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Due to an increasing number of issues such as climate change, sustainable development
has become an important theme worldwide. Sustainable development is inseparable from
technological innovation. Only by making technological breakthroughs can we ensure the
overall integration of economic development and environmental protection. Here, based
on China’s inter-provincial panel data from 2006 to 2019, we examine the relationship
between green technological innovation and carbon dioxide (CO2) emissions in 30
provinces (excluding Hong Kong, Macao, Taiwan, and Tibet) and sub-regions (eastern,
central, and western China) in China using a space panel econometric model based on the
STIRPAT equation. Additionally, we use geographic information analysis methods to
analyze the spatial pattern and evolution characteristics of CO2 emissions. Our major
finding is that, from the perspective of the whole country, green technology innovation has
a negative correlation with carbon emissions, but the effect is not obvious. In addition, from
the regional sample, green technology innovation in the eastern and central regions can
effectively reduce carbon emissions, while in the western region, green technology
innovation can promote carbon emissions in the province. At the same time, the
research results show a strong spatial spillover effect of inter-provincial carbon dioxide
emissions, and the progress of green technology in neighboring provinces has a negative
impact on carbon emissions in their own provinces. Therefore, cross-province policies and
actions for reducing carbon emissions are necessary. Additionally, our results show that
carbon-emission driving factors, such as economic development, industrial structure,
energy consumption structure, and population, have a significant positive effect on carbon
dioxide emissions. Based on the above research results, we put forward corresponding
policy recommendations.
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1 INTRODUCTION

In recent years, the continuous accumulation of carbon dioxide
emissions has produced a series of environmental problems, such
as global warming and frequent outbreaks of extremely severe
weather. Therefore, carbon emission reduction has become an
important topic of concern to all countries globally, and green
development has also become an important factor in promoting
the transformation of the global economic structure (Shao and
Zhong, 2021a).

The Chinese Government has realized the serious
environmental problems caused by massive CO2 emissions. It
has not only introduced a series of relevant policies and measures
but also promised at the Paris Climate Conference to reduce CO2/
GDP by 60–65% by 2030 compared with 2005 and peak carbon
emissions around 2030 (Mi et al., 2017). The Chinese
Government also attaches great importance to promoting the
environmental society and Governance (ESG) system (Coleman
et al., 2010; Blank et al., 2016), and issued the reform plan of the
legal disclosure system of environmental information in 2021,
clearly pointing out that the mandatory disclosure system of
environmental information should be basically formed by 2025.
In addition, at the Fifth Plenary Session of the Nineteenth Central
Committee, “support for green technological innovation” was
particularly emphasized. Hence, there is a need for innovation on
the existing operations so that maximization of the growth can be
achieved with the least possible cost to the environment (Li et al.,
2020; Meirun et al., 2021). Therefore, green technological
innovation makes economic activities more environmentally
friendly and can be a potential solution for planned reduction
of carbon emissions, which has attracted the attention of experts
around the world (Nikzad and Sedigh, 2017; Shao and Zhong,
2021b). Additionally, how does green technology innovation
affect CO2 emissions? Can green technological innovation
reduce CO2 emissions in economies of scale? This is the focus
of attention of governments at all levels and related scholars.

The concept of green technological innovation was first
proposed by Braun and Wield (1994). They believed that
green technological innovation refers to producing green
products based on reducing environmental pollution, raw
materials, and energy consumption through the use of
technological processes. Based on existing literature research
(Wang et al., 2021), our understanding of green technology
innovation is that green technology innovation takes the
promotion of energy conservation, environmental
optimization, and economic development as its core concepts,
and its results are mainly reflected in technological progress that
contributes to energy conservation and emission reduction (Long
et al., 2017; Sellitto et al., 2020). The fundamental difference
between green technological innovation and traditional
innovation is that environmental output is considered. The
lower the pollution degree to the environment in the process
of technological innovation, the higher the degree of green
technological innovation.

Theoretically it is assumed that technology innovation can
promote the transition toward environmentally oriented lifestyles
and reduce carbon emissions. And it is frequently considered as

the crucial way to achieve green growth (Albino et al., 2014;
Cheng et al., 2018; Shao and Zhong, 2021a). However, scholarly
evidence on the association between green technology and carbon
emissions are mixed and even contradictory based on empirical
analysis because of the different scenarios. For example,
according to Braungardt et al. (2016), green technology
effectively resolved the trade-off between economic growth
and environmental protection, while, there may exist a
rebound effect. That is, green technological innovation has a
direct effect and scale effect on carbon dioxide emissions. One is
that green technological innovation can effectively reduce carbon
emissions by improving energy utilization efficiency, that is, the
direct effect of green technological innovation on carbon
emissions. The other is that green technology innovation
promotes the expansion of economic scale and output level,
which requires more energy consumption and indirectly
causes the level of carbon emissions to rise, that is, the scale
effect of green technology innovation on carbon emissions
(Fisher-Vanden and Wing, 2008; Abdouli and Hammami,
2017; Khan and Su et al., 2021). Therefore, the direction of
this combined effect is not clear. Just as Sinn (2008) argues,
good intentions do not always lead to good behaviors. Here, this
study uses empirical analysis to test the comprehensive effect of
green technological innovation on CO2 emissions and to judge
whether China’s green technological innovation has achieved its
goal of energy saving and emission reduction.

Regarding the influence of technological innovation and other
factors on carbon emissions, scholars have conducted much
research, mainly focusing on the following three aspects. The
first one is focused on the relationship between technological
innovation and CO2 emissions. Sun et al. (2010) used the
Laspeyres index decomposition method to analyze the
influencing factors of carbon emissions and found that the
increase in GDP was the main driving force, and technological
progress was the main reason for the reduction in carbon
emissions. Suki et al. (2022) found that, on the one hand,
endogenous technological progress increases carbon emissions
through economic scale effects, but on the other hand, it reduces
CO2 emissions through efficiency improvements. The overall
environmental effects of technologies are uncertain in the
short term. In addition, Erdoğan S, (2020) investigated the
impact of innovation on CO2 emissions based on the sectors
for fourteen countries in the G20. The results showed that the
carbon emissions in several sectors, such as energy sector, and
transport sector is not significantly influenced by technology
innovation in the long run. Ang (2009) found that
technological innovation can curb CO2 emissions. Meanwhile,
Carrión-Flores et al. (2013) analyzed the impact of technological
innovation on polluting gases in 127 manufacturing industries
and found that there is a two-way causal relationship between
technological innovation and polluting gases. However, some
studies drew opposite conclusions. For example, Shen (2012)
built technological progress on the basis of the endogenous
growth model of Aghion and Howitt (1992). They showed
that the degree of technological progress is not enough to
achieve both economic growth and the dual goal of reducing
CO2 emissions. Similarly, Tobelmann and Wendler (2020) used
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data from the 27 EU countries and showed that environmental
innovation can help reduce CO2 emissions, while general
innovation activities will not lead to a reduction in emissions.

The second one is focused on the timing difference of the
impact of technological progress on carbon dioxide emissions. Li
KJ (2012) used the vector error correction model to analyze the
relationship between technological progress and carbon
emissions and found that technological progress can reduce
CO2 emissions in the long run, but the short-term effect is not
obvious. Similarly Shao and Zhong (2021b) found the negative
and significant impact of green technology innovation with
carbon emission in the long run in N-11 countries, but the
short-run association of green technology innovation is not
significant. Zhang W (2014) reached similar conclusions. They
found that technological progress at different development stages
has different effects on CO2 emissions. Guan and Chen (2010)
suggest that technological progress is the key to addressing
climate change. Their research found that under the effect of
technological progress, China’s carbon emissions over time
present three inverted U-shaped curves, and the driving
factors of each stage are different.

The third focus of attention is the spatial difference in the
impact of technological progress on carbon dioxide emissions.
Research by many scholars found that ordinary panel data does
not consider the possible spatial effects of CO2 emissions, which is
unreasonable. Therefore, some scholars have realized the
importance of spatial correlation and heterogeneity on the
research of carbon emission factors and have begun to use
spatial measurement models for empirical testing (Hao et al.,
2021; He and Zhang et al., 2021). Auffhammer and Carson (2008)
used a spatial measurement model to predict China’s carbon
dioxide emissions and found that introducing a spatially
dependent regression model makes the prediction more
reliable. Gu and Chu (2020) discovered that technological
innovation has spatial spillovers, and regional carbon emission
intensity has an obvious spatial correlation.

On the whole, technological innovation is an important factor
influencing carbon dioxide emissions, but related research mainly
focused on the impact of technological innovation on CO2

emissions, and few studies consider the impact on CO2 emissions
from the perspective of green technology innovation with the goal of
energy saving and emission reduction. In addition, scholarly
evidence on the association between green technology and carbon
emissions are mixed and even contradictory because of the different
scenarios. Also, most existing research ignores the spatial correlation
between neighboring units and lacks spatial panel data analysis. In
response to the abovementioned problems, this study extends
previous research in three ways. First, the effect of green
technology innovation on carbon emissions is investigated.
Second, because of potential spatial correlations in carbon
emissions, we analyze the spatial effect of this influence by using
appropriate econometric models. Third, because the effect of green
tech innovation on carbon emissions varies with the level of
economic development, this study explores the impact of the
former from multiple perspectives across China and the eastern,
central, and western sub-regions. In summary, we use China’s
provincial panel data from 2006 to 2019 to analyze the temporal

and spatial characteristics of CO2 emissions and examine whether
green technological innovation has played an environmentally
friendly role. It helps us to have a comprehensive understanding
of the influencing factors behind the evolution in China’s CO2

emissions.

2 THEORETICAL BACKGROUND AND
METHODS

2.1 Theoretical Base
Most scholars use the IPAT model, the STIRPAT model, and the
Kaya model for research to explore the relationship between
human activities and carbon emissions, and Figure 1 shows the
relationship between human activities and carbon emissions
(York et al., 2003). With accelerating urbanization and
industrialization, rapid population growth and economic
development may consume more energy and emit more
environmental pollutants. However, with the development of
technology and the economy, the impact of human activities
on the environment may be mitigated. That is, environmental
issues (I) are the result of the combined effects of the three key
factors: population (P), affluence (A), and technology (T).

However, due to the irrationality of the same proportional
changes among its variables, York et al. (2003) constructed the
STIRPAT model based on the IPAT model, which can more
reasonably analyze the non-proportional impact of human
activities on the environment. Based on the STIRPAT model,
this paper takes CO2 emissions as the explanatory variable and
green technology innovation level as an explanatory variable, and
establishes a spatial panel measurement model to analyze the
relationship between the two. In addition to technological
innovation, many of previous studies have explored other
drivers affecting carbon emissions. And some factors have
been widely accepted, such as energy consumption structure
(Dong et al., 2016), industry structure (Wang et al., 2016;
Cheng et al., 2018), economic level (Huang, 2018; Shao and
Zhong, 2021a), population (Zhang and Tan, 2016). Therefore, we
introduce four control variables (economic level, population,
industry structure, and energy consumption structure).

2.2 Calculating Carbon Emissions
Since carbon dioxide is mainly produced by fossil fuel
combustion and cement production, we draw on the practice
of most scholars, such as Wu ZX (2014) and Zhang W (2014), to
calculate the CO2 emissions from fossil fuel combustion and
cement production.

First, we adopt the methods recommended by the IPCC to
estimate carbon emissions from the burning of fossil fuels. The
computing method is as follows:

ECt � ∑
8

j�1
Ejt ×NCVj × CEFj × COFj (1)

Here, COt represents the provincial carbon emissions produced
by types of energy consumption at year t; Ej stands for the total
energy consumption of type j at year t; according to the
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classification of the final energy consumption by the China Energy
Statistical Yearbook, we know there are coal, coke, gasoline,
kerosene, dieseluel oil, natural gas, and electricity. However,
electricity is produced by other energy, so in order to avoid
double-counting, we did not calculate carbon emissions that
come from electricity. NCVj stands for the net heating
value(unit: KJ/kg or KJ/m3) according to the China Energy
Statistical Yearbook. CEFj is carbon emissions factor (unit: kg/TJ
or m3/TJ); COFj is energy carbon oxidation factor; furthermore,
both CEFj and COFj are from IPCC (2006), shown in Table 1.

Second, regarding the CO2 emissions in the cement
production process, the calculation formula is:

CCt � Qt × z (2)

Here, CCt represents the CO2 emissions during the cement
production process of the province in year t; Qt represents the
total cement production of the province in year t; z represents the
CO2 emission coefficient of cement production, referring to Du
(2010), with a value of 0.5270t CO2/t.

Therefore, the formula for calculating the total carbon dioxide
emissions of China’s 30 provinces from 2006 to 2019 is:

CO2t � ECt + CCt (3)

2.3 Green Technological Innovation
Efficiency Measurement
Green technological innovation (GI) is an intangible variable and
cannot be directly measured. Based on the difference in
understanding of the connotation of green technology
innovation, there are mainly three measurement methods. The

first is the direct measurement of innovation achievements, which
uses a single indicator of green technology patents to measure the
green technology innovation (Jia J, 2014). The second is the factor
analysis method, which builds an indicator system based on
innovation output to evaluate the regional green technology
innovation level (Wang, 2012). The third is based on the
efficiency measurement method of green innovation input and
output using the parametric method represented by stochastic
frontier analysis (SFA) and the non-parametric method
represented by data envelopment analysis (DEA) to measure
the efficiency of green technology innovation. Thus, the efficiency
of green technological innovation is used to characterize the green
technological innovation (Guan and Chen, 2010). Efficiency is a
relative indicator. Compared with direct output indicators, the
level of efficiency can better reflect the innovation level of a
region. Therefore, this paper uses the efficiency of green
technology innovation to measure the green technology
innovation of each province and uses the input-oriented DEA
method to measure the efficiency of green technology innovation.
The green technology innovation efficiency measurement
indicators are selected as follows:

Two indicators of innovation investment are selected as R&D
expenditure and the full-time equivalent of R&D personnel,
which are, respectively, used as capital investment and human
investment. The expected output indicators select the sales
revenue of new products as the economic benefit and the
number of patent authorizations as the innovation benefit, and
the comprehensive utilization rate of solid waste and the harmless
treatment rate of domestic garbage as the environmental benefits.
Unexpected output mainly refers to environmental benefits, and
the discharge of wastewater, waste gas, and solid waste in various

FIGURE 1 | Human activities and carbon emissions.

TABLE 1 | Net heating value and carbon emissions factor of every energy source.

Coal Coke Gasoline Kerosene Diesel oil Fuel oil Natural gas

NCVj 20908 28435 43070 43070 42652 41816 38931
CEFj 95333 107000 69300 71500 74100 77400 56100
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regions is selected. Since the undesired output is a negative
output, the environmental indicators are taken as the input
part for measurement.

In addition, the measurement of several control variables is
described as below. Energy consumption structure (ES) is
measured by the proportion of the province’s coal
consumption in total energy consumption. Additionally,
economic level (GDP) is measured by per capita GDP.
Population (P) is measured by the province’s proportion of
the national population. The industrial structure (IS) is
measured by the proportion of the output value of the
secondary industry in the total output value of the province.

2.4 The Spatial Panel Models
According to the Geographic First Law, a spatial link exists
between any two things, and the factors in different areas are
spatial heterogeneity and spatial correlation. If we do not
consider the space effect while building a model, there will
be an estimation error. Thus, based on the improved STIRPAT
model, we set up the following three spatial panel models to
estimate the effects of green technology innovation on carbon
emissions.

If there is an endogenous interaction effect between carbon
dioxide emissions, that is, the carbon dioxide emissions of the
local area depend on the carbon dioxide emissions of neighboring
areas in some way, then the spatial lag panel data model (SLPDM)
needs to be used:

lnCO2it � z + ρ∑
N

j�1
wijCO2it + β lnGIit + c1 lnESit + c2 lnGDPit

+ c3 lnPit + c4 ln ISit + μi + ]t + εit

(4)

where i is the different provinces of the cross-section (i � 1,2, . . .
,30), and t is the time series of the study (t � 1,2, . . . ,14). wij is an
element of spatial weight matrix, and we used adjacency matrix to
build the spatial weight matrix. We standardized the matrix at the
same time.

The dependent variable CO2it is identified as CO2

emissions(tco2), and the core interpretation variable GIit is the
efficiency of green technology innovation. The control variables
(ESit、GDPit、Pit、ISit) are defined as above. β is the coefficient
of the control variable. z is the constant term. ρ is the spatial lag
coefficient, which reflects the influence degree of the observed
value of adjacent region on the observed value of local region.
Additionally, μi stands for the spatial effect. vt stands for the time
effect. εit is the stochastic error, and εit ∼ i.i.d (0,σ2).

If the emissions in this area are to some extent impacted by the
emissions errors in neighboring areas, the spatial error panel data
model (SEPDM) needs to be used:

lnCO2it � z + β lnGIit + c1 lnESit + c2 lnGDPit + c3 lnPit

+ c4 ln ISit + ϕit

ϕit � λ∑
N

j�1
wijϕ2it + εit

(5)

Here, ϕit is the error term of spatial autocorrelation. λ is the
coefficient of spatial error.

In addition to the spatial spillover effect and related error
terms of emissions in adjacent regions, if exogenous interaction
effects exist, that is, explanatory variables in adjacent regions also
have an impact on regional emissions, the spatial Durbin panel
data model (SDPDM) needs to be used:

lnCO2it � ρ∑
N

j�1
wij lnCO2it + β1 lnGIit + β2 lnESit + β3 lnGDPit

+ β4 lnPit + β5 ln ISit + η1 ∑
N

j�1
wij lnGIit

+ η2 ∑
N

j�1
wij lnESit + η3 ∑

N

j�1
wij lnGDPit

+ η4 ∑
N

j�1
wij lnPit + η5 ∑

N

j�1
wij ln ISit + μi + vi + εit

(6)

Here： ∑N
j�1 wij lnGIit, ∑N

j�1 wij lnESit, ∑N
j�1 wij lnGDPit,

∑N
j�1 wij lnPit, and ∑N

j�1 wij ln ISit stand for spatial lag term of
adjacent region’s interpretation variables; β1 − β4 and η1 −η4 are
the regression coefficients. The null hypothesis H0: η+ρβ � 0 can
be used to test whether the model can be reduced to a spatial error
model or the null hypothesis H0: η � 0 can be used to test whether
the model can be reduced to a spatial lag model (YM, 2014; Belotti
et al., 2017).

According to the research of Elhorst (2003), Elhorst (2014), it
is necessary, first, to determine whether there is a spatial effect for
the estimation of the spatial panel model; second, to select the
type of model (SLPDM or SEPDM); and finally, to determine the
individual effect or the period effect (fixed effect or random
effect). Specifically, we use Morans’ I test method for the spatial
correlation test. Additionally, we use LM spatial lag, LM spatial
error, Robust LM spatial lag, and Robust LM spatial error test
methods to determine which model to use. In addition, we use
Wald and likelihood ratio LR test to judge whether SDPDM can
be simplified to SLPDM or SEPDM, and the Hausman test
method is used to determine fixed effects or random effects.

2.5 Data Source
This paper selects a balanced panel dataset of 30 provinces in
China over the period 2006–2019 (Hong Kong, Macao, Taiwan,
and Tibet are not included due to lack of data). Because of 2006
is the first year of the Twelfth Five-Year Plan for national
economic and social development of the People’s Republic of
China, we began to select sample data in 2006. In 2020, due to
the epidemic, many companies and factories in China suspend
work and production, which may affect the data indicators
greatly. Therefore, this paper does not collect sample data for
2020 in order to avoid interference with research issues.
Additionally, in the empirical process, the original data are
processed by natural logarithm to eliminate the instability and
heteroscedasticity of the data. The original data are derived from
the China Statistical Yearbook, the China Energy Statistical
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Yearbook, the China Environment Statistical Yearbook, and
statistical yearbook of every province and IPCC, etc. We used
sample interpolation method to supplement the missing values
in some variables.

3 SPATIAL PATTERN OF CARBON
EMISSIONS AND THEIR EVOLUTION
3.1 Evolution of Carbon Emission Types in
China
To explore the distribution regularity of China’s carbon emissions
from time and space perspective, the provincial carbon emissions
were divided into four grades by natural fracture method in this
study: low carbon emissions, medium carbon emissions, high
carbon emissions, and upper carbon emissions (Figure 2).
According to the spatial distribution for 30 provinces, high
carbon emission areas are mainly concentrated in the eastern
and central areas. Over the period 2006–2019, the number of high
carbon emissions reduced initially but then increased, and the
high carbon emissions areas spread from the east to the middle.
The medium-carbon emission regions gradually developed into
the medium-high carbon emission type. Thus, the number of
provinces of this type is decreasing year by year. Additionally, the

number of low carbon emission provinces remains unchanged.
On the whole, it has formed a pattern in which there are many
provinces with high and medium-high carbon emissions, while
provinces with medium and low carbon emissions are few, and
there is a trend of shifting from the low carbon emission type to
the high carbon emission type.

3.2 Three-Dimensional Trend
Characteristics of Carbon Emissions

To reveal the overall spatial trend of China’s carbon emissions, we
conducted a trend analysis of China’s carbon emissions to obtain
a three-dimensional perspective based on the spatial coordinates
and CO2 emissions of each province, shown in Figure 3. The
X-axis direction indicates the east–west direction, the Y-axis
direction indicates the north–south direction, and the Z-axis
indicates the amount of carbon emissions. Each vertical line in
the figure represents the location of each province and its carbon
emissions. All vertical lines are projected on the east–west and
north–south orthogonal planes to obtain the projection point.We
obtain the best-fitting curve through the projection point, which
reflects the upward trend of CO2 emissions from east to west and
north to south.

FIGURE 2 | Spatial distribution for 30 provinces in China between 2006 and 2019.
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Specifically, from China’s 2006 carbon emission fitting
curve, we can find that CO2 emissions increase in a curve
from west to east, and in the north–south direction, the central
part is larger than the northern part and the southern part.
From the shape of the fitted curve, we can observe that the
east–west projection line is approximately a straight line, while
the north–south projection line is an inverted U-shaped curve.
This means that, relatively speaking, the difference in carbon
emissions between the northern and southern provinces is
greater than the difference between the east and the west. From
the perspective of time evolution, the fitting curve of China’s
carbon emissions in 2011 still showed a linear and slow growth
trend from west to east. In the north–south direction, the
central part is still larger than the northern part and larger than
the southern part. However, compared with 2006, the
east–west gap and the north–south gap has shown a
narrowing trend. Judging from the fitting curve of CO2

emissions in 2019, the spatial distribution of China’s inter-
provincial CO2 emissions is similar to before. This shows that
carbon emissions from 2006 to 2019 have a stable trend of
being high in the east and low in the west, and high in the north
and low in the south.

An obvious path dependence exists in China’s massive
economy according to the stable spatial situation of carbon
emissions. That is, if the region chooses a development path,
then various economic activities in the region will adapt to this
model in the longer development process. A strong exogenous
shock is needed to change this development path in the short
term. Therefore, if high-emission areas want to reduce carbon
emissions and develop a green economy, the government should
introduce strong regional economic policies. At the same time,
the spatial differences in carbon emissions also indicate that
China’s energy conservation and emission-reduction measures
must take regional differences into account.

4 EMPIRICAL RESULTS AND
DISCUSSIONS
4.1 Spatial Correlation Test of Carbon
Emissions
It is necessary to determine whether there is a spatial effect
before using the spatial panel model. Based on the spatial weight
matrix, we calculated the spatial correlationMoran’I index value
of the provincial carbon emissions during 2006–2019, shown in
Table 2. The results show that the Moran’s I smoothly remain at
around 0.33 between 2006 and 2019, and the significance level is
still less than 5%. Thus, we can conclude that there are
significant positive spatial correlations between provincial
CO2 emissions. That is, provinces with higher CO2 emissions
and provinces with lower CO2 emissions tend to be close.
Therefore, we need to consider spatial correlations when
building a model.

4.2 Spatial Panel Model Estimation
We use MATLAB 2012a software to estimate models (4)–(6).
First, we use the LMlag and LMerr and Robust LMlag and Robust
LMerr tests to determine whether to use the spatial error model or
the spatial lag model. The estimation results of the standard panel
model (Table 3) show that the LM and Robust LM tests of the
spatial lag panel model passed the 1% level of significance test and
that the Robust LM of the spatial error panel model failed the 1%
level of significance test. Therefore, the spatial lag panel model is
better than the spatial error model. Second, the LR value of time-
fixed effects was 122.0832 (p � 0.0000), and the LR value of
individual fixed effects was 693.2063 (p � 0.0000). This indicates
that the model has a double fixed effect of individual and period.
Based on the above results, considering that the log-likelihood
value of the individual fixed-effects model LogL is 225.4033, and
the goodness of fit is relatively high (0.8575), we believe that it is
more reasonable to use the individual fixed-effects spatial lag
regression model (LeSage and pace, 2010).

Thirdly, we need to decide whether to use a random-effects
model or a fixed-effects model. Since the Hausman test result was
10.0792 (p � 0.7183), it failed the 5% significance test and
accepted the assumption that the spatial effect does not
involve the explanatory variables. It means that the random-
effects model is preferable (Elhorst, 2010). Finally, we use the

FIGURE 3 | Trend analysis of carbon emissions in China between 2006 and 2019.

TABLE 2 | Moran’s I test results of provincial carbon emissions between 2006
and 2019.

2006 2008 2010 2012 2014 2018 2019

Moran’s I 0.3221 0.3250 0.3371 0.3435 0.3410 0.3351 0.3359
p-value 0.002 0.003 0.001 0.002 0.000 0.002 0.001
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Wald test and LR test of random effects to determine whether the
spatial Doberman model can be simplified to a spatial lag model
or a spatial error model. The results show that the values of the
Wald_spatial_lag and LR_spatial_lag are 15.2712 (p � 0.001) and
13.9613 (p � 0.001)); the values of the Wald_spatial_error and
LR_spatial_error are 14.2971 (p � 0.0210) and 13.3089 (p �
0.0015), respectively. Both Wald and LR tests pass the 5%
significance test, indicating that the spatial Durbin model
cannot be reduced to a spatial lag model or a spatial error
model. Therefore, we chose the random-effect spatial Dubin
model to analyze the impact of green technology innovation
on carbon emissions.

From the random-effect spatial Dubin model estimation
results (Table 4), it can be seen that the elasticity coefficient
of national green technology innovation is significantly negative,
which negates the view that green technology innovation has a
dual impact on carbon emissions from the beginning of this

paper. This shows that the current level of China’s overall green
technology innovation has a direct effect on carbon emissions
greater than the scale effect. That is, the improvement of green
technology innovation can reduce carbon emissions. However,
we found that the effect of green technological innovation on
reducing carbon emissions is not obvious. This may be because
China’s extensive economic growth has caused a substantial
increase in carbon dioxide emissions, and the industrial
structure dominated by the secondary industry and the energy
consumption structure dominated by coal are not conducive to
reducing carbon dioxide emissions. Since the reform and
opening, the focus of China’s technological innovation has
been to increase productivity and expand the scale of the
economy. Therefore, the emphasis on green technology
innovation is insufficient, which has led to a relatively low
level of overall green technology innovation. It can be seen
that the improvement of technology plays a very limited role

TABLE 3 | Standard panel estimation results of provincial carbon emissions.

Variables No fixed effects Spatial-fixed effects Time-fixed effects Spatial- and time-fixed
effects

i 1.1657 (3.0024)***
lnGI −0.3123 (−5.1723) −0.0714 (−2.6240)*** −0.2311 (−5.1944)*** −0.0389 (−1.4202)
lnES 0.0102 (0.8174)*** −0.0176 (−0.6944) 0.2072 (6.0658)*** 0.1579 (6.5259)
lnGDP 0.5474 (22.0912) 0.6083 (35.3643)*** 0.5136 (17.5249)*** 0.2010 (3.2758)
lnIS 0.4687 (5.3576)*** 0.6334 (5.7928)*** 0.4039 (4.6275)*** 0.5961 (5.65929)
lnP 0.6931 (35.0016)*** 0.3498 (2.0124)** 0.7102 (37.0027)*** 0.2417 (1.3843)
R2 0.8652 0.8575 0.8126 0.2493
LogL −81.0278 225.4033 −65.0761 279.9320
DW 1.0257 1.9918 1.4021 2.1995
LM test no spatial lag 7.5104*** 12.9421*** 10.8733*** 9.1129***
Robust LM test no spatial lag 1.7687*** 34.9780*** 4.9654** 3.5681**
LM test no spatial error 11.1702*** 0.0105 7.9018*** 6.5121***
Robust LM test no spatial error 5.5070*** 22.1029*** 1.8973 0.8394

Notes: The figures in brackets are t values. *, **, and *** stand for the significance levels of 10, 5, and 1%, respectively.

TABLE 4 | SPDM estimation results of national/provincial carbon emissions.

SLPDM SDPDM

Variables No fixed effects Spatial-fixed effects Random spatial effects
of the SDPDM

lnGI −0.0740 (−2.1808)** −0.0712 (−2.3112)** −0.0611(−0.7035)*
lnES −0.0008 (−0.1203) 0.1332 (5.4575)*** 0.1703 (6.80413)***
lnGDP 0.4270 (12.6951)*** 0.2614 (4.5127)*** 0.2418 (4.1310)***
lnIS 0.5975 (5.8219)*** 0.7132 (6.6017)*** 0.6701 (6.9043)***
lnP 0.2043 (1.1641) 0.1915 (0.9719) 0.5937 (9.214)***
W*lnGI 0.0633 (1.3162) 0.1896 (3.5312)***
W*lnES −0.2136 (−5.8612)*** −0.0096 (−0.2564)
W*lnGDP 0.1713 (2.6809)*** −0.0531 (−0.4701)
W*lnIS 0.5501 (2.7140)*** −0.1727 (0.7038)*
W*lnP 0.6739 (1.5327)* 0.1837 (1.3326)*
W*dep.var 0.1593 (3.180350)*** 0.0636 (1.0328) −0.1713 (−2.8212)***
teta 0.1603 (5.4971)***
R2 0.9774 0.9801 0.9618
LogL 228.0837 259.2831 213.0713
Hausman_p 10.0792

Notes: The figures in brackets are t values. *, **, and *** stand for the significance levels of 10, 5, and 1%, respectively.
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in reducing carbon emissions, and the final result is a continuous
increase in carbon emissions.

In addition, it can be found that the elasticity coefficients of the
control variables, such as industrial structure, economic growth,
energy consumption structure, and population, are all positive
values, which means that the control variables all have a positive
effect on carbon emissions. The possible reason is that the
secondary industry is the main sector of energy consumption,
and high energy consumption and high emissions are still the
main characteristics of China’s industry. Therefore, secondary
industry has become the main production sector of carbon
dioxide. However, during the period 2006–2019, the
proportion of the output value of the secondary industry in
GDP dropped from 49.7 to 39.1%, and the tertiary industry
rose from 38.9 to 53.7% (NBSC, 2007-2020a). Thus, the
industrial structure has been significantly optimized. Although
in the short term, the optimization and upgrading of the
industrial structure cannot reduce carbon dioxide emissions
immediately, in the long run, adjusting the industrial structure
and gradually reducing the excessive dependence of economic
development on the secondary industry is an important measure
to reduce carbon emissions. In addition, the coefficient of energy
consumption structure is significantly positive, which indicates
that the current energy structure does not play a positive role in
reducing carbon emissions. During 2006–2019, the proportion of
coal in primary energy consumption remained stable between 65
and 70% (NBSC, 2007-2020b). Although the proportion of coal
consumption has declined, the energy structure dominated by
coal is still the basic feature of China’s energy consumption. Such
an energy consumption structure still promotes CO2 reduction.
The coefficient of the population is significantly positive, which
shows that the population has a promoting effect on carbon
emissions. Similarly, economic levels also have a positive effect on
carbon emissions.

Among the interaction terms of each explanatory variable and
the explained variable, green technology innovation in the
neighboring area has a positive effect on the increase in
carbon emissions in the region according to the results of the
random effects space Dubin panel model. It shows that when the
efficiency of green technology innovation in neighboring areas
increases, it will promote the increase in CO2 emissions in the
focused region. This may be because the improvement of the
efficiency of green technology innovation in the neighboring area
will give the region a comparative advantage in certain industries.
Thereby, neighboring will attract advantageous resources of these
industries in the focused region, which in turn promotes the
improvement of green technology innovation in the neighboring
region. Eventually, the region’s investment in these industries will
shrink, technological innovation efficiency will decline, and
carbon dioxide emissions will increase.

Furthermore, the industrial structure has a negative effect on
the increase in carbon emissions in the region. This may be
because the development and growth of the secondary industry in
the neighboring areas prompt the agglomeration of resource-
based industries in the neighboring areas. Additionally, the high-
energy-consuming industries in the region are gradually shifting
to neighboring areas. Thus, the industrial structure shows a

negative spillover effect. At the same time, the population also
shows a negative spatial spillover effect. The spatial effect of
energy consumption structure and economic level on carbon
emissions is not statistically significant.

4.3 Analysis of Regional Results
An empirical test of the national provinces suggests that green
technology innovation for carbon emissions is negative; namely,
innovative efficiency can reduce carbon dioxide emissions. Given
the large differences in regional economic level and industrial
structure, this paper does further sub-regional research on the
impact of green technology innovation in carbon emissions. The
selection criteria of the sub-regional spatial panel model are
consistent with the national study of the province. Table 5
shows the estimation results of the eastern, middle, and
western panel models.

Table 5 shows the elastic coefficient of regional green
technology innovation level to carbon emissions. The elastic
coefficient is, respectively, −0.5675 in the east, −0.2064 in the
middle region, and 0.0037 in the west. Obviously, it is negative in
the east andmiddle and positive in the west. That is to say, both in
the east and middle region, the improvement of green technology
innovation efficiency can reduce CO2 release, and innovation in
the eastern region has the most obvious effect on carbon emission
reduction. This result was not as expected, and the possible
reasons might be as follows.

The eastern region has absorbed foreign advanced technology
relatively early and has a developed economy. Therefore, it has
the necessary capital and talents for green technology innovation.
The eastern region has become China’s main low-carbon-
technology innovation area. Due to the pressure of economic
development in the central and western regions, the government
often sets lower environmental protection standards to prioritize
economic development. Additionally, the degree of
environmental regulation and investment in green technology
innovation is naturally weaker than those in the eastern region.

Due to the early transformation of the economic structure, the
eastern region closed down and transferred some high-energy
and high-emission enterprises (Wang and Xiong et al., 2021), and
they continued to introduce international environmental
protection technologies to enhance the ability of green
technology innovation. Moreover, the eastern region attaches

TABLE 5 | SLPDM estimation results of the eastern, central, and western carbon
emissions.

Variables Eastern region Central region Western region

Time-fixed effects Time-fixed effects Time-fixed effects
lnGI −0.5675*** −0.2064*** 0.0037*
lnES 0.0441 0.4970*** 0.1733***
lnGDP 0.4816*** 1.0635*** 0.4795***
lnIS 0.6448*** 0.9635*** 2.1132***
lnP 0.5825*** 0.5470*** 0.8919***
W*lnGI −0.1325 0.2702
W*lnES 0.0522*** 0.1335*
W*lnGDP 0.4045*** −0.1371**
W*lnIS 0.7918*** −0.3960*
W*lnP −0.1518*** −0.3462
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great importance to the development of environmentally friendly
products to meet the demand for green products in foreign trade.
For the central region, most production still relies on traditional
technology, and its technological innovation is mainly focused on
increasing productivity. Furthermore, the improvement of green
technology is slightly insufficient. Therefore, the effect of green
technology innovation in the central region on carbon emission
reduction is not as good as that in the eastern region. The western
region takes development as its main task. The western region has
not paid enough attention to green technological innovation and
ecological civilization construction, which are conducive to long-
term development. Additionally, the industrial structure of the
western region is dominated by the energy industry. In high-
energy-consuming industries, technological innovation may have
an energy-rebound effect in the short term. That is to say,
although green technological innovation can improve energy
efficiency and save resources, the improvement of energy
efficiency will reduce the production cost and price of
products, which will promote product consumption and
production. Thus, it will lead to a further increase in energy
demand. From this point of view, the final result is that the
reduction effect of green technological innovation on CO2

emissions is not enough to offset the increased effect of
additional energy consumption on carbon dioxide emissions in
the western region. Therefore, it is not surprising that the
efficiency of green technology innovation has increased carbon
dioxide emissions in the western region.

From the perspective of the characteristics of technological
innovation, due to the location-locking effect of innovation,
innovation capability itself also depends on the original
innovation capability. After the continuous accumulation of
technological innovation in the eastern region, it is easier to
form a technological innovation center. In addition, technological
innovation has the characteristics of exclusivity and
competitiveness, so the eastern region will not be easily
transferred as a technological innovation center. In addition,
technological innovation has the characteristics of exclusivity
and competitiveness, so the eastern region will not easily
transfer as a technological innovation center. Naturally, the
green technological innovation capabilities of the central and
western regions are far weaker than those of the eastern region,
and their green technology innovation in reducing CO2 emissions
is also far weaker than that of the eastern region.

5 DISCUSSION

Based on the STIRPAT model, this study confirms that green
technology innovation is an effective means of reducing carbon
emissions. Additionally, for regions at different stages of
economic development, green technological innovation has
different effects in reducing carbon emissions. Specific
conclusions of this study are presented below.

The empirical results show that the spatial pattern of China’s
inter-provincial carbon emissions is relatively stable. It shows
obvious regional characteristics of being high in the east and
north and of being low in the west and south from the spatial

perspective. Moreover, the gaps between the east and the west
and between the south and the north tend to narrow. From the
timing point of view, during the period 2006–2019, the number
of high-carbon emission provinces decreased first and then
increased, the medium-high carbon emission provinces
gradually increased, and the medium carbon emission
provinces decreased year by year, while the number of low
carbon emission provinces was relatively stable. Therefore, the
overall trend is to shift from low carbon emissions to high
carbon emissions. The stable state of this spatial trend reflects
the obvious path-dependence characteristics of China’s regional
economy.

Furthermore, the direct effect of green technology innovation
in China’s 30 provinces (autonomous regions and municipalities)
from 2006 to 2019 on carbon dioxide emissions is greater than the
scale effect. Therefore, the overall effect is that the improvement
of green technology innovation can help reduce carbon
emissions, but the effect is not significant. Control variables,
such as industrial structure, energy consumption structure, per
capita GDP, and population, all have a significant positive role in
promoting CO2 emissions. However, due to the large differences
in regional development in China, there are significant regional
differences in the impact of green technological innovation on
CO2 emissions. Specifically, the improvement of green
technology innovation in the eastern and central regions helps
to reduce CO2 emissions, and the degree of influence in the
eastern region is higher than that in the central region. However,
improvements in green technology innovation in the western
region will increase carbon dioxide emissions.

At the same time, China’s inter-provincial carbon dioxide
emissions have a strong spatial spillover effect. The carbon
emissions in this region not only are related to their own
factors but also are affected by the factors of neighboring
regions. Specifically, the green technological innovation and the
improvement of the industrial structure in the neighboring regions
have a depressing effect on the carbon emissions of the region.
However, the population has a positive role in promoting carbon
emissions in the region. The impact of energy consumption
structure and economic level is not statistically significant.

Based on the analysis results, this study emphasized the
policies related to carbon emission reduction from several
aspects. For instance, the present study fully highlights the
need for green technology innovations to reduce CO2

emissions in China. Since economic development and energy
consumption in western China, carbon emissions are not reduced
adequately in despite of energy savings through green technology
innovation. In western China, subsidies need to be given to
encourage green technology innovation. Taking the spatial
spillover effect of carbon emissions into account, it is
necessary to establish a regional carbon-emission-reduction
linkage mechanism and to conduct cross-regional governance
of carbon emission reduction.

Although this paper investigates the spatial correlation of the
factors influencing carbon emissions in China, there are still
significant shortcomings. First, the construction of a green
technology innovation-level calculation system is not
comprehensive enough to consider more specific green
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innovation outputs and more undesired outputs. Also, this
research has observed the general background of green
technology innovation without specific divisions of it to
understand better which type of innovation is more conducive
to reducing China’s carbon emissions. However, the current data
are not sufficiently comprehensive, and the amount of publicly
available data cannot yet support the establishment of a more
comprehensive green technology innovation measurement
system, so other methods are not used in this paper at this
time. In addition, this research is only exploring the impact of
green technology innovation on carbon emissions from the
perspective of the region as a whole, while ignoring the impact
between sectors, such as transportation sector. A detailed
interpretation of the data is needed in subsequent studies.
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