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In the modern era, rapid anthropogenic activities in the vicinity of the Himalayas disturb
the carbon sequestration potential resulting in climate change. For the first time, this
study estimates the biomass and carbon storage potential of Northeast India’s diverse
land uses through a biomass estimation model developed for this region. The mean tree
density in tropical, subtropical, and temperate forests was 539, 554, and 638 trees ha−1,
respectively. The mean vegetation carbon stock was the highest for temperate forests
(122.09 Mg C ha−1), followed by subtropical plantations (115.45 Mg C ha−1), subtropical
forests (106.01 Mg C ha−1), tropical forests (105.33 Mg C ha−1), tropical plantations
(93.00 Mg C ha−1), and temperate plantations (50.10 Mg C ha−1). Among the forests,
the mean soil organic carbon (SOC) stock up to 45 cm depth was the highest for tropical
forests (72.54 Mg C ha−1), followed by temperate forests (63.4 Mg C ha−1) and
subtropical forests (42.58 Mg C ha−1). A strong relationship between the tree basal
area and biomass carbon storage was found for all land-use types. The land-use
transformation from agriculture to agroforestry, and grassland to plantations
increased both vegetation carbon (VC) and SOC stocks. The corresponding increase
in VC and SOC was 40.80 and 43.34 Mg C ha−1, respectively, in the former, and 83.18
and 97.64 Mg C ha−1 in the latter. In general, the landscape-level estimates were drawn
from site-level estimates in a given land-use type, and therefore, the corresponding
values might be overestimated. Nevertheless, the results provide baseline information on
carbon stock which may serve as a reference for devising appropriate land-use change
policies in the region.
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INTRODUCTION

Since the mid-1900s, many objectives of global climate change
research have shifted to reducing terrestrial carbon sources and
enhancing sinks as a means of combating future climate change
under carbon dioxide (CO2) enrichment (Kumar et al., 2017). In
general, CO2 is a predominant greenhouse gas (GHG) in the
atmosphere and a major contributor (>50%) to global warming.
Studies have reported that a rapid change in land-use alone
contributes to nearly 10% of global anthropogenic CO2

emissions (IPCC, 2007; Le Quere et al., 2016). The tropical
zones have shown an increased accumulation of atmospheric
CO2 to >400 ppm in 2015 (Betts et al., 2016), and this
accumulation is projected to exceed 500 ppm by 2050 (Cai
et al., 2014). Furthermore, the rapid increase of atmospheric
CO2 concentration will increase earth’s surface temperature and
further cause negative impacts (e.g., sea level rise, flooding, and
increase ecological and human health risk) (IPCC, 2007; IPCC,
2014; Kumar et al., 2021). To combat these effects of climate
change, the United Nations Framework Convention on Climate
Change (UNFCCC) formulated “Reduction of Emissions from
Deforestation and Forest Degradation” (REDD) policy in 2007,
which was further enacted as REDD+ in 2010 (UNFCCC, 2008)
to conserve and manage 2015 Pg (1 Pg � 1 giga ton � 1015g �
1 million metric ton) of global terrestrial C stock. As per an
estimate, the carbon emission from land-use change was
0.9 Pg C yr−1 during 2005 to 2014 (Le Quere et al., 2016). The
Paris Agreement (2015) further emphasized on limiting the
global temperature increase to 2°C by 2,100 and pursuing
efforts to generate more carbon via agricultural materials
through both conventional mitigation efforts and alternative
routes (Gupta and Kumar, 2020; Kumar and Gupta, 2020), so
as to limit the global temperature increase to 1.5°C. Terrestrial
carbon stocks, especially in northeast India, are hotspots of
current research as it covers an area of 26.3 million hectares
which is equivalent to 8% of the total geographical area, and
represents ∼25% of the country’s total forest area. In this
perspective, studies on carbon accumulation in various pools
(e.g., soil, vegetation, litter, etc.) in the terrestrial ecosystem can
advance our understanding of climate change adaptation and
mitigation. The rapid land-use change in Northeast India is
driving climate change and biodiversity loss (Brahma et al.,
2018; Ahirwal et al., 2021a; Deb et al., 2021). Thus, the
conservation and sustainable development of land-use systems
are expected to stabilize CO2 accumulation at the local, regional,
and national levels. Moreover, the accurate estimation of biomass,
soil carbon stocks, and their spatial distribution in various
habitats will be crucial to understanding carbon storage
potential and its dynamics (Weiskittel et al., 2015; Singh et al.,
2018a).

Biomass estimation models are of immense importance for
climate change studies. There is a continuous change of biomass
density at individual forest stand and other woodlands due to
land-use change, and anthropogenic activities triggered by
climate change events (Ahirwal et al., 2021a). These changes
are of paramount importance in influencing the global carbon
cycle (Qiu et al., 2015; Pellikka et al., 2018). The measurement of

biomass at plot levels especially on a mountainous hilly terrain is
extremely labor intensive, and due to heterogeneity in landscape,
it is practically impossible to cover vast landscape for carbon
accounting without bias (Brahma et al., 2021). A precise
estimation of carbon across different ecosystems will be
desirable to increase our understanding of the location and
magnitude of carbon density, and identify the carbon source
and sink. The use of the locally developed robust biomass model
would be critical in this direction for a more reliable and accurate
biomass estimation, and reporting to national carbon stock
enhanced knowledge on the carbon budget at both local and
regional scales and in relation to the current climate change
scenario (Thangjam et al., 2019).

Several factors such as land history, inherent climatic
conditions, vegetation patterns and types, and land-use and its
management practices play a vital role in influencing the carbon
storage and sequestration rate in different carbon pools (Zhang
et al., 2015). Over the last decades, environmentalists and policy-
makers have become more aware of the vital role that tree
diversity plays in combating climate change, and this has
prompted them to be more conscious while designing any
climate change mitigation and adaptation strategy (Con et al.,
2013; Bhat et al., 2020; Sheikh et al., 2021). It has been established
that plantation forestry (Brahma et al., 2017; Singh et al., 2018a;
Nath et al., 2018; Kurmi et al., 2020), agroforestry (Tamang et al.,
2021), and home gardens (Singh et al., 2015; Singh and Sahoo,
2021) have great potential for carbon sink in the Northeastern
region of India. Similarly, secondary forests (accounting for
variation in age) play an important role in carbon storage
(Gogoi et al., 2020; Thong et al., 2020). One of the basic
prerequisites for the accurate estimation of biomass stock at
the regional and global scales is the use of appropriate models.
Till today, only generic models, including those developed by
Brown et al. (1989), Chambers et al. (2001) Chave et al. (2005),
and Chave et al. (2014), have been used to estimate biomass and
carbon stocks for diverse forests in the Northeastern region of
India. However, the accuracy of biomass estimates using these
models has rarely been tested. To overcome this uncertainty,
there is an urgent need to develop a regional biomass estimation
model to predict medium and long-term biomass and carbon
stocks under different land uses, which could be highly useful for
regional and/or global biodiversity conservation.

Computation of the landscape level and carbon storage
facilitates the understanding of biogeochemical cycle, carbon
dynamic (source/sink), and regional carbon cycle (Weiskittel
et al., 2015). Geostatistics and remote sensing techniques have
been frequently used for the purpose of extrapolation (Kumar
et al., 2015). The use of active remote sensing images like the
Moderate Resolution Imaging Spectroradiometer (MODIS),
Light Detection and Ranging (LIDAR), Phased Array L-based
Synthetic Aperture Radar (PULSAR), and indices such as the
Normalized Difference Vegetation Index (NDVI), and the Leaf
Area Index (LAI) coupled with field inventory are on the rise to
estimate biomass in timely and cost-effective manners, especially
on hilly terrains. In Northeast India, some efforts have been made
to estimate forest biomass and carbon stock using remote sensing
images for a particular state or a forest type in Tripura (Pandey
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et al., 2019), Manipur (Sharma et al., 2020), Arunachal Pradesh
(Kumar et al., 2019), and Assam (Hussain et al., 2019). The use of
remote sensing techniques for estimating carbon stock from a
variety of complex land uses is often more challenging due to the
lack of accurate and consistent measurement methods (Issa et al.,
2020). For example, using remote sensing to trace transitions
from intact forests to degraded forests on the same landscape may
yield the same closed canopy area, while the carbon stock may
have plummeted to 75% (UNFCCC, 2006). Low-vegetation
signal-to-noise ratios, high soil background reflectance in
shifting cultivation areas, and high spatial heterogeneity from
plot to state-level data hamper the calibration and evaluation of
data (Issa et al., 2020). These constraints pose unique challenges
specific to varying environmental conditions and result in high
inaccuracies when applying biomass estimation techniques for
other ecosystems/land uses. To overcome these challenges and in
view of the fact that there are no efforts to estimate the biomass of
different habitats at a regional level, innovative ground-level field
inventories using the best-fit equations for tree and other woody
vegetation were necessitated (Brahma et al., 2021). The present
study is the first of its kind for accounting for carbon from
different land-use sectors at a regional scale. Further lack of
accurate data on carbon stock and sequestration potential under
land-use sectors makes this study indispensable. Therefore, the
objective of the present study was to develop a robust regional
model to estimate tree diversity, biomass, carbon stock, and
sequestration potential under different land uses in the
Northeast region of India. It also aimed to develop a
relationship between tree basal areas and density with the
biomass carbon storage at different pools for various land uses
so that effective mitigation and adaptation strategies could be
developed in advance to combat future climate change.

MATERIALS AND METHODS

Study Area
Northeast India accounts for 8% of the geographical area and
∼25% of the forest cover of India. The region is currently facing
dual pressure of economic growth and environmental protection.
The region is endowed with diverse land-use types. Besides
various forest types, several other tree-based ecosystems such
as traditional agroforestry, home gardens, plantations, and
secondary forests that provide livelihood opportunities for
rural populace are widely prevalent in the region. We selected
seven major land uses viz., 1) forest: tropical, subtropical, and
temperate; 2) bamboo forest; 3) plantation: tropical, subtropical,
and temperate; 4) shifting cultivation fallows: <5 years,
5–10 years, and 11–20 years; 5) agricultural lands; 6)
agroforestry; and 7) grasslands, in Northeast India. The
agricultural land includes wet rice cultivation. The plantations
include rubber (Hevea brasiliensis), areca nut (Areca catechu), oil
palm (Elaeis guineensis), and orange (Citrus sinensis), while
agroforestry involved traditional home gardens, coffee (Coffea
sp.), piper (Piper betel), sugarcane (Saccharum officinarum), and
mango-based systems (Mangifera indica) for the study. The area
and proportion of each land use have been given in

Supplementary Table S1. The estimated above ground
biomass (AGB) data of each land use for different northeast
Indian states was used to prepare the spatial distribution map.
The classified Land Use and Land Cover (LULC) map of each
state in the studied region was utilized to estimate the total area
coverage under each land use (Figure 1). The LULC map was
developed by integrating land image data of the concerned area
over a particular time span (from November 2015 to February
2016) using freely available Landsat 8 Operational Land Imager
(Landsat OLI) present on the data portal of the United States
Geological Survey (USUG): “Earth Explorer”(https://
earthexplorer.usug.gov). All the imageries were geo-referenced
to Common Universal Traverse Mercator (UTM) projection
UTM zone 46 and WSG 84 datum.

Field Inventory on Tree Composition,
Biomass, and Soil Carbon Estimation
All the major land-use sectors were stratified, and sub-
stratified/classified based on forest types, canopy cover, crop
composition, and age of plantation/shifting cultivation, and
representative eight permanent sites (250 m × 250 m) were
established in each of the eight northeastern states following the
ISRO–GBP/NCP–VCP protocol (Singh and Dadhwal, 2009).
The field inventory on tree composition, biomass, soil, and
carbon estimation from various pools was estimated from the
sample quadrant plots of representative size: 0.1 ha (31.62 m ×
31.62 m) following standard methods and other studies carried
out during 2016–2019. For each site and each land use, four
0.1 ha permanent plots were fixed at the four corners of the site.
The number of sampling sites in tropical, subtropical,
temperate, and bamboo forests were 231, 40, 12, and 12,
respectively. The number of sampling sites for tropical,
subtropical, and temperate plantations were 87, 31, and 9,
respectively, and for <5 years, 5–10 years, and 11–20 years
shifting cultivation fallows, the number of sampling sites were
34, 17, and 7, respectively. The data for agroforestry,
agriculture, and grasslands were drawn from 69, 89, and 23
sampling sites, respectively. All trees having ≥ 10 cm dbh
(diameter at breast height, i.e., 1.37 m from the base) in
each plot were measured for vegetation parameters such as
species richness, density, and diversity following standard
methods. Diversity indices including the Shannon–Wiener
diversity index (Shannon and Weiner, 1963), species
richness (Margalef, 1958), species evenness (Pielou, 1966)
and species dominance (Simpson, 1949) were determined for
all the major land uses. The basal area values of these trees were
collected from the calculated mean of four plots at four corners
of the site in a given sampling site and were further expanded to
per hectare basis.

In Northeast India, the widely used generalized models for
estimating biomass have rarely been validated by ground
truthing. Besides this, different species-specific models have
certain limitations in adhering to sufficient sample size,
sampling strategy, validation, etc., resulting in large degrees of
uncertainty in obtaining accurate biomass estimation from
diverse forest ecosystems (Weiskittel et al., 2015). To
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overcome these issues, we used the biomass model developed by
Nath et al. (2019) using 303 sample tree harvested data drawn
from four major forest types of the region for calculation of
AGB as

AGBest � 0.18D2.16 × 1.32 (1)

where AGBest � above ground biomass (Kg tree−1), D � diameter
at breast height, and 1.32 � correction factor.

Cross-validation is usually recommended to determine how
accurately the biomass estimation model will perform when
applied to an independent dataset. Usually, 5-fold or 10-fold
cross-validation provides a good balance between bias and
variance (Sileshi, 2014; Thangjam et al., 2019). However, a 10-
fold cross-validation was employed to evaluate the predictive
performance of the biomass estimation models developed by
Nath et al. (2019). The goodness of fit criteria were calculated

FIGURE 1 | Spatial distribution of major land uses showing sampling plots in northeast India.
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for the validation dataset using the lava and forecast packages of the
R package. It was found that with highR2 and lowAICc, RMSE, and
MAPE values (Nath et al., 2019), the biomass model was best suited
for tree biomass estimation in Northeast India over the generic
model developed by Brown (1989) and the two pantropical models
developed by, Chave et al. (2005), Chave et al. (2014). Details of the
model development and validation procedure are available in the
study by Nath et al. (2019).

We also used species-specific biomass estimation models for
rubber and areca nut plantation developed for this region (Brahma
et al., 2018). Belowground biomass (BGB) was calculated from the
equation given by Mokany et al. (2006), and its carbon stock was
calculated as BGB � 0.205 × AGB when AGB < 125Mg ha−1 and
BGB � 0.235 × AGB when AGB > 125Mg ha−1. Aboveground
biomass carbon (AGBC) was estimated from the default value
(47%) of total biomass (IPCC, 2003). Two soil profiles (1m × 1m
× 1m) were dug randomly within each 250m × 250m sized site,
totaling eight profiles for a site, twice in 2016 and 2018. Soil samples in
triplicates were collected from three depths (0–10, 10–20, and
20–45 cm) using a soil corer (5.6 cm dia). In addition to this, 72
bulk soil samples (8 profile × 3 depth × 3 replication) were obtained
for each land use, air-dried, and sieved using 100micronmesh for the
assessment of SOC concentration following a widely used method
called “wet oxidation method” (Walkley and Black, 1934). The SOC
stock for each depthwas computed following themethod proposed by
Blanco-Canqui and Lal (2008). Values for different soil depths were
summed up to obtain SOC stock up to 0–45 cm. Soil bulk density
(BD)was calculated following the procedure of Robertson et al. (1974).
The carbon stock of major pools (AGB, BGB, and SOC stock) was
summed up for particular land use to arrive at the total carbon stock
(TCS). The rate of change (sequestration) in carbon stock was
determined from the initial/baseline value (2016) to the final value
(2018). The age of the land use was recorded by questioning the
farmers during field survey. The carbon sequestration rate was
estimated by dividing the change in the carbon stock values
(between prior (CLU0) and immediate (CLUn) values) by the age of
the land use/age interval (Dung et al., 2016), which is expressed as

Rsequestation � CLU0 − CLUn

Interval
. (2)

Statistical Analysis
The variation in tree density, basal area, and carbon stock under
different land use was determined using the analysis of variance
and Tukey HSD tests at 5% level. The relationships among tree
basal area, density, and carbon in different pools of all land-uses
were computed using correlation and regression analyses with
statistical package SPSS-21 (SPSS Inc., Chicago, IL, United States
). All the basic analyses were done using Microsoft Office -2010.

RESULTS

Tree Species Richness, Diversity, Stand
Density, and Biomass Stock
The mean value of species richness varied significantly (p <
0.05) among land uses and ranged from 1.0 (subtropical

plantations) to 12.22 (tropical forest). Tree species richness
differed significantly (p < 0.05) between forest types and shifting
cultivation fallows (Table 1). The Shannon–Wiener diversity
index (H) varied significantly (p < 0.05) among different land
uses, showing maximum value (2.40) in 11–20 years shifting
cultivation fallows followed by temperate forest (2.39), tropical
forest (2.20), 5–10 years shifting cultivation fallow (1.99), and
minimum (0.02) in subtropical plantation (Table 1). The
Simpson dominance index ranged from 0.09 (11–20 years
shifting cultivation fallow) to 0.83 (tropical forest) and
Pileou’s evenness index was maximum (0.99) in <5 years
and 11–20 years shifting cultivation fallows and minimum
(0.55) in bamboo forest (Table 1). Margalef’s species
richness index was maximum (3.21) in tropical forests
followed by 11–20 years shifting cultivation fallow (2.81)
and minimum (0.61) in tropical plantation. Tropical forests
had a mean stand density of 539 trees ha−1, and the
corresponding values for subtropical and temperate forests
were 554 trees ha−1 and 578 trees ha−1, respectively
(Table 2). Among the tree plantations, those located in
subtropical climate showed the highest stand density (840
trees ha−1), followed by tropical (598 trees ha−1) and
temperate (344 trees ha−1). The culm density in bamboo
forests was 6,550 culms ha−1. The mean tree density in
shifting cultivation fallows varied from 140 trees ha−1

(<5 years fallow) to 703 tree ha−1 (11–20 years fallow). In
agroforestry systems, the stand density was 744 trees ha−1 with
a mean basal area of 14.35 ± 4.02 m2 ha−1. The temperate
forests had the highest average basal area (29.50 ±
2.63 m2 ha−1) followed by subtropical (26.71 ± 2.18 m2 ha−1)
and tropical forests (25.07 ± 1.01 m2 ha−1). The basal area of
tree plantations also varied significantly and was in the order of
subtropical (30.63 ± 6.46 m2 ha−1) > tropical plantation
(26.86 ± 1.83 m2 ha−1) > temperate plantation (11.43 ±
1.57 m2 ha−1). Biomass values varied significantly (p < 0.05)
between different land uses and ranged from 2.53 ±
0.51 Mg ha−1 (in grassland) to 259.77 ± 15.43 Mg ha−1 (in
temperate forest), and were in the order of natural forests >
plantations > older shifting cultivation fallows (5–10 and
11–20 years) >agroforestry > bamboo forest > agriculture
(Table 2). The details of the dominant species and their
respective density, importance value index, basal area, and
biomass stock are provided in Supplementary Table S1

Vegetation Carbon Stock
The mean value of AGBC stock was the highest (100.51 ±
11.33 Mg C ha−1) in temperate forest and lowest (0.96 ±
0.31 Mg C ha−1) in grassland. The mean vegetation carbon
stock (ABG + BGB) was the highest (122.09 ±
13.59 Mg C ha−1) in temperate forests followed by subtropical
(106.01 ± 11.59 Mg C ha−1) and tropical forests (105.33 ±
3.88 Mg C ha−1). The AGBC and total vegetation carbon in
bamboo forest were 17.79 ± 1.46 Mg C ha−1 and 21.98 ±
1.80 Mg C ha−1, respectively (Figure 2). Vegetation carbon
stock in the plantations were in the order of subtropical
(115.45 ± 21.20 Mg C ha−1, range 57.15–266.5 Mg C ha−1) >
tropical (93.00 ± 7.80 Mg C ha−1, range
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7.23–341.92 Mg C ha−1) > temperate (50.10 ± 6.72 Mg ha−1,
range 18.75–75.05 Mg C ha−1) zones. The agricultural land
showed an average vegetation carbon stock of 2.71 ±
0.36 Mg C ha−1. The cumulative aboveground carbon storage
in four major land-use sectors in Northeast India amounts to
212,675,8462 Mg C (2.13 Pg C) to which tropical, subtropical,
and temperate forests contributed 67.68, 10.44, and 13.77%,
respectively (Supplementary Table S2).

Soil Organic Carbon Stock, Total Carbon
Stock, and Carbon Sequestration
Among the forest types, the mean SOC stock was in the order of
tropical forests (72.54 ± 2.02Mg C ha−1) > temperate forests
(63.4 ± 6.94Mg C ha−1) > subtropical forests (42.58 ±
3.32Mg C ha−1). SOC values in tropical forests ranged from
10.13–119.65Mg C ha−1, and in temperate forests, its value
varied between 22.32 and 114.59Mg C ha−1. The mean SOC
stock was 29.83 ± 0.97Mg C ha−1, with variations from 25.28 to
34.67 Mg C ha−1 in bamboo forests (Table 3). The SOC stock in
plantations was in the order of tropical > subtropical > temperate
zones. On average, the SOC stock was the highest in 5–10 years

fallows (84.56 ± 3.99Mg C ha−1) followed by 11–20 years fallows
(78.19 ± 2.09Mg C ha−1) and <5 years fallows (75.76 ±
7.86Mg C ha−1), and the mean SOC stock in agriculture land-
use was 40.13 ± 1.77Mg C ha−1. Total carbon stock (TCS) was
maximum (185.5 ± 15.55 Mg C ha−1) in tropical forests and
minimum (40.55 ± 7.77Mg C ha−1) in grassland (Figure 2).

The mean annual increment (carbon sequestration) in
vegetation pools varied between 1.80 Mg C ha−1 yr−1 (tropical
plantations) and 5.51 Mg C ha−1 yr−1 (temperate forests). The
carbon sequestration rate was significantly higher in forests
(2.81–5.51 Mg C ha−1 yr−1), followed by plantations
(1.80–5.08 Mg C ha−1 yr−1) and secondary forests
(1.35–2.84 Mg C ha−1 yr−1). The results revealed that tree-
based land uses registered an increase in vegetation carbon by
2.68 ± 0.12 Mg C ha−1 yr−1. SOC sequestration was the highest in
temperate forests (1.85 ± 0.31 Mg C ha−1 yr−1), followed by
subtropical forests (1.78 ± 0.28 Mg C ha−1 yr−1) and tropical
forests (1.0 ± 0.18 Mg C ha−1 yr−1). Agriculture land use and
shifting cultivation fallows (<5-years) showed the lowest rate of
SOC sequestration (Table 3). The carbon sequestration rate was
found to be significantly (p < 0.05) higher in plant biomass than
in soil.

TABLE 1 | Species richness and diversity indices of the tree species across different land-use sectors of Northeast India.

Land uses Species richness
(plot-level)

Simpson’s dominance
index

Shannon–Weiner diversity
index

Pielou’s evenness
index

Margalef’s species
richness index

Forest (tropical) 12.22 ± 0.51bcde 0.83 ± 0.05 2.20 ± 0.07 0.73 ± 0.03 3.21 ± 0.82
Forest (subtropical) 11.49 ± 0.85bcde 0.68 ± 0.02 1.88 ± 0.125 0.69 ± 0.01 1.91 ± 0.63
Forest (temperate) 11.61 ± 0.78bcde 2.12 ± 0.07 2.39 ± 0.092 0.59 ± 0.01 1.21 ± 0.87
Forest (bamboo) 1.38 ± 0.03 0.18 ± 0.0 1.07 ± 0.32 0.55 ± 0.04 0.67 ± 0.03
Plantation (tropical) 2.92 ± 0.76ad 0.21 ± 0.10 0.49 ± 0.22 0.59 ± 0.03 0.61 ± 0.03
Plantation (subtropical) 1.0 ± 0.0ad 0.64 ± 0.03 0.02 ± 0.0 0.61 ± 0.03 1.06 ± 0.2
Plantation (temperate) 1.64 ± 0.23ae 0.30 ± 0.41 0.17 ± 0.24 0.58 ± 0.55 2.10 ± 0.37
Shifting cultivation fallow (< 5 years) 1.8 ± 0.03ac 0.21 ± 0.0 1.69 ± 0.03 0.99 ± 0.0 2.04 ± 0.06
Shifting cultivation fallow (5–10 years) 2.8 ± 0.02ac 0.15 ± 0.0 1.99 ± 0.06 0.98 ± 0.0 2.22 ± 0.08
Shifting cultivation fallow (11–20 years) 3.6 ± 0.12ac 0.09 ± 0.0 2.40 ± 0.16 0.99 ± 0.0 2.81 ± 0.17
Agroforestry systems 3.0 ± 0.0ac 0.56 ± 0.06 1.24 ± 0.32 0.596 ± 0.0 1.70 ± 0.32

The value with the same letter between in species richness between the land uses is significantly different at p < 0.05.

TABLE 2 | Stand density, basal area, and biomass in major land-use sectors of Northeast India.

Land uses Stand density (number
of trees ha−1)

Basal area (m2 ha−1) Biomass (Mg ha−1)

Forest (tropical) 539 ± 17.61a 25.07 ± 1.01a 224.11 ± 8.26a

Forest (subtropical) 554 ± 48.38b 26.71 ± 2.18b 225.55 ± 24.66b

Forest (temperate) 578 ± 80.15c 29.50 ± 2.63c 259.77 ± 15.43c

Forest (bamboo) 655 ± 46.8d 7.68 ± 0.39acd 46.77 ± 2.35abcd

Plantation (tropical) 598 ± 41.31e 26.86 ± 1.83de 198.58 ± 16.55de

Plantation (subtropical) 840 ± 174.15f 30.63 ± 6.46df 245.64 ± 45.10df

Plantation (temperate) 344 ± 92.98f 11.43 ± 1.57g 106.60 ± 14.29g

Shifting cultivation fallow (<5 years) 188 ± 31.72abdefg 5.86 ± 1.58abcef 23.09 ± 5.87abcef

Shifting cultivation fallow (5–10 years) 431 ± 63.02f 17.58 ± 4.36h 85.12 ± 12.42abcf

Shifting cultivation fallow (11–20 years) 703 ± 79.06g 15.24 ± 0.65i 167.60 ± 14.29h

Agroforestry systems 744 ± 144.88g 14.35 ± 4.02j 92.58 ± 28.73abc

Agriculture - - 6.48 ± 1.26abcef

Grassland - - 2.53 ± 0.81abcef

±Standard error of mean; Tukey’s post hoc test was used for pair-wise separations. The value with the same letter between the land uses is significantly different at p < 0.05.
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Relationship Among Tree Diversity, Basal
Area, and Carbon Stock in Different Pools
Significant positive relationships were observed between the basal
area and tree density for all land uses, except temperate forests.
However, no relationship between the basal area and SOC stock
was observed, except in the tropical forests. Similarly, there was
no relationship between the basal area and BGB carbon stock in
the old (11–20 years) shifting cultivation fallows (Table 4).

Carbon Dynamics and Land-Use Changes
Both progressive and retrogressive carbon change were noticed
due to land-use change management. When the shifting
cultivation fallows were vegetated with plantation/agroforestry,
total biomass carbon stock increased, and it ranged from 21.58 to
97.34 Mg C ha−1 (Figure 3). This conversion, however, resulted

in SOC loss from 3.87 to 17.66 Mg C ha−1. The conversion of land
use from both agriculture and grassland to plantation, on the
other hand, resulted in an increase of carbon in all pools (SOC
and vegetation carbon). The conversion of natural forest to
grassland, current shifting cultivation fallow (<5 years),
plantation, and agroforestry resulted in the total carbon stock
(TCS) loss which ranged from 28.68 Mg C ha−1 (plantation) to
126.32 Mg C ha−1 (grassland). These conversions also resulted in
the maximum loss of vegetation carbon (VC) in grasslands
(106.33 Mg C ha−1), followed by the current shifting cultivation
fallow (101.80 Mg C ha−1) and the least in plantations
(23.15 Mg C ha−1). The conversion of agroforestry to
agriculture resulted in the loss of carbon from all pools. The
increment in vegetation carbon was the highest
(3.62 Mg C ha−1 yr−1) when the grasslands were converted to

FIGURE 2 | Vegetation carbon and soil organic carbon stocks (0–45 cm soil depth) in major land uses in Northeast India.

TABLE 3 | Mean annual carbon increment (Mg C ha−1 yr−1) in different carbon pools of major land uses in Northeast India.

Land uses AGBC BGBC VC SOC

All tree-based land uses 2.16 ± 0.09 0.51 ± 0.02 2.68 ± 0.12 1.05 ± 0.09
Forest (tropical) 2.27 ± 0.11 0.53 ± 0.03 2.81 ± 0.14 1.00 ± 0.18
Forest (subtropical) 3.32 ± 0.51 0.78 ± 0.12 4.10 ± 0.18 1.78 ± 0.28
Forest (temperate) 4.46 ± 0.80 1.05 ± 0.19 5.51 ± 0.99 1.85 ± 0.31
Forest (bamboo) 2.97 ± 0.49 0.70 ± 0.12 3.67 ± 0.61 0.60 ± 0.03
Plantation (tropical) 1.46 ± 0.28 0.34 ± 0.06 1.80 ± 0.34 1.68 ± 0.27
Plantation (subtropical) 4.11 ± 0.44 0.97 ± 0.10 5.08 ± 0.5 0.81 ± 0.06
Plantation (temperate) 2.02 ± 0.48 0.47 ± 0.11 2.49 ± 0.59 0.81 ± 0.06
Shifting cultivation fallow (< 5 years) 1.10 ± 0.42 0.26 ± 0.10 1.35 ± 0.52 0.51 ± 0.12
Shifting cultivation fallow (5–10 years) 1.64 ± 0.17 0.39 ± 0.04 2.03 ± 0.21 0.39 ± 0.07
Shifting cultivation fallow(11–20 years) 2.30 ± 0.12 0.54 ± 0.03 2.84 ± 0.15 0.67 ± 0.08
Agroforestry systems 0.55 ± 0.17 0.13 ± 0.04 0.69 ± 0.21 0.56 ± 0.09
Agriculture - - - 0.32 ± 0.15
Grassland - - - 0.49 ± 0.12

AGBC, above ground biomass carbon; BGBC, belowground biomass carbon; VC, vegetation carbon; SOC, soil organic carbon; ±SEM.
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TABLE 4 | Relationships among density, aboveground biomass carbon (AGBC), belowground biomass carbon (BGBC), vegetation carbon (VC), soil organic carbon stock
(SOCS), and total carbon stock (TCS) with basal area of the trees in different land-use sectors of Northeast India.

Land use Variables Model R2 R N

Tropical forest Density y � 5.8863x + 402.23 0.1172 0.342** 239
AGBC y � 2.0618x + 31.08 0.4093 0.64** 239
BGBC y � 0.5967x + 5.7528 0.5448 0.738** 239
VC y � 3.1357x + 30.233 0.5448 0.738** 239
SOCS y � 1.1057x + 43.649 0.2935 0.542** 239
TCS y � 3.7642x + 80.481 0.5377 0.733** 239

Subtropical forest Density y � 11.973x + 234.53 0.2909 0.539** 35
AGBC y � 3.6584x − 11.892 0.7218 0.85** 35
BGBC y � 0.8597x − 2.7946 0.7218 0.85** 35
VC y � 4.5182x − 14.687 0.7218 0.85** 35
SOCS y � 0.4691x + 30.043 0.095 0.308NS 35
TCS y � 4.9873x + 15.357 0.7232 0.85** 35

Temperate forest Density y � 9.2776x + 303.69 0.0926 0.304NS 18
AGBC y � 3.4545x − 1.4143 0.642 0.801** 18
BGBC y � 0.7003x + 0.9199 0.5624 0.75** 18
VC y � 3.6805x + 4.8344 0.5624 0.75** 18
SOCS y � -0.1373x + 67.45 0.0027 0.052NS 18
TCS y � 3.5432x + 72.285 0.3648 0.604** 18

Tropical plantation Density y � 13.308x + 221.27 0.4587 0.677** 37
AGBC y � 1.9378x + 7.36 0.5485 0.741** 37
BGBC y � 0.5097x - 0.2886 0.6181 0.786** 37
VC y � 2.6785x − 1.5167 0.6181 0.786** 37
SOCS y � 0.2245x + 47.567 0.0329 0.181NS 37
TCS y � 2.903x + 46.051 0.5811 0.762** 37

Subtropical plantation Density y � 24.868x + 112.17 0.883 0.94** 16
AGBC y � 2.7103x + 6.9391 0.939 0.969** 16
BGBC y � 0.6369x + 1.6307 0.939 0.969** 16
VC y � 3.3472x + 8.5698 0.939 0.969** 16
SOCS y � 0.1381x + 38.226 0.0355 0.188NS 16
TCS y � 3.4853x + 46.796 0.8894 0.943** 16

Temperate plantation Density y � 13.808x + 223.8 0.2746 0.524** 44
AGBC y � 2.3199x + 29.943 0.3184 0.564** 44
BGBC y � 0.5132x + 5.9818 0.28 0.529** 44
VC y � 2.6969x + 31.436 0.28 0.529** 44
SOCS y � 0.3911x + 60.498 0.0278 0.167NS 44
TCS y � 3.088x + 91.934 0.2873 0.536** 44

Shifting cultivation fallows (<5 years) Density y � 16.49x + 91.427 0.6704 0.819** 10
AGBC y � 1.3793x + 0.708 0.9437 0.931** 10
BGBC y � 0.3241x + 0.1664 0.9437 0.931** 10
VC y � 1.7034x + 0.8744 0.9437 0.931** 10
SOCS y � 3.6985x + 54.1 0.5492 0.472NS 10
TCS y � 5.4019x + 54.974 0.7231 0.904** 10

Shifting cultivation fallows (5–10 years) Density y � 6.8559x + 310.52 0.2258 0.475NS 15
AGBC y � 0.5891x + 22.288 0.2927 0.541* 15
BGBC y � 0.1471x + 4.7719 0.3305 0.575* 15
VC y � 0.7731x + 25.078 0.3305 0.575* 15
SOCS y � 0.311x + 79.09 0.1159 0.34NS 15
TCS y � 1.0841x + 104.17 0.2734 0.667* 15

Shifting cultivation fallows (11–20 years) Density y � 116.11x − 1067.2 0.8986 0.948** 6
AGBC y � 10.011x − 90.706 0.9525 0.976** 6
BGBC y � 0.2131x + 13.644 0.2796 0.529NS 6
VC y � 1.1198x + 71.702 0.2796 0.529NS 6
SOCS y � 1.6139x + 53.594 0.2488 0.499NS 6
TCS y � 2.7337x + 125.3 0.8228 0.907* 6

Agroforestry Density y � 31.368x + 294.17 0.7578 0.871** 13
AGBC y � 2.4838x − 0.4093 0.8229 0.907** 13
BGBC y � 0.5837x − 0.0962 0.8229 0.907** 13
VC y � 3.0675x − 0.5055 0.8229 0.907** 13
SOCS y � 0.2758x + 56.869 0.2575 0.507NS 13
TCS y � 3.3433x + 56.364 0.8272 0.909** 13

*,** Significant at p < 0.5 and p < 0.01, respectively (2-tailed); ns, non-significant; n � no of sites.
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plantation forests. The SOC stock registered a
0.95 Mg C ha−1 yr−1 increase when less than 5 years shifting
cultivation fallows were converted to tree plantations.
Similarly, this land-use conversion (<5 years fallows to tree
plantations) resulted in the highest (3.71 Mg C ha−1 yr−1)
increase in total carbon sequestration (Table 5).

DISCUSSION

Tree Diversity in Different Land Uses
Evidence from the existing literature advocates that climate
change in the anthropogenic era has a direct effect on

biodiversity, forcing tree species to adapt either through
migrating, developing new physiological traits, or changing
phenological cycles (Behera et al., 2019). Higher tree species
richness indicates a more stable ecosystem and may
demonstrate a better ecosystem/carbon service (Ives et al.,
2001). Earlier reports from a similar geographical area suggest
management practices and other human-induced disturbances
such as small-scale mining, forest encroachment for agricultural
expansion, fuelwood, and different non-timber forest product
extraction influence tree richness and densities (Gogoi et al.,
2018). Additionally, varying community structure, composition,
topography, elevation, soil properties, and other microclimatic
conditions also influence the tree-based ecosystems’ structural

FIGURE 3 |Changes in soil organic carbon stock (SOCS) (Mg C ha−1), vegetation carbon stock (VCS) (Mg C ha−1), and total carbon stock (TCS) (Mg C ha−1) with
respect to (A) progressive and (B) retrogressive land-use change in Northeast India (the values of SOCS refers to 0–45 cm soil depth).
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and functional attributes (Nath et al., 2018; Kurmi et al., 2020).
Tree size and their growth pattern can influence the basal area
and carbon stock (Borah et al., 2015). Many agroforests had lower
diversity than the shifting cultivation fallows/secondary forests,
and their total carbon stock was similar to the re-growing forests.
The single-story vegetation in plantations favor homogenous
growth environment, in contrast to the natural forests and
shifting cultivation fallows. The forests, agroforests, and
shifting cultivation fallows, as expected, had higher tree
density and basal area than the plantation forests occupied by
monoculture trees (Singh et al., 2018a). Relatively lower organic
inputs and higher soil disturbance in the latter could have caused
lower SOC stock than the former land uses (Singh et al., 2018b).
Land uses may be non-randomly distributed based on the
climatic conditions which subsequently influence tree
biodiversity (Garcia-Vega et al., 2020). Natural forests had
higher species richness, Shannon–Weiner diversity, and the
species evenness index than other land uses. The presence of
higher evenness or higher richness or both can result in increase
in the Shannon–Wiener diversity (Magurran et al., 2004).
Shannon diversity in different forests ranged from 1.21 to 2.66
in tropical, 0.28–2.65 in subtropical, and 1.93–2.56 in temperate
forests. These values are well within the range reported by Nayak
and Sahoo (2020), who found 1.59–2.56 in ten different tropical
forest stands of the state of Odisha in India, while in Northeast
India, the lowland rainforests showed tree diversity from 2.44 to
3.46 (Gogoi et al., 2018). In dry deciduous forests of central India,
tree diversity values reported were 0.77–2.53 (Dar et al., 2019).
Rapid urbanization and forest clearing deteriorate forest
ecosystem adversely affect the microclimate, regeneration, and
soil dynamics, and enhance the emission of greenhouse gases
(Qiu et al., 2015; Pellikka et al., 2018). The scale of land-use
transition in the region has significantly transformed the forest
ecosystem processes, and this could mainly be responsible for
poor diversity in all terrestrial ecosystems other than the
temperate forests. In the temperate region, the physiography is
mostly undulating, population density is thin, and accessibility is
somewhat poor, and thus, anthropogenic activities are minimum
in the temperate forest. These might have favored almost similar
species richness and the Shannon diversity index as tropical
forests in the region (Table 1). Furthermore, most tropical
forests lie in moist to deciduous forest zone, leading to more
homogeneity in species composition.

Species richness and diversity are two essential attributes in an
ecosystem that may affect the total biomass and carbon stock
(Solomon et al., 2017; Zuo et al., 2017). Habitat variability and

other prevailing local factors also influence these indices (Jansen
and Oksanen, 2013; Fischer et al., 2014). Higher tree diversity
observed in the forests is well within the range reported by Saikia
et al. (2017). Higher values of dominance in different forest types
and temperate plantations than other land uses revealed an
inequitable distribution of trees in these habitats. As there was
a weak relationship between tree density and carbon storage,
particular tree species having high DBH or basal area in these
habitats could have also influenced the carbon storage as argued
by Kirby and Potvin (2007).

Aboveground Biomass Carbon Stock
The aboveground biomass carbon storage in the present study
was comparable with various studies reported by others in
Northeast India, for example, 16.24–130.82 Mg C ha−1 in
Assam (Borah et al., 2013), 60.09–121.43 Mg C ha−1 in forests
of Manipur (Thokchom and Yadava, 2017), while being lower
than the reported value of 460.5 Mg C ha−1 in an old-growth pine
forest of Meghalaya (Baishya and Barik, 2011). The estimated
total biomass and carbon pool of the Northeast India forest sites
are within the range reported from other Indian forest systems
(Ravindranath et al., 1997; Chhabra et al., 2002; Devi and Yadava,
2015; Wagner et al., 2015; Gandhi and Sundarpandian, 2017;
Solomon et al., 2017; Gogoi et al., 2020; Tamang et al., 2021).
Several factors such as the age of the forest stand (Kolh et al.,
2017), tree density (Garcia-Vega et al., 2020), diversity, and basal
area (Joshi and Dhyani, 2018) influence the biomass and total
vegetation carbon. Among the land uses, forests store more
biomass and biomass carbon, which implies that they must be
prevented from deforestation and other anthropogenic activities
to mitigate the elevated atmospheric CO2 concentration in the
region.

Soil Carbon Pools
SOC content is influenced by soil organic matter accumulation,
which is governed by litter input and decomposition (Sahoo
et al., 2019), quality of litter, rate of mineralization coupled with
stand type, and age (Cao et al., 2018; Ahirwal et al., 2021b). A
high lignin-containing litter with relatively lower soil moisture
in plantation forests (rubber, areca nut, and oil palm) (Nath
et al., 2018) might have been responsible for the reduced SOC
stock in these systems. The average SOC stock for the different
land-use sectors of the present study can be comparable with the
findings reported in other regions of India. For example,
Chhabra et al. (2002) reported the SOC stock of
37.5 Mg C ha−1 in dry tropical deciduous forests, while

TABLE 5 | Vegetation carbon (VC), soil organic carbon (SOC), and total carbon (TC) sequestration after progressive land-use changes in Northeast India.

LU change managements VC sequestration
(Mg C ha−1 yr−1)

SOC sequestration
(Mg C ha−1 yr−1)

TC sequestration
(Mg C ha−1 yr−1)

<5 years shifting cultivation fallow to plantation 2.68 0.95 3.63
<5 years shifting cultivation fallow to agroforest 1.02 0.04 1.06
Agriculture to agroforest 0.69 0.44 1.13
Grassland to plantation 3.62 0.09 3.71
Grassland to agroforest 0.68 0.63 1.31
Agroforest to plantation 2.43 0.54 2.97
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Ramachandran et al. (2007) found SOC stock of
76.85 Mg C ha−1 in thorn forests to 175–369 Mg C ha−1 in
forests of Kolli hills of Tamil Nadu (Mohanraj et al., 2011) in
the same region.

Relationship Among Tree Basal Area,
Density, and Carbon Stock
Basal area is a good predictor for biomass (Gebrewahid and
Meressa, 2020) and is often used as a surrogate for biomass and
carbon (Balderas Torres and Lovett, 2013). In the present study,
basal area was strongly correlated with tree density and with
vegetation (AGB + BGB) carbon in line with the findings of many
others (Poorter et al., 2015; Salunkhe and Khare, 2016; Amara
et al., 2019; Tamang et al., 2021). However, the tree basal area did
not have any relationship with the SOC stock, except tropical
forests. The variation in biomass and carbon pool in subtropical
and temperate forest stands were due to the variation in
vegetation composition, forest management practice, forest
stand age, girth class, and altitude. The temperate forest has
higher amount of biomass and carbon stock than tropical forest
stands. It was also found that in the temperate forests, the five
most dominant species viz. Quercus sp. (D-71.7, IVI-25), Alnus
sp. (D-56.7,IVI-19), Illicium griffithi (D-47.8, IVI-18),
Rhododendron sp. (D-44.4, IVI-15), and Castanopsis hystrix
(D-38.3, IVI-14) together contributed more than half
(154.2 Mg ha−1) to total aboveground stand biomass
(Supplementary Table S1).

Effect of Land-Use Change on Carbon
Balance
Carbon sequestration is affected by several site factors such as tree
age, diameter, and height of the tree; temperature, water, and
nutrient (particularly carbon and nitrogen) requirements for the
soil; and organic matter decomposition by microbes (Poorter
et al., 2016). The annual precipitation and soil-water holding
capacity of the land use also regulate net primary productivity. In
infertile soil, trees allocate more biomass to the roots in order to
increase nutrient uptake (Grower, 2003). The confounding effects
from other soil characteristics and management regimes may
affect carbon stock too (Newaj et al., 2016). The rate of carbon
sequestration in a habitat is influenced by several factors such as
age of the stand/ maturity index, management, and woody species
composition (Singh et al., 2018a). The elevation, slope, and aspect
could also influence the carbon sequestration rate (Gogoi et al.,
2020; Thong et al., 2020). Significantly higher vegetation carbon
sequestration in temperate forests (5.51 Mg C ha−1 yr−1) and
subtropical plantations (5.08 Mg C ha−1 yr−1) in the present
study could be due to favorable growth of certain species over
others, resulting in high productivity in the habitats when one
species is dominant. In our earlier studies, we found that a 10-
year-old oil palm plantation can sequester 3.70 Mg C ha−1 yr−1

vegetation carbon (Singh et al., 2018b) and that shifting
cultivation fallows can enhance the total carbon stock to
137.86–140.08 Mg C ha−1 within a span of 15 years of
succession (Thong et al., 2020). Similarly, an increase of

33.47 Mg C ha−1 SOC stock and 26.55 Mg C ha−1 of vegetation
carbon was reported when the shifting cultivation fallows were
left to restore within a span of 15–20 years (Gogoi et al., 2020).
Secondary forests show promising CO2 uptake and their role in
the recovery of vegetation carbon storage if kept undisturbed over
time, though our results showed CO2 uptake of secondary forests
is slightly lower than the reported 3.05 Mg C ha−1 yr−1 carbon
sequestration of neo-tropical secondary forests (Poorter et al.,
2016).

Management Implications
Land-use change is nevertheless the most important factor in the
alternation of carbon balance in the Indian Himalayas (Ahirwal
et al., 2021a). Conversion of forests to oil palm and other
agricultural land use is on the rise in the region to feed the
growing population (Singh et al., 2018b). Conversion of forest
to other land uses enhances decomposition and removal of carbon
through harvest. On the other hand, SOC pools that are the most
sensitive to land-use change were found to substantially improve
when the shifting cultivation was converted to plantation. In
addition to forests that store high amount of AGBC,
agroforestry and plantation also show much promise in the
region as key component land uses contributing to stronger
mitigation and future climate solutions. So eco-restoration
through plantation forestry could be the most effective strategy
in the region (Gogoi et al., 2021). Furthermore, agroforestry
systems were very effective in restoring soil carbon, besides
adding to VC through trees. Under the current climate change,
this study advocates converting much of the prevailing degraded
shifting cultivation to agroforestry and plantation in order to
enhance the C stock and abate GHG emissions. Carbon
management through enhancing carbon uptake and storage by
forests is now globally recognized as a vital strategy to mitigate
climate change. Assessing carbon stocks of forest stands will help in
prioritizing tree species-specific land-use practices to ensure
sustainability. A combined approach of field-based inventory
with geospatial techniques is highly recommended for improved
carbon estimation at the national level. Such a study would provide
more insight into climate change response to minimize the impact
at a regional scale for better ecosystem structure and function.
Besides, this will help the policy-makers take an appropriate
decision for land-use change, reduce deforestation and land
degradation, and maintain carbon balance in the global climate
scenario.

CONCLUSION

Quantification of carbon stock at the regional/landscape level of
Northeast India is crucial for sustainable management of various
land uses that are undergoing various anthropogenic changes. The
carbon stock at various terrestrial pools is affected by tree species
richness, tree density, and diversity. For the various land uses in
Northeast India, the relationship of tree species diversity with
aboveground biomass carbon appears to be highly variable,
indicating that tree diversity conservation and management may
not necessarily assure higher biomass carbon storage. The findings
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of this study suggest that the various land uses in Northeast India
are important for storing carbon. However, the underlying
mechanisms governing the complex relationship between tree
species diversity and carbon stock are not elucidated yet and
need further study. The total carbon stock showed positive
gains following land-use conversion from agriculture to
agroforestry and grassland to agroforestry, which suggests that
the tree-based systems can enhance greater carbon storage and thus
help in climate change mitigation and adaptation. This study
provides baseline information to environmentalists and policy-
makers, who are capable of devising strategies that can help in
climate change mitigation and adaptation at the regional, national,
and global scale.
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