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Due to the complex nature of ambient aerosols arising from the presence of myriads of

organic compounds, the chemical reactivity of a particular compound with oxidant/s are

studied through chamber experiments under controlled laboratory conditions. Several

confounders (RH, T, light intensity, in chamber retention time) are controlled in chamber

experiments to study their effect on the chemical transformation of a reactant (exposure

variable) and the outcome [kinetic rate constant determination, new product/s formation

e.g., secondary organic aerosol (SOA), product/s yield, etc.]. However, under ambient

atmospheric conditions, it is not possible to control for these confounders which poses

a challenge in assessing the outcome/s accurately. The approach of data interpretation

must include randomization for an accurate prediction of the real-world scenario. One of

the ways to achieve randomization is possible by the instrumental variable analysis (IVA).

In this study, the IVA analysis revealed that the average ratio of fSOC/O3 (ppb−1) was

0.0032 (95% CI: 0.0009, 0.0055) and 0.0033 (95% CI: 0.0001, 0.0065) during daytime

of Diwali and Post-Diwali period. However, during rest of the study period the relationship

between O3 and fSOC was found to be insignificant. Based on IVA in conjunction with

the concentration-weighted trajectory (CWT), cluster analysis, and fire count imageries,

causal effect of O3 on SOA formation has been inferred for the daytime when emissions

from long-range transport of biomass burning influenced the receptor site. To the best

of our knowledge, the IVA has been applied for the first time in this study in the field of

atmospheric and aerosol chemistry.

Keywords: causal inference, machine learning, air pollution, atmospheric chemistry, aerosols

INTRODUCTION

Instrumental variable analysis (IVA) has been utilized for understanding the causal effect
of election day precipitation on electoral outcomes affecting the voters’ decisions differently
(Lind, 2020). IVA has also been utilized in “remote sensing” e.g., in estimating error of a
geophysical product (Dong et al., 2019). IVA approach has been utilized too in “epidemiology”
e.g., to provide the effectiveness of a high-dose over a standard-dose in protecting against
influenza/pneumonia associated hospitalization, cardiorespiratory-associated hospitalization, and
all-cause hospitalization, among others (Young-Xu et al., 2019). IVA has also been applied
in the field of social science and statistics e.g., utilization of genetic markers as IV for
assessing the effect of the risk factor on the outcome (von Hinke et al., 2016). However,
to the best of our knowledge the application of IVA has not been done so far to assess
feasibility of chemical transformations occurring in the atmosphere through gas-phase or
multi-phase reactions. There are myriads of organic and inorganic compounds in the gas-phase
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in the ambient atmosphere (Zhang et al., 2019). Some of
those compounds undergo chemical transformation owing to
their reactivity with atmospheric oxidants/reactants (O3, H2O2,
NOx, and OH radical) and may undergo a phase-change [e.g.,
secondary organic aerosol (SOA) formation] (Sato et al., 2013;
Edwards et al., 2017). The chemical reactivity of a reactant and
the formation of product/s both are influenced by several factors
called confounders e.g., relative humidity (RH), temperature (T),
and solar flux (SF), among others. Having measured a SOA
species and an oxidant (per sayO3), if one attempts to find out the
relationship between the two through regression analysis then the
regression parameters will not be representative of the only effect
of O3 on SOA as there could also be the effect of confounders
and other oxidants too. Thus, measuring reactants and products
and simply relating the two does not mimic the actual effect
of the reactant on the product. This drawback arises because
of not achieving the randomization. The randomization makes
exposure (here reactants) independent of measured/unmeasured
confounders (here RH, T, SF). This can be achieved by different
causal modeling approaches, one of which is the IVA (Hernán
and Robins, 2020).

Broadly, there are two methods of causal modeling (Hernán
and Robins, 2020). The first one is called propensity score
methods that use the statistical analytics tool to make
exposure independent of confounders (i.e., exchangeable).
Another method uses quasi-experimental designs to achieve
the exchangeability. While the propensity score method can
control for measured confounders and rely on the assumption
of no unmeasured confounders (are the ones that affect both
exposure and the outcome, please refer to Figure 1), and no
missing interaction terms, the quasi-experimental designs (e.g.,
IVA) can also control for unmeasured confounders, and rely on
the assumption that the randomization created by the design
worked. The propensity score (PS) is the predicted probability
of exposure. Briefly, for a robust interpretation in the PS method
one would need the data of all possible confounders to input into
the model. PS calculation requires a set of methods to operate
e.g., matching (nearest-neighbor matching, radius matching,
and kernel matching), stratifying, adjusting for covariate in the

FIGURE 1 | Directed Acyclic Graph (DAG) illustrating an instrumental

variable Z.

regression model, and weighting. Finally, using the PS method
the standardized mean differences are calculated for all variables
that were input into the model (Schwartz et al., 2018). For
continuous confounders the standardized mean difference is
calculated as below:

d =
xmean, treatment − xmean, control

√

Streatment
2 + Scontrol

2

2

(1)

And for dichotomous confounders, the standardized mean
difference is calculated using the following equation:

d =
âtreatment − âcontrol

âtreatment

(

1− âcontrol
)

+ âcontrol(1− âcontrol)
(2)

Here, treatment and control groups represent reactive and non-
reactive species. The “xmean” and “â” represent the average of the
data whereas “S” represents the standard deviation.

For details on PS calculation, reference is made to Hernán
and Robins (2020). The critical aspect of the propensity score
method arises when there are unmeasured confounders. That
is, if all the confounders are not inputted into the model
then the PS method could underestimate/overestimate the
effect of exposure on outcome. In quasi-experimental designs,
there can be four different approaches: Instrumental Variable;
Regression Discontinuity; Difference in Differences; and Natural
Experiments (Hernán and Robins, 2020).

Briefly, the quasi-experimental designs seek to randomize
exposure independent of confounders in different ways, which
are not statistical manipulations (Schwartz et al., 2017, 2018).
For details of statistical method and quasi-experimental designs,
reference is made to (Hernán and Robins, 2020). IVA
exploits the presence of an additional variable in the data,
called an instrumental variable to achieve randomization. The
instrumental variable plays the role of the random assignment.

THEORY OF IVA

Let us consider a directed acyclic graph (DAG) illustrating
the instrumental variable (Z) analysis approach (Figure 1). Let
A be the exposure, C be the confounders, and Y be the
outcome variable. It is important to mention here that the
association between Z and outcome Y is not confounded by C
(measured/unmeasured confounders). Thus, by calibrating the
instrument Z to A, the causal effect estimate of per unit increase
in A on Y can be determined using regression analysis. To
understand these terms in the context of aerosol chemistry an
example could be given by considering exposure (A) by O3,
confounders (C) by relative humidity (RH), temperature (T), and
solar flux (SF), the instrumental variable (Z) by BLH or wind
speed, and the outcome (Y) by the SOA fraction.

Now, we shall discuss the mathematical perspectives of IVA.
Let YA=a

t , YA=a
t ’ be the potential outcomes at observation t under

the exposures a and a’. Now, if YA=a 6= YA=a’ then it is inferred
that A has a causal effect on Y. The causal estimates can be
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represented mathematically by two parameters as below:

(i) Causal Risk Ratio = YA = a/YA = a′ (3)

(ii) Causal Difference = YA = a − YA = a′ (4)

Summing up, under two different exposure conditions if we get
different outcomes then there is a causal effect of exposure on
the outcome.

Let us suppose that the outcome depends on predictors in the
following manner:

Log[E(YA = a
t )] = φ0 + Atφ + ηt (5)

Where ηt represents the impact of all other variables on the
outcome, φ0 is intercept, and φ is the coefficient of At.

Suppose we have a variable Z such that Z is associated with Y
only through A. Its association with A can be expressed as:

At = Ztσ + τt (6)

Where, τt represents the variations in exposure that are associated
with other predictors of outcome, measured or unmeasured
and σ is the coefficient of Zt. Ztσ is the variation in exposure
due to the instrument, and hence independent (by assumption)
of confounders.

Let Z1 be the Z such that:

E(A|Z1) = a (7)

and similarly,

E(A|Z2) = a′ (8)

Here, E(A|Z1)= a represents that the expected value of exposure
variable A at Z = Z1 is a, and E(A|Z2) = a’ represents that the
expected value of exposure variable A at Z= Z2 is a’.

From Equations 5 and 7, it can be derived that:

Log[E(YZ=Z1)] = E(φ0 + φA+ ηt|Z = Z1) = φ0 + φa

+ E(ηt) (9)

Similarly, from Equations 5 and 8, it can be derived that:

Log[E(YZ=Z2)] = E(φ0 + φA+ ηt|Z = Z2) = φ0 + φa′

+ E(ηt) (10)

Subtracting Equation 10 from Equations 9 would yield:

Log[E(YZ=Z1)]− Log[E(YZ=Z2)] = φ(a− a′) (11)

Here, φ, which is a log rate ratio, is the causal effect of exposure
on outcome in which we are interested.

Summing up, first regress exposure against the instrument and
then regress the outcome against instrument to get the causal
effect estimate. The ratio of the two coefficients is the causal
effect of a unit change in exposure. The instrument Z should
explain a part of the variation in A that is not confounded by

other predictors of the outcome. It is worthwhile mentioning
that in IVA the confounders (measured/unmeasured) do not play
any role while estimating the effect of exposure on the outcome.
This is one of the major advantages of IVA over other quasi-
experimental designs as often we do not have the data set of all
confounders in atmospheric and aerosol chemistry research.

HYPOTHESIS, RANDOMIZATION, AND
GOOD INSTRUMENT

Hypothesis Under Examination
While assessing the effect of O3 on SOA formation (e.g., here,
fSOC = SOC/OC ratio), it would be important to notice the
variability of fSOC as a function of O3. If the behavior of outcome
(fSOC) is linear to the predictor (O3) then it is possible to build a
linear regression model between the two as follows:

fSOC = β0 + β1O3 + ε (12)

Here, β0 is the intercept, β1 is the slope, and ε is the residual. A
normal-distribution is observed for residuals [ε ∼ N (0, σ2)] in
linear regression analysis (i.e., with a mean zero and variance σ2).
The null and alternate hypotheses for the above linear regression
model are given below:

Null Hypothesis(H0) : β1 = 0 (13)

Alternate Hypothesis(Ha) : β1 6= 0 (14)

Only if null hypothesis is rejected, we can get a causal estimate
of O3 on SOA formation. We seek the cases where the null
hypothesis is rejected as it leads toward the causal effect estimate.

Randomized Experiments and
Exchangeability
The major issue while inferring causality arises due to
unmeasured parameters. Inferring causality for each data point
means coming up with a valid surrogate for the unobserved
counterfactual, which is hard to imagine. So, to infer causality,
the randomization (exchangeability) experiment is conducted.
The randomization process makes the exposure independent of
confounders (measured/unmeasured). Achieving randomization
means that the distribution of confounders is the same in
unmeasured and measured data points. Statistically it can be
understood by assuming that outcome (Ya=1) for the data
point which happened to be measured is the same as outcome
(Ya=1) for the data point which was not measured. After
randomization, the Pr(Y = 1|A = 1) is a consistent estimate of
Ya=1 (where Pr is a conditional probability of outcome under
A = 1). Thus, if the probability of the outcome [or E(Y)]
among measured data points is the same as the probability
[or E(Y)] among the entire population then the exposures
are exchangeable. The exchangeability is achieved by random
assignment. Exchangeability can be achieved in several ways, one
of which is the IVA.

Good Instrument for a Valid IVA Inference
There are two essential requirements for IVA inference to
be valid:
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i. The instrument needs to explain enough variation of exposure
variable A and its average causal effect on A should
be non-zero.

ii. The instrument must not have a direct causal effect on
outcome Y.

The most important question while performing IVA in
atmospheric and aerosol chemistry is like what would be a
good instrument to explain the chemical transformation in
a study? For example suppose a research problem focuses
on the formation of SOA through oxidation of VOCs under
ambient atmospheric conditions. Furthermore, the researchers
are interested in finding the effect of O3 on the SOA formation
estimate. This research problem seems to be confounded by
the RH, T, and solar flux (for DAG refer to Figure 1). Having
understood all these backgrounds if a good instrument can be
found then IVA can be performed and the causal inference on
SOA formation due to per unit change in O3 can be determined
as discussed above. For most of the atmospheric and aerosol
chemistry problems, the authors encourage to utilize either
boundary layer height (BLH, aka mixing height) or wind speed as
an instrument. It is worthwhile mentioning that BLH and wind
speed affect the concentration of pollutants, but will not change
the relative abundance (ratio) of any two species (e.g., outcome
here, fSOC = SOC/OC). The validity of the results should be
checked with p-value (level of significance) and model output
confidence interval (CI: 95% or 99%). More importantly, the
NULL hypothesis of a problem under the study must be checked
with the CI values.

The validity of the instrument needs to be checked using
the machine learning algorithm. The important caveat of IVA
is that under some research problems the instrument predicts
changes in a subset of exposure population. In these scenarios,
the instrument will provide the average treatment effect for the
subset of the data and not for the entire population. This is called
the local average treatment effect. This must be investigated for
the problem under investigation. For example, in atmospheric
science it is likely that sometimes we may get an extremely high
or a very low value of exposure variable (here, O3). Then it
is required to consider those extreme high/low data points as
outliers and re-run the model for the output.

APPLICATION OF IVA TO THE FIELD-DATA

Methodology
Field-Campaign
A field campaign was conducted from 08th Nov 2015 (local
time: 10:00 h) to 16th Nov 2015 (local time: 06: 00 h) at Kanpur
location (26.30◦N, 80.14◦E, 142m asl.), situated in central part
of the Indo-Gangetic Plain (IGP). In this campaign, we have
measured organic and elemental carbon (OC-EC), near ground-
level O3, and mass concentrations of PM2.5. Briefly, the analytical
instruments were housed in Atmospheric Particle Technology
Laboratory (APTL, first floor, ∼25 ft. above the ground level)
at the Center for Environmental Science & Engineering (CESE)
building in Indian Institute of Technology Kanpur (IITK)
premises. The entire data set has been sub-divided into three

periods: Pre-Diwali (08th to 10th Nov.), Diwali festival (11th
Nov.), and Post-Diwali (12th to 16th Nov.). The OC-EC has been
measured using a Sunset laboratory semi-continuous Carbon
analyzer using NIOSH (National Institute for Occupational
Safety and Health) protocol (Birch and Cary, 1996; Rajput
et al., 2017). O3 has been measured on an ozone analyzer
(Thermo Scientific; Model # 49i) by UV-photometric technique.
Particles number concentrations (PNC) were measured in the
aerodynamic size-range of 0.25–2.5 microns on an Aerosol
Spectrometer (PALAS, Germany). Assuming spherical shape and
apparent density (1.1 g cm−3), the PNC (#/cm3) was converted
into mass concentration (µg m−3) following the approach given
in earlier publications (Pitz et al., 2003; Izhar et al., 2018; Rajput
et al., 2019). These instruments were kept nearby on a platform
in the lab, and their inlets (separated by <1m) were drawing air
from the ambient atmosphere through a window located in the
rear-side of the CESE building. Details on instrumentation and
analysis are given in the Supplementary Material.

In this study, the secondary organic carbon (SOC) was
estimated by the minimum OC/EC ratio method using the
below-given equations (Castro et al., 1999; Ram et al., 2008;
Rajput et al., 2018).

OCtotal = OCprim + SOC (15)

OCprim = EC ∗ (OC/EC)min (16)

Here, OCprim refers to primary organic carbon whereas
(OC/EC)min refers to the minimum OC/EC ratio. The minimum
OC/EC ratio was 3.2, 3.4, and 5.0 during Pre-Diwali, Diwali, and
Post-Diwali periods, respectively. The SOC/OC ratio has been
referred to as fSOC (fraction of SOC in total OC) and POC/OC
has been referred to as fPOC (fraction of POC in total OC) in the
subsequent discussion.

Retrieval of the Meteorological Data Set
Meteorological parameters viz. ambient temperature (T), wind,
and relative humidity (RH) have been retrieved from the on-
campus weather station. Boundary layer height (BLH), solar flux
(SF), and 5-days air-mass back trajectories (AMBTs, GDAS 0.5◦,
@ 1,000m above ground level) data have been retrieved from
NOAA HYSPLIT (Hybrid Single-Particle Lagrangian Integrated
Trajectory) model (Draxler and Rolph, 2003; Stein et al., 2015).
AMBTs have been coupled with PM2.5 mass concentration
data for cluster and concentration-weighted trajectory (CWT)
analysis (discussed in the subsequent section).

Data Processing in R
Data analysis, statistical analysis, instrumental variable analysis
(IVA), and machine learning coding have been carried out in R
(Carslaw and Ropkins, 2012; Schwartz et al., 2017, 2018; Hernán
and Robins, 2020).

Results and Discussion
Temporal Variability of PM2.5, OC, EC, and OC/EC

Ratio
During the entire campaign, we have observed a quite high
variability in mass concentrations of PM2.5, OC, EC, and OC/EC
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FIGURE 2 | Temporal variability in mass concentrations of PM2.5 OC, EC, and OC/EC ratio during the study campaign (08th−16th Nov. 2015).

ratio (Figure 2). Overall, PM2.5 concentrations varied from 128–
901 µg m−3. The PM2.5 concentrations averaged at 331 ±

48 µg m−3 (Avg. ± SD) during Pre-Diwali daytime period
(08th−10th Nov) and looks statistically different as compared
to that observed during Pre-Diwali nighttime period (Avg. ±
SD = 272 ± 93 µg m−3; t-value = 22.6, Table 1). Similarly, the
daytime (389 ± 157 µg m−3) and nighttime average values (443
± 145 µg m−3) of PM2.5 concentrations were also significantly
different (t-value = 6.5) on Diwali festival event (11th Nov).
Furthermore, during Post-Diwali period (12th−16th Nov) the
daytime average concentration of PM2.5 (509 ± 187 µg m−3)
looks different than that in nighttime (450 ± 170 µg m−3, t-
value = 12.5). The average mass concentrations of OC and
EC along with results from the statistical two-tailed t-test
is given in Table 1. The OC and EC concentrations overall
ranged from 31–308 µg m−3 and 5.4–30 µg m−3, respectively.
Furthermore, the OC concentrations averaged at 79 ± 9 µg
m−3 (Avg. ± SD) during Pre-Diwali daytime period (08th−10th
Nov) and looks very similar to that observed during Pre-Diwali
nighttime period (Avg. ± SD = 80 ± 26 µg m−3; t-value
= 0.2, Table 1). However, on Diwali festival event (11th Nov)
the daytime (97 ± 39 µg m−3) and nighttime average values
(124 ± 39 µg m−3) of OC were significantly different (t-value
= 2.5). However, during Post-Diwali period (12th−16th Nov)
the daytime average concentration of OC (165 ± 60 µg m−3)
looks similar to that in nighttime (159 ± 58 µg m−3, t-value
= 0.7). The EC concentrations averaging at 18.5 ± 2.0 µg m−3

(Avg.± SD) during Pre-Diwali daytime period (08th−10th Nov)
was statistically different as compared to that observed during

Pre-Diwali nighttime period (Avg.± SD= 14.3± 3.0 µg m−3; t-
value= 8.9, Table 1). However, the daytime (18.7± 5.6 µg m−3)
and nighttime average values (19.7 ± 5.1 µg m−3) of EC look
quite similar (t-value = 0.6) on Diwali festival event (11th Nov).
Furthermore, during Post-Diwali period (12th−16th Nov) the
daytime average concentration of EC (17.5 ± 4.9 µg m−3) looks
statistically different as compared to that observed in nighttime
(14.3± 3.0 µg m−3, t-value= 5.8).

The OC/EC ratio varied from 3.2 to 18.5 during the entire
study period. The daytime and nighttime average values of
OC/EC has been constrained from linear regression analysis
(Figure 3). The OC/EC ratio averaged at 4.4 ± 0.2 during the
Pre-Diwali daytime period (08th−10th Nov) and was found
statistically different as compared to that observed during Pre-
Diwali nighttime period (Avg. ± SD = 6.5 ± 1.3; t-value
= 11.7, Table 1, Figure 3). Likewise, on Diwali festival event
(11th Nov) the daytime (5.1 ± 0.6) and nighttime average
values (6.6 ± 1.2) of OC/EC ratio were statistically different
(t-value = 5.2). Furthermore, during the Post-Diwali period
(12th−16th Nov) the daytime average ratio of OC/EC (9.3
± 1.5, Figure 3) also looks statistically different as compared
to that observed at nighttime (11.0 ± 1.6, t-value = 7.7).
Summing up, PM2.5, OC, and OC/EC ratio were highest
during the Post-Diwali period and followed the following
trend: Pre-Diwali < Diwali < Post-Diwali. However, EC
varied a little during the study period. The higher OC/EC
ratio (9–11), during Post-Diwali period plausibly indicated
for their predominant emission from biomass burning and/or
SOA formation (Rajput et al., 2013, Rajput et al., 2018). To
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TABLE 1 | Summary statistics of data set [Avg. ± SD (number of samples)] during the sampling period (08th Nov−16th Nov 2015; where 08–10th Nov is considered as

Pre-Diwali period, 11th Nov as Diwali, and 12–16th Nov as Post-Diwali period).

Variable Pre-Diwali Diwali Post-Diwali

Day-value Night-Value t-test Day-value Night-value t-test Day-value Night-value t-test

aPM2.5 (µg m−3) 331 ± 48 (1,534) 272 ± 93 (2,003) 22.6 389 ± 157 (546) 443 ± 145 (812) 6.5 509 ± 187 (2,318) 450 ± 170 (3,650) 12.5

aO3 (ppb) 42.5 ± 20.1 (1,603) 12.6 ± 3.0 (2,049) 66.3 62.5 ± 12.8 (552) 18.3 ± 14 (828) 59.4 71.4 ± 24.3 (2203) 33.6 ± 9.3 (3716) 84.9

aOC (µg m−3 ) 79 ± 9 (54) 80 ± 26 (72) 0.2 97 ± 39 (20) 124 ± 39 (38) 2.5 165 ± 60 (83) 159 ± 58 (128) 0.7

aEC (µg m−3) 18.5 ± 2.0 (54) 14.3 ± 3.0 (72) 8.9 18.7 ± 5.6 (20) 19.7 ± 5.1 (38) 0.6 17.5 ± 4.9 (83) 14.3 ± 3.0 (128) 5.8

aOC/PM2.5 0.25 ± 0.02 (54) 0.39 ± 0.03 (72) 29.6 0.31 ± 0.01 (20) 0.42 ± 0.02 (38) 23 0.33 ± 0.01 (83) 0.35 ± 0.04 (128) 4.4

(R2 = 0.61) (R2 = 0.71) (R2 = 0.83) (R2 = 0.66) (R2 = 0.97) (R2 = 0.92)

aEC/PM2.5 0.049 ± 0.005 (54) 0.043 ± 0.003 (72) 8.3 0.039 ± 0.006 (20) 0.044 ± 0.003 (38) 4.2 0.028 ± 0.004 (83) 0.022 ± 0.003 (128) 12.4

(R2 = 0.57) (R2 = 0.54) (R2 = 0.47) (R2 = 0.51) (R2 = 0.77) (R2 = 0.68)

aOC/EC 4.4 ± 0.2 (54) 6.5 ± 1.3 (72) 11.7 5.1 ± 0.6 (20) 6.6 ± 1.2 (38) 5.2 9.3 ± 1.5 (83) 11.0 ± 1.6 (128) 7.7

(R2 = 0.80) (R2 = 0.66) (R2 = 0.69) (R2 = 0.62) (R2 = 0.77) (R2 = 0.66)

aSOC/OC 0.34 ± 0.11 (54) 0.39 ± 0.15 (72) 2 0.33 ± 0.07 (20) 0.25 ± 0.12 (38) 2.7 0.44 ± 0.12 (83) 0.30 ± 0.07 (128) 10.6

afSOC/O3 (ppb−1) 0.0039 ± 0.0046 0.017 ± 0.0142 6.5 0.0036 ± 0.0015 0.0057 ± 0.0012 5.8 0.0031 ± 0.0017 0.0038 ± 0.0028 2

(54) (72) (20) (38) (83) (128)

(R2 = 0.30) (R2 = 0.31) (R2 = 0.79) (R2 = 0.51) (R2 = 0.42) (R2 = 0.40)

bRH (%) 57 ± 15 82 ± 4 - 56 ± 15 78 ± 4 - 66 ± 11 79 ± 5 -

bT (◦C) 26 ± 4 19 ± 0.5 - 26 ± 3.8 19 ± 0.5 - 22 ± 3.6 17 ± 2 -

bWind (m/s) 5.0 ± 3.0 0.5 ± 0.4 - 11.0 ± 6.3 3.2 ± 1.6 - 3.9 ± 3.8 0.4 ± 0.3 -

cBLH (m) 1,819 ± 671 1,023 ± 458 - 1,811 ± 683 965 ± 589 - 1,373 ± 221 834 ± 364 -

cSol flux (W/m2) 536 ± 56 N/A - 545 + 61 N/A - 560 ± 41 N/A -

Also, shown is the R2 (p < 0.05) value for variables determined through linear regression analysis. Statistical two-tailed t-test showing significant difference (p < 0.05) in the compared

values is shown in bold (t-values). Non-significant difference (p > 0.05) in the compared values are shown in regular font (t-value).
aData measured in this study.
bData retrieved from on-campus (@IIT Kanpur) weather station.
cData retrieved from NOAA.

further collect the evidence about this we have carried out
concentration weighted trajectory and cluster analysis. We have
also retrieved daily fire count imageries for the entire study
period from Moderate Resolution Imaging Spectroradiometer
sensor (MODIS, onboard NASA Terra and Aqua satellite).
We have discussed striking observations revealed from these
evidence in subsequent sections.

Concentration Weighted Trajectory (CWT) and

Cluster Analysis
We have used an open-source GIS-based software viz. TrajStat
to carry out the CWT and Cluster Analysis (Figure 4). The
application details about CWT and cluster analysis can be found
elsewhere (Wang et al., 2009). Briefly, CWT is a receptor-based
model and is widely used in conjunction with the cluster analysis
to understand the ambient level of air pollutants along with the
cluster of trajectories influencing the receptor site (Bansal et al.,
2019). Using the CWT and cluster analysis we have attempted
to show local/regional source-areas of PM2.5 potentially affecting
the receptor site. To perform CWT and cluster analysis over the
study region, a 5-days air-mass back trajectories (AMBTs, GDAS
0.5◦m, @ 1,000m above ground level) data are coupled with
PM2.5 mass concentration data. In the CWT method, each grid
cell is assigned a weighted concentration by averaging the sample
concentrations based on associated trajectories crossing that grid

cell, using the mathematical formula as given below:

Cij =

∑M
l = 1 Cl ∗ τijl
∑M

l = 1 τijl
(17)

where Cij is the average weighted concentration of PM2.5 in the
grid cell (i, j), M is the total number of trajectories, l is the index
of the trajectory, Cl is the concentration observed at receptor site
on the arrival of trajectory l, and τijl is the trajectory residence-
time (time spent) of trajectory l in the grid cell (i,j). A higher
value of Cij implies that trajectories over the grid cell (i, j) would
be associated with higher concentrations. In the cluster analysis
method, the measured PM2.5 mass concentrations were assigned
to the corresponding trajectories and the nearest trajectories were
clustered according to an angle distance function (Sirois and
Bottenheim, 1995).

One of the observations from Figure 4 relates that the PM2.5

levels were relatively high in the north-west (NW) direction of
the receptor site (study location, central IGP). Thus, it is expected
that if a trajectory cluster is passing more frequently through
NW-direction to the receptor site then it will be associated with
elevated levels of PM2.5 (and associated species) as compared to
the case when trajectories were arriving from other directions.

Let us now analyze the clusters shown in Figure 4. During
Pre-Diwali period (Figure 4A), three sets of clusters have been
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FIGURE 3 | Day and nighttime OC-to-EC ratio based on linear regression analysis (p < 0.05) during Pre-Diwali, Diwali and Post-Diwali periods.

observed: cluster-I (65%) originated from the west and then
traversed through SE to the site, cluster-II (24%) also originated
from the west and then traversed through SE to the site but all
the time remained closure to the grid-cell of the receptor site,
and cluster-III (11%) originated from the west and then traversed
through NW to the site. During Diwali (Figure 4B), only two sets
of clusters have been observed: cluster-I (54%) showing impact
from north-westerly air-masses at the site, whereas cluster-II
(46%) originated from the south and then traversed through
NW. Thus, based on cluster analysis in conjunction with CWT,
relatively high concentrations of PM2.5 (and associated OC, and
OC/EC ratio) during Diwali as compared to those during Pre-
Diwali can be explained to more influence of north-westerly
polluted air-masses during the Diwali event. During the Post-
Diwali period (Figure 4C) also, only two sets of clusters were
observed: cluster-I (81%) showing impact from north-westerly
air-masses at the site, whereas cluster-II (19%) showed the impact
of westerly air masses. Thus, it can be summarized that due to
the predominant impact of north-westerly air-masses during the
Post-Diwali period the concentrations of PM2.5, OC (one of the
major fractions of PM2.5) and OC/EC ratio were higher followed
by those on Diwali and then on Pre-Diwali period.

To further analyze the plausible reason for showing the
elevated levels of air pollutants while air-masses arriving through
NW-direction we have retrieved fire count imageries which are
discussed below.

Fire Count Imageries Over Indo-Gangetic
Plain (IGP)
Moderate Resolution Imaging Spectroradiometer sensor
(MODIS, onboard NASA Terra and Aqua satellite) imageries
capturing fire count data (spatial resolution: 10 km) from intense
open biomass (agricultural-waste paddy-residue) burning over
IGP during the study period are shown in Figure 5. Looking at
the fire counts data it reveals that agricultural-residue fire activity
was relatively intense on 09th, 11th, 12th, 14th, and 16th of Nov,
moderate on 10th, 13th, and 15th of Nov, and low on 08th of Nov
(Figure 5). Furthermore, it is obvious from the figure that open
biomass burning was active in the upwind IGP region (mainly in
north-west direction of the sampling site) during the entire study
period (08th to 16th November 2015). This observation is quite
consistent with earlier observations reporting massive emissions
of air pollutants from agricultural-waste burning in upwind IGP
(Rajput et al., 2014, 2018). It is worthwhile mentioning that
100s of million tons of paddy-residues are burned every year
for the crop-rotation during October–November months in the
north-western region of IGP (Rajput et al., 2014). Summing up,
clubbing the data set from our campaign, satellite observations
on fire counts along with the CWT and cluster analysis it can
be summarized that long-range transport of air masses (biomass
burning emissions) from NW-direction (upwind IGP) was
responsible for elevated levels of air pollutants at the receptor
site mainly during Post-Diwali and Diwali period. Before we
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FIGURE 4 | CWT and cluster analysis of PM2.5 during (A) Pre-Diwali, (B) Diwali, and (C) Post-Diwali study period.

discuss SOA formation let us look at the research background on
the topic.

Research Background on SOA Formation
Chemical transformations of volatile organic compounds
(VOCs) can result in the formation of secondary organic
aerosols (SOA) and photochemical smog (Volkamer et al., 2006).

SOA formation can broadly occur via two pathways: gas- or
aqueous-phase oxidation/nitration of VOCs. The oxidation

reactions of VOCs can take place with OH radicals, O3, and
H2O2 whereas nitration reactions take place with NO3 radicals.
Several studies have compared oxidation/nitration for O3, OH,
and NO3 radicals. For example, daytime SOA formation through

gas-phase oxidation of VOCs (e.g., isoprene, monoterpene) has
been reported dominantly by OH radicals and O3 (Sato et al.,

2013; Edwards et al., 2017). However, nighttime dominant SOA
formation through gas-phase reactions has been reported by
O3 and NO3 radical (Sato et al., 2013; Edwards et al., 2017).
Furthermore, NOX and O3 react with C=C type moieties
whereas OH reacts with compounds containing C=C and
other saturated though reactive compounds (Palm et al., 2017).
Moreover, another oxidizing agent, which oxidizes VOCs
efficiently both during the day and nighttime is H2O2. A recent
study focusing on aqueous-phase SOA led by H2O2 during the
day (UV aging) and nighttime (dark aging) have brought a new
set of information: daytime aqueous-phase oxidation product
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FIGURE 5 | Satellite imageries (Moderate Resolution Imaging Spectroradiometer sensor: MODIS, NASA on board Terra and Aqua satellite) showing fire count data

over IGP during study period. The sampling site is shown by black circle.

contains large water clusters [(H2O)nOH, n = 14–43], heavier
oligomers (m/z: 329–383) whereas nighttime aqueous-phase
oxidation products contain small water clusters [(H2O)nOH,
n = 1–13], small oligomers (m/z: 33–261), and cluster ions
(m/z: 333–405) (Zhang et al., 2019). Summing up, the oxidizing
agents can led to SOA formation through different pathways.
However, the important aspect to mention here is that O3 has
been reported by several aforementioned studies to serve as a
potential oxidizing agent both during the day and nighttime.

Let us now discuss regional observations based on several
previous studies from Indo-Gangetic Plain (IGP). The IGP
experiences high-to-severe air pollution during post-monsoon
(Oct–Nov) through winter (Dec–Feb). During the post-
monsoon, urban background air pollution in central IGP is
regulated mainly by vehicular emission, industrial emission,
coal-based power plants, bio-fuel burning, and uplifted mineral
dust (Rajput et al., 2016; 2018). Furthermore, long-range
transport of pollutants from source-region (in upwind IGP)
of seasonally active post-harvest agricultural-waste burning
emissions of paddy-residues makes the air quality further poor in
central and downwind locations (Rajput et al., 2014). There have
been several attempts on measurements and modeling of various
air pollutants, secondary organic aerosol (SOA) formation,

and radiative forcing estimates across IGP, e.g., (Ram et al.,
2008; Srivastava and Ramachandran, 2013; Rajput et al., 2018;
Dumka et al., 2019; Srivastava et al., 2019; Mhawish et al., 2020;
Mishra and Kulshrestha, 2020; Satish et al., 2020). Association
between pollutants has been reported from the above studies
in particular and other studies conducted across the globe in
general. However, the causation of an exposure variable on an
outcome in atmospheric and aerosol chemistry space has never
been studied before (to the best of our knowledge).

Diurnal Variability of fSOC, fPOC, O3, BLH,
RH, and T
The diurnal variability of the fraction of SOC and POC in total
OC represented as fSOC and fPOC, respectively are shown in
Figures 6A–C for Pre-Diwali, Diwali, and Post-Diwali periods.
Accordingly, during Pre-Diwali period the average fSOC was
relatively high during nighttime (0.39 ± 0.15, t-value = 2.0) as
compared to that in daytime (0.34 ± 0.11, Figure 6A). During
Diwali, daytime average value of fSOC (0.33 ± 0.07) was higher
than that in nighttime (0.25 ± 0.12, t-value = 2.7). Similarly,
during Post-Diwali, daytime average value of fSOC (0.44 ± 0.12)
was also higher than that in nighttime (0.30 ± 0.07, t-value =

10.6). Thus, unlike the Pre-Diwali period, the average fSOC was
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FIGURE 6 | Temporal variability of fSOC, fPOC, O3 (ppb), BLH (m), RH (%) and temperature (◦C) during (A) Pre-Diwali, (B) Diwali, and (C) Post-Diwali period.

higher in the daytime as compared to that in nighttime during
Diwali and Post-Diwali periods (Figures 6B,C). We reiterate
that the impact of long-range transport of pollutants from post-
harvest biomass burning emissions were observed during Diwali
and Post-Diwali period. Thus, it is logical to infer that under
the impact of biomass burning emissions, the fSOC value was
observed higher in the daytime as compared to that in the
nighttime. The pattern of fPOC is also shown in Figure 6 but since
it is trivial to estimate fPOC (= 1–fSOC) we do not discuss here
about it in the detail.

We have also shown the diurnal variability of O3, BLH,
RH, and temperature (T) during the study period (Figure 6).
The O3 has a daytime peak during Pre-Diwali whereas during
Diwali and Post-Diwali periods it exhibited an additional peak
in the nighttime. The nighttime O3 peak is attributable to the
long-range transport of biomass burning emissions from NW-
direction (upwind IGP). Furthermore, RH and T retained their
variability pattern during the entire study period. Moreover,
maximum BLH during Pre-Diwali (∼2,700m, asl.), and Diwali
(2,500m asl.) were relatively high as compared to maximum
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FIGURE 7 | Linear regression analysis of fsoc (= SOC/OC) against O3 (ppb) by levels of BLH (m) in day and nighttime during Pre-Diwali, Diwali and Post-Diwali periods.

BLH recorded during Post-Diwali (1,500m, asl.). However, the
diurnal variability pattern of BLH looks similar during the
entire study period. Before we move to the next aspect, there
are two important observations to notice for (from Figure 6):
BLH variability appears to have an insignificant impact on fSOC
pattern, and BLH explains, if not all, at least some of the
variability of O3. This is exactly the scenario we were referring
to in the above section wherein we discussed the validity of BLH
to serve as IV to infer the causal effect of O3 (exposure) on fSOC
(outcome). Before we discuss the results from IVA analysis (all
relevant equations given above), let us first look at the collinearity
between fSOC and O3 using linear regression analysis.

Correlation Analyses: O3 vs. fSOC (=
SOC/OC Ratio)
A 3-D correlation plot is shown in Figure 7 for three events (Pre-
Diwali, Diwali, and Post-Diwali) and two periods (daylight and
nighttime). O3 (ppb) is plotted on the X-axis, fSOC on the Y-
axis, and the BLH data set is plotted on the z-axis (m, shown on
a scale at the right hand side of the plot). The BLH appears to
have an insignificant influence on the relationship between fSOC
and O3. This further relates to our aforementioned observation
on insignificant co-variability of fSOC as a function of BLH. For
the linear regression analysis as shown in Figure 7, the level of
significance was found to be quite satisfactory (i.e., p< 0.05) only
for two cases: daytime of Diwali and Post-Diwali period. During

Diwali daytime period, the ratio of fSOC/O3 (ppb−1) averaged
at 0.0036 ± 0.0015 (R2 = 0.79, p < 0.05, Table 1, Figure 7).
Furthermore, during the Post-Diwali period, the average ratio
of fSOC/O3 (ppb−1) was 0.0031 ± 0.0017 (R2 = 0.42, p < 0.05,
Table 1, Figure 7). Thus, during the daytime period marked
with long-range transport of pollutants from biomass burning
emission the association between fSOC and O3 was found to
be quite significant in this study. However, based on linear
regression analysis, we cannot attribute that how much SOA
(fSOC) has been formed due to the O3 during daytime of Diwali
and Post-Diwali period? So, the next step would be to apply
causal modeling to gain further insights on this aspect.

The Causal Effect of O3 on SOA Formation
We have performed IVA analysis to assess the causal effect
of O3 on SOA formation in IGP. We have used a support
vector machine (SVM, R package e1071) (Cortes and Vapnik,
1995; Team, 2013) with a radial kernel to estimate variation
in O3 (exposure) explained by the BLH (instrument). The
SVM algorithm maximizes a 10-fold cross-validation. We have
checked R2 of the instrument (BLH) predicting exposure (O3)
to ensure that our instrument was strongly associated with the
exposure. In this process of validation, for all the six cases
(daytime and nighttime of Pre-Diwali, Diwali, and Post-Diwali)
the R2 varied between 0.84 and 0.93, thus suggesting BLH to serve
as a good instrument to estimate the causal effect of O3 on SOA
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TABLE 2 | Summary of instrumental variable analysis (IVA) estimating causal effect

of O3 on fSOC.

Pre-Diwali (Day) Pre-Diwali (Night)

β1 = +0.0074;

95%CI (−0.0030, +0.0178)

adjusted R2 = 0.041 (p = 0.157)

β1 = −0.0583;

95%CI (−0.1774, +0.0606)

adjusted R2 = −0.00 (p = 0.325)

Diwali (Day) Diwali (Night)

β1 = +0.0032;

95%CI (+0.0009, +0.0055)

adjusted R2 = 0.85 (p = 0.01)

β1 = +0.0162;

95%CI (−0.0301, +0.0627)

adjusted R2 = −0.03 (p = 0.456)

Post–Diwali (Day) Post-Diwali (Night)

β1 = +0.0033;

95%CI (+0.0001, +0.0065)

adjusted R2 = 0.56 (p = 0.04)

β1 = +0.0087;

95%CI (−0.0026, +0.0200)

adjusted R2 = 0.02 (p = 0.129)

β1 represents slope e.g., on Diwali day the β1 = +0.0032 represents 1 unit change in

O3 concentration increases fsoc (= SOC/OC ratio) by 0.0032 (= 0.3%); CI represents

confidence interval.

formation. We have already discussed above in detail about the
mathematical modeling of IVA to infer causal effect of O3 on SOA
formation (i.e., fSOC). The results of the IVA analysis are shown
in Table 2. Before we discuss the results, let us recall that only if
the Null hypothesis is rejected (i.e., β1 6= 0), we can get a causal
estimate of O3 on SOA formation. Now, if we look at the 95%
confidence interval values (CI, Table 2) then it can be noticed
that only for the two cases i.e., daytime of Diwali and Post-Diwali
period, the null hypothesis is rejected (i.e., β1 6= 0). Thus, causal
estimate can be obtained for the aforementioned two cases only
during the study period.

The IVA analysis revealed that during Diwali daytime period,
the average ratio of fSOC/O3 (ppb

−1) was 0.0032 (95% CI: 0.0009,
0.0055, p < 0.05, Table 2). Furthermore, during the Post-Diwali
daytime period, the average ratio of fSOC/O3 (ppb

−1) was 0.0033
(95% CI: 0.0001, 0.0065, p < 0.05, Table 2). Thus, based on IVA
it is inferred that O3 has a causal effect on SOA formation during
daytime while experiencing massive emissions from long-range
transport of biomass burning emissions at the receptor site.

CONCLUSIONS

This study finds and discusses the application of instrumental
variable analysis (IVA) for inferring causality in atmospheric and
aerosol chemistry observations. The basic methodology of IVA
has been explained herein through a set of equations and theories

involved concisely. IVA is a quasi-experimental design that
can control for measured as well as unmeasured confounders.
BLH and wind speed have been suggested to serve as good
instruments for inferring causality in atmospheric chemical
transformations. The importance of randomized experiments
to achieve exchangeability has been explained in terms of
obtaining the same distribution of confounders in measured
and unmeasured data points. The machine learning algorithm
has been used to assess the validity of the instrument. On
field-based measurements, the IVA has been applied to get a
causal estimate of the outcome (e.g., SOA formation) due to
the exposure (O3). Accordingly, the average ratio of fSOC/O3

(ppb−1) was found to be 0.0032 (95% CI: 0.0009, 0.0055) and
0.0033 (95% CI: 0.0001, 0.0065) during daytime of Diwali and
Post-Diwali period. However, during rest of the study period the
relationship between O3 and fSOC was not significant. Inferences
from IVA coupled with the CWT, cluster analysis, and fire count
imageries revealed that O3 has a causal effect on SOA formation
during the daytime when emissions from biomass burning
via long-range transport influenced the receptor site. The
programming of IVA can be done using R, python, or any other
language-based software.
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