation

The Maxent output included habitat suitability maps for

Maricopa County with values ranging from 0 to 1 representing
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the estimated habitat suitability for Ae. aegypti mosquitoes for

each 30-m by 30-m square in the county, based on the

observations for that quarter (Phillips, 2005). These maps

were then converted to binary presence/absence maps based

on the 10 percent omission threshold determined using the

package SDMtools (Version 1.1-221.2) in RStudio (Version

1.4.1717) (VanDerWal et al., 2019; R Core Team, 2021)

(Table 1; Supplementary Figures S1–S25). We chose to use

the 10 percent omission threshold to create binary maps such

that the area that is identified as suitable would encompass nearly

all observations. However, this threshold also delineates a smaller

area that is considered suitable by removing observations in areas

with conditions in which the mosquito is not as consistently

trapped. Other species distribution model studies have also

utilized this approach (Radosavljevic and Anderson, 2014;

Hopperstad et al., 2021).

After the suitability maps were converted to binary values, we

calculated the percentage of area in the county that was deemed

suitable for each quarter by dividing the number of pixels deemed

suitable by the total number of pixels in the study area (Table 1).

Further, consensus maps were created by overlaying the binary

maps for each year, each season, and for all maps as described

above (Figure 2; Supplementary Figures S26–S36). Areas that

were predicted as consistently suitable in each of the quarterly

maps were considered suitable for the consensus maps (Arboleda

et al., 2012). For the consensus maps, the percent of area

predicted as suitable and the omission rate, or percentage of

positive observations that were not predicted based on the

suitable area, was calculated (Table 2).

Consensus maps were created for each year (e.g., year 1 was

an aggregate of quarter 1, quarter 2, quarter 3, and quarter 4) and

for each season (e.g., all February–April quarters; all May–July

quarters; all August–October quarters; and all

November–January quarters) by averaging the predicted

suitability by pixel (Supplementary Figures S26–S36).

Additionally, an overall consensus map was created by

averaging the predicted suitability values for all 25 quarterly

maps (Figure 1).

Maps of major freeways were downloaded from the AZGeo

Data Hub to use as location references for the maps produced in

this study. The data for the freeways maps was provided by the

Maricopa Association of Governments and is publicly available

and free to download as a shapefile (https://azgeo-data-hub-agic.

hub.arcgis.com/).

Using the binary maps, we were able to calculate the

percentage of area in Maricopa County that was determined

to be suitable for Ae. aegypti for each quarter as well as for all of

the consensus maps.We were also able to aggregate the results for

block groups, tracts, and zip code tabulation areas (ZCTAs) in

two different ways in order to produce more actionable maps for

vector control, since individual 30-m by 30-m pixels would be

difficult to target for mosquito control. First, using the original

habitat suitability output (with values ranging 0–1), we were also

able to determine the average suitability for the aggregate areas

for each quarter and for the consensus maps. We produced these

average maps for each quarter and again for all consensus average

predicted suitability maps (Figure 1; Supplementary Figures

S1–S36). Second, using the quarterly and consensus binary

maps, we are able to determine the proportion of area that

was predicted to be suitable within block groups, tracts, and

ZCTAs (Figure 2; Supplementary Figures S1–S36). The

2019 shapefiles for the various census areas were downloaded

from the United States Census Bureau (https://www.census.gov/

geographies/mapping-files/time-series/geo/tiger-line-file.2019.

html), then imported to RStudio (Version 1.4.1717) where we

used the function “zonal” from the raster (Version 3.5–11)

TABLE 2 Consensus map aggregations with descriptive statistics and results. This table shows the consensus aggregation with the quarters used for
each, the dates for each consensus map, the percentage of area predicted as suitable after converting to a binary map, and the omission rate of
the binary map.

Consensus map Included quarters Dates Area predicted as
suitable (%)

Omission rate (%)

First season 1, 5, 9, 13, 17, 21, 25 All 2/1–4/30 quarters 5.24 38.0

Second season 2, 6, 10, 14, 18, 22, 26 All 5/1–7/31 quarters 6.11 35.1

Third season 3, 7, 11, 15, 23, 27 All 8/1–10/31 quarters 7.41 27.4

Fourth season 4, 8, 12, 16, 24 All 11/1–1/31 quarters 6.88 27.5

Year 1 1, 2, 3, 4 2/1/14–1/31/15 5.61 36.2

Year 2 5, 6, 7, 8 2/1/15–1/31/16 8.11 21.9

Year 3 9, 10, 11, 12 2/1/16–1/31/17 7.42 25.3

Year 4 13, 14, 15, 16 2/1/17–1/31/18 8.11 20.5

Year 5 17, 18 2/1/18–7/31/18 9.03 14.7

Year 6 21, 22, 23, 24 2/1/19–1/31/20 7.48 25.3

Year 7 25, 26, 27 2/1/20–10/31/20 7.52 22.2

All Quarters All 25 quarters 2/1/14–7/31/18 and 2/1/19–10/31/20 4.17 53.8
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FIGURE 1
Average predicted suitability for all quarters. In all figures, blue
lines represent major freeways in Maricopa County as a spatial
reference. (A)Map showing themean predicted suitability for each
30-m by 30-m pixel, calculated as the mean of the predicted
suitability for all 25 quarters. Areas with missing data where
suitability was not predicted are shown in white. (B) Predicted
suitability for all quarters averaged by ZCTA. (C) The location of ten
ZCTAs with the highest average suitability for all quarters.

FIGURE 2
Binary maps for all quarters. In all figures, blue lines represent
major freeways in Maricopa County as a spatial reference. (A) The
consensus binary map for all quarters created by overlaying the
binary map for all 25 quarters. Areas with missing data where
suitability was not predicted are shown in white. (B) Proportion of
area in each ZCTA predicted as suitable based on binary map in (A).
(C) The location of ten ZCTAs with the highest proportion of area
predicted as suitable for all quarters.
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package to determine the mean suitability value and the

proportion of area predicted as suitable for each aggregate

area. Maps were then created using ggplot2 (Version 3.3.5)

and the sf (Version 1.0–5) packages or using the raster

(Version 3.5–11) package (Wickham, 2011; Pebesma, 2018;

Hijmans, 2021; R Core Team, 2021).

Results

Trapping observations from 2014 to 2020 were split into

28 quarterly time periods, with full data available for only

25 quarters (Table 1). The number of observations varied for

each quarter from a low of 73 locations (2/1/2014–4/30/2014) to

a high of 778 locations (8/1/2014–10/31/2014) (Table 1). Overall,

for all 25 quarters for which data was available, there were

11,399 locations at which Ae. aegypti was observed, although

the locations were not unique for each quarter. The mean

number of locations at which Ae. aegypti was observed per

quarter was 456 (standard deviation: 203).

The following five predictors were used: NDVI, NDMI,

elevation (range: 125–2,304 m, mean: 498 m, standard

deviation: 258 m), population density (range: 0–14,657 people

per square kilometer, mean: 182 people per square kilometer,

standard deviation: 625 people per square kilometer), and

median income (range: $10,716–$250,001, mean: $73,046,

standard deviation: $33,123). The range, mean, and standard

deviation values for NDVI and NDMI for each quarter can be

found in Supplementary Table S1. The importance for each

predictor varied from quarter to quarter, but population

density was almost always the most important predictor (20/

25 models) (Table 1) while median income (16/25 models) or

elevation (9/25 models) was the least important predictor for all

quarters. NDMI was the most important predictor for five

quarters: quarters 10, 22, 23, 26, and 27. Increased human

population density appears to be associated with greater

suitability for Ae. aegypti while increased NDVI also appears

to be associated with greater suitability for the mosquito up to a

certain point, likely because extremely vegetated areas are more

likely to have lower human population density (Supplementary

Figures S37–S61).

Output included an image showing the pixel-by-pixel habitat

suitability value on a scale of 0–1 (with 1 being highest suitability)

(Supplementary Figures S1–S25), response curves for each

predictor (Supplementary Figures S37–S61), the value for the

average permutation importance for each predictor across all

folds (Phillips, 2005; Phillips et al., 2006), a receiver operating

characteristic (ROC) curve, and test area under curve (AUC)

value (Estallo et al., 2018) which provides a threshold-

independent approach to evaluating model performance

(Table 1). All quarterly models had high (≥0.90) test AUC,

indicating excellent model fit (Estallo et al., 2018) (Table 1).

Suitability was generally high in the Phoenix metropolitan area

and lower in the rural areas of the county; however, there did

exist quite a bit of variation in suitability throughout the Phoenix

area, with the eastern and southeastern portions of the

metropolitan area generally having the highest predicted

suitability.

After the suitability maps were converted to binary values, we

calculated the percentage of area in Maricopa County that was

found to be suitable for each quarter (Table 1). For the consensus

maps, the percentage of area in Maricopa County found to be

suitable and the omission rate was calculated (Table 2). For the

quarterly maps, the area deemed suitable ranged from 7.83% to

14.31% of Maricopa County. For the quarterly consensus maps,

the percentage of area of Maricopa County deemed suitable for

each quarter was: 5.24% in the February–April quarter, 6.11% for

the May–July quarter, 7.41% for the August–October quarter,

and 6.88% for the November–January quarter. For the yearly

consensus maps, the area of Maricopa County deemed suitable

for each year was: 5.61% for year 1, 8.11% for year 2, 7.42% for

year 3, 8.11% for year 4, 9.03% for year 5, 7.48% for year 6, and

7.52% for year 7. The overall consensus map had 4.17% of the

area of Maricopa County as suitable. For each of the 25 quarterly

binary maps, the omission rate was approximately 10% as that is

how the threshold was selected; for the consensus maps, the

omission rate was calculated by overlaying the observations for

all maps combined onto the consensus binary map. The quarterly

omission rates were: 38.0% in the February–April quarter, 35.1%

for the May–July quarter, 27.4% for the August–October quarter,

and 27.5% for the November–January quarter. The yearly

omission rates were: 36.2% for year 1, 21.9% for year 2, 25.3%

for year 3, 20.5% for year 4, 14.7% for year 5, 25.3% for year 6, and

22.2% for year 7. The omission rate for the overall binary map

was 53.8%.

The top 10 block groups, tracts, and ZCTAs in terms of

overall average suitability were spread throughout the Phoenix

metropolitan area in the southeastern, northeastern, central, and

southwestern areas (Figure 1). All of the top 10 block groups,

tracts, and ZCTAs in terms of the proportion of area predicted as

suitable are located in the central Phoenix or the eastern/

southeastern Phoenix metropolitan areas (Figure 2).

Discussion

Through the creation of species distribution models for

25 quarterly time periods over 6 years, we were able to

identify potential long term “core” habitat for the mosquito

vector, as well as some “hotspot” locations with greater than

average suitability that could potentially be targeted for vector

control activity. We confirmed our hypotheses by identifying

areas in Maricopa County that consistently support Ae. aegypti

populations, by determining that human population density is an

important predictor for the presence of Ae. aegypti populations,

and by determining that increased vegetation, up to a certain
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point, is associated with the presence of Ae. aegypti populations

in Maricopa County. One of the greatest strengths of this study is

the ability to look at seasonal trends over the course of 6 years,

providing further insight into the long-term habits of the vector

in this region. Furthermore, this is the first study, as far as we are

aware, that has evaluated species distribution models for the

vector Ae. aegypti in a desert region.

Binary maps, especially the consensus binary maps, are

potentially great tools for vector control planning purposes.

Distilling 6 years of trapping data down into one map that

shows locations with consistent habitat suitability for Ae.

aegypti populations can help to provide an overall summary

of the activity of Ae. aegypti since it has become strongly

established in this region. It also helps to “fill in the gaps”

between trapping locations and to identify additional areas

that may have high suitability for the vector but are not

currently being as intensively trapped or observed. Of course,

the threshold that is chosen to create the binary maps has a

substantial impact on the areas that are identified as suitable

compared to the areas that are not.

We found that the omission rate was much higher for the

consensus maps than it was for quarterly maps, indicating that

there is a consistent area that is suitable for the vector, but that a

lot of mosquito activity is also observed outside of this core area.

This study does not provide insight into preferred larval habitat

as the distribution maps were based solely on trapping data for

adult mosquitoes, although it is reasonable to assume that the

presence of adult female mosquitoes may indicate the presence of

suitable larval habitat in which eggs can be deposited. Future

studies should examine the movement of the mosquito in this

region over time which would provide another clue as to how the

mosquito is surviving and behaving in a desert region.

Tract and ZCTA aggregations should be interpreted with

caution since the census data for population density and median

income were both collected at the block group level. Some tracts

and ZCTAs have missing data due to 50 census block groups

having missing median income information. Further, the census

tracts and ZCTAs may not have the same composition as the

block groups that made up the predictors, but instead are an

aggregate of all characteristics in that area. In particular, the

ZCTA results may be skewed because ZCTAs are not meant to

represent a homogenous population. However, the results are

still useful for vector control purposes because they provide an

easier tool for planning instead of individual 30-m by 30-m

pixels, and in the event of an outbreak predicted habitat

suitability for Ae. aegypti can quickly be linked to human case

data which is generally reported at the ZCTA level. Importantly,

the overall characteristics of the tract or ZCTA may not reflect

the smaller areas that are actually suitable for the vector.

Our study, like the Argentina-based findings published by

Estallo et al., 2018 and the Florida-based findings published by

Hopperstad et al. (2021), indicated that human population

density is an important factor when determining habitat

suitability for Ae. aegypti. Given that this mosquito vector is

highly anthropophilic, this is an expected finding. Like Andreo

et al. (2021) and Arboleda et al. (2012), we were able to create

species distribution models for multiple time periods which

could then be converted to binary suitability maps and

overlaid to determine the areas that are consistently suitable

for the vector over a longer time period. Similarly, we hope that

these maps can be helpful for vector control purposes by

identifying core areas that serve as consistent habitat for the

vector over a longer time period. As in Arboleda et al. (2012), we

found that the omission rate was much higher for the consensus

maps than it was for individual maps, indicating that there is a

consistent area that is suitable for the vector over time, but that

populations of the vector are also observed in different areas

outside of this core habitat depending on the year and season

Although the maps produced in this study may be helpful for

vector control and public health purposes, the results may suffer

from the modifiable areal unit problem (MAUP) due to the scale

of the predictors used compared to the range of the mosquito that

we attempted to model (Openshow, 1979; Jelinski andWu, 1996;

Wong, 2004). The MAUP can be broken down into two primary

issues: 1) that the results of any analysis are dependent on the

scale of the inputs; and 2) that the results of an analysis will differ

based on how areal units are “zoned,” even when they are the

same size. For example, the results of this analysis may have been

different had we used finer or coarser resolution satellite imagery

or socioeconomic predictors at the census tract or ZCTA level

rather than the census block group level. Additionally, even if the

information used in the analysis remained at the same scale, there

could be differences in the results based on how the areal units

were grouped together. Furthermore, the results could vary based

on how they are aggregated after the analysis is performed, so it is

wise to interpret all results and conclusions with caution until

more research has been conducted and we have a better

understanding of these relationships.

One limitation of this study was that trapping data was

represented only as presence data. This means that outputs

that represent suitability do not account for differences in

abundance throughout the county (Elith et al., 2011). Some

areas that are predicted to be suitable may only have small or

transient populations of Ae. aegypti whereas others may have

large, consistent populations of the vector and therefore a

large increase in the potential risk of pathogen transmission

by the mosquito. Presence only data also may not account for

fluctuations in populations due to interventions such as

insecticide application, which were not accounted for in

this study, although MCESVCD regularly uses pyrethroids

to control mosquito populations throughout the county.

Future studies that explore species distribution models that

account for abundance could be helpful to more specifically

identify areas that have large populations of Ae. aegypti where

people may be more likely to be exposed to pathogens that

cause disease. Additionally, models that explicitly account for
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interventions could help to evaluate the effectiveness of these

interventions.

As of yet, we cannot determine whether the findings

presented in this study for highly suitable areas would be

correlated with risk of disease in the event of an outbreak,

although findings by Arboleda et al. indicate that areas

predicted as suitable by a species distribution model are

correlated with human cases of dengue (Arboleda et al.,

2012). In the event of a future outbreak, it will be important

to evaluate the relationship between our suitability maps and the

incidence of human cases of disease; however, past studies

suggest that the maps produced by this study could be helpful

for a public health response during an outbreak of disease

vectored by Ae. aegypti. It is our hope that preparing this

information ahead of time could help to reduce the burden

and cost of disease inMaricopa County if an outbreak does occur.

The goal of this study was to create quarterly species

distribution models based on satellite imagery and

socioeconomic indicators for Ae. aegypti in Maricopa County,

Arizona from 2014 to 2020. This project was intended to be a step

toward the long-term objective of developing an understanding of

the underlying geographic distribution and movement of the

mosquito vector Ae. aegypti in Maricopa County, Arizona and,

more broadly, in arid desert environments. As the vector continues

to expand its range throughout the world, including rapid

expansions into the desert southwestern United States, further

understanding of the mosquito’s behavior in these regions will be

needed in order to prepare for a potential outbreak of disease. It is

our goal to create a better understanding of the distribution and

behavior of the vector in this region to aid public health and vector

control efforts aimed at reducing the risk and burden of disease in

the event an outbreak occurs.
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