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The use of plant growth promoting bacteria (PGPB) that can solubilize phosphorus
(P) has shown potential to improve nutrient availability in grass crops such as corn
(Zea mays L.) This study was developed to investigate if inoculation with Azospirillum
brasilense, Bacillus subtilis or Pseudomonas fluorescens associated with P2O5 rates
can improve phosphorus use efficiency (PUE) reflecting on greater corn development
and yield. The field trial was set up in a Rhodic Hapludox under no-till system under
Savannah conditions, in a completely randomized block design with four replicates.
Treatments were tested in a full factorial design and included: (i) five P2O5 rates (0
to 105 kg ha−1) and (ii) four PGPB seed inoculation (Control–without inoculation,
A. brasilense, B. subtilis or P. fluorescens). Inoculation was found to increase grain yield
by 39.5, 29.1, and 15.9% when B. subtilis was inoculated in the absence of P2O5 rates
and associated with 17.5 and 70 kg P2O5 ha−1 and by 34.7% when A. brasilense was
inoculated with application of 105 kg P2O5 ha−1. In addition, inoculation with B. subtilis
and A. brasilense were found to increase P uptake, benefiting productive components
development, leading to an improved PUE, and greater corn grain yield. The results
of this study showed positive improvements in P uptake as a result of B. subtilis and
A. brasilense inoculation, with an increase of 100.5 and 54.6% on PUE, respectively;
while the P. fluorescens inoculation were less evident. Further research should be
conducted under biotic or/and abiotic conditions such as attack of pathogens and
insects, drought, salinity, water flooding, low and high temperature to better understand
the role of PGPB, inoculated alone or in combination as the co-inoculated method.

Keywords: Azospirillum brasilense, Bacillus subtilis, phosphorus fertilization management, Pseudomonas
fluorescens, Zea mays L.

INTRODUCTION

Phosphorus (P) is one of the most limiting nutrients in agricultural cropping systems (Roberts
and Johnston, 2015; Guignard et al., 2017; Khan et al., 2018). It is estimated that P deficiencies
can be found in nearly 67% of world land designated for crop production (Dhillon et al., 2017).
Also, P use efficiency (PUE) for cereal production in the world is too low, varying between 15
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and 30% (Dhillon et al., 2017). Under tropical conditions, P can
precipitate as minerals of Fe, and Al (Penn and Camberato, 2019).
Both minerals decrease the availability of P for plant growth
(Dhillon et al., 2017). Clay fractions such as amorphous hydrated
oxides of Fe and Al, in addition to gibbsite, goethite, and kaolinite
are responsible for the greatest P fixation (Dhillon et al., 2017).
This has created a cascade of environmental problems (e.g.,
global warming, air pollution, and eutrophication) that threaten
ecosystems and human health (Gu et al., 2015). Therefore, the
P demand by crops must be considered. Plants of intense and
short-cycle development, such as the corn plant (Zea mays L.),
require higher amounts of P in solution and faster adsorbed-P
replenishment than perennial crops (Lino et al., 2018). However,
fertilizer application is one of the highest input costs for cereal
crops and yet most of the P-fertilizer used to supplement crops
is lost into the environment, due to the low PUE in cereal crops
(Metson et al., 2016; Li et al., 2017).

The use of agroecological practices such as inoculation
by plant growth-promoting bacteria (PGPB) can represent a
sustainable alternative for increase nutrient use efficiency in
tropical agriculture (Galindo et al., 2018a,b, 2019a,b; Martins
et al., 2018). The use of these PGPB is growing, particularly
in Latin America, for different crops (Souza et al., 2015;
Martins et al., 2018; Galindo et al., 2019a). Several PGPB
genera show association with different species of agricultural
importance, such as Azospirillum, Bacillus and Pseudomonas
(Zeffa et al., 2018). These bacteria can stimulate plant growth
by a series of mechanisms, including but not restricted, the
production of phytohormones, such as salicylic acid, gibberellins,
cytokinins and indole-3-acetic acid (IAA) (Cassán and Diaz-
Zorita, 2016; Fukami et al., 2017), phosphate solubilization
(Ludueña et al., 2018; Qi et al., 2018), nutrient availability increase
(Galindo et al., 2018b), production of indolic compounds
and siderophores (Ambrosini and Passaglia, 2017), increase
on 1−aminocyclopropane−1−carboxylate deaminase activity
(Ambrosini and Passaglia, 2017), biological nitrogen fixation
(BNF) (Pankievicz et al., 2015), biological control of plants,
production of natural antibiotics and protective effect against
secondary soil phytopathogens (Zhou et al., 2016; Mishra and
Arora, 2018; Shameer and Prasad, 2018).

The Azospirillum spp. is considered one of the most studied
plant growth promoter genera (Galindo et al., 2016, 2017).
An analysis of field trials conducted worldwide for over
20 years, where various non-legume crops were inoculated with
Azospirillum spp. under different weather and soil conditions,
concluded that crop yield can increase up to 30% with
inoculation (Fukami et al., 2016). Also, positive results in corn
development and yield has been reported with Azospirillum
brasilense inoculation (strains Ab-V5 and Ab-V6) under tropical
conditions (Martins et al., 2018; Oliveira et al., 2018; Galindo
et al., 2019b). However, greater responses with other PGPB can
be achieved (Pankievicz et al., 2019). New research investigating
Bacillus spp. and Pseudomonas spp. as beneficial PGPB are being
conducted, especially for annual crops (Oliveira et al., 2019;
Pankievicz et al., 2019; Tavanti et al., 2020). For example, under
tropical conditions, Bacillus subtilis inoculation (strains Pant001
and QST713) associated with Bradyrhizobium japonicum has

been reported to increase soybean [Glycine max (L.) Merr.]
yield compared to single inoculation with B. japonicum, besides
improving seed quality due to the increase in total storage
proteins concentration, seedling emergence percentage and seed
vigor (Tavanti et al., 2020). Traoré et al. (2016) reported improved
corn seed germination, plant growth, plant production (increase
yield by 42%) grain and shoot P biomass content of 34 and 64%,
respectively with B. subtilis inoculation (strain DSM10). Lima
et al. (2019) verified that B. subtilis (strains AP-3 and PRBS-1)
promoted common bean (Phaseolus vulgaris L.) and corn growth,
increasing the water use efficiency, leaf water content and the
regulation of stomata, without damaging photosynthetic rates.
Zarei et al. (2019) concluded that Pseudomonas fluorescens (P1,
P3, P8, and P14 – prepared from the collection of Vali-e-
Asr University of Rafsanjan) can improve plant water deficit
stress tolerance, P solubilization and siderophore production,
leading to an increased sweet corn (Zea mays L. var saccharata)
growth and yield. Differently, Oliveira et al. (2019), studying six
PGPB inoculation in soybean (A. brasilense, B. amyloliquefacens,
B. licheniformis, B. pumilus, B. subtilis e P. fluorescens) associated
with B. japonicum did not verified plant development and
increased grain yield compared to single inoculation with
B. japonicum.

Understanding the success or failure of inoculation requires
understanding the complex interactions between the roots of
inoculated plants, the specificity between hosts and PGPB, and
the major microbial communities in the rhizosphere (Bashan
et al., 2004; Florio et al., 2017, 2019). Therefore, studies
with different PGPB inoculation such as Bacillus spp. and
Pseudomonas spp. in tropical conditions should be performed,
since new reports can be largely applicable to other important
producing countries. Regardless of several benefits may be
verified with PGPB inoculation, an increase in PUE and corn
grain yield is not always the case (Bounaffaa et al., 2018).
Further research with different PGPB inoculation associated
with P2O5 rates are needed to determine how to maximize its
benefits on PUE, corn development and yield. This study was
based on the hypothesis of positive effect between the different
PGPB inoculation and P utilization, providing greater nutrient
use efficiency, reflecting on corn development and yield. The
objective of this study was to evaluate the effect of A. brasilense,
B. subtilis, and P. fluorescens inoculation and P2O5 application
rates, on the nutritional, productive components PUE and corn
grain yield under tropical conditions.

MATERIALS AND METHODS

The study was conducted under field conditions in Selvíria
(Savannah region), state of Mato Grosso do Sul, Brazil [20◦22′
south (S) and 51◦22′ west (W), 335 m above sea level (a.s.l.)],
during the crop year of 2016/17. The soil was classified as clayey
Oxisol (Rhodic Hapludox) according to the Soil Survey Staff
(2014). The experimental area was cultivated with annual crops
(cereal and legume crops) for over 30 years, with the last 12 years
using a no-tillage system. The last crop sequence prior to corn was
wheat. The maximum and minimum temperatures, air relative
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FIGURE 1 | Rainfall, air relative humidity, maximum and minimum temperatures obtained from the weather station located in the Education and Research Farm
of FE/UNESP during the corn cultivation in the period November 2016 to April 2017.

humidity and the rainfall verified during the study are presented
in Figure 1.

The experimental design was a completely randomized block
design with four replicates arranged in a 4 × 5 factorial scheme:
four PGBP seed inoculations (control–without inoculation,
A. brasilense, B. subtilis and P. fluorescens and five P2O5 rates
(0, 17.5, 35, 70, and 105 kg ha−1) The experimental plots were
composed of seven 3.5 m corn rows spaced at the distance of
0.45 m, with the useful area of the plot being the central three
rows, with the exclusion of 0.5 m from each end.

Twenty soil samples were collected, mixed and a random sub-
sample was used to determine soil chemical attributes before the
beginning of field trial in the 0.0–0.2 m depth. This samples were
collected with soil core sample type cup auger (0.4 m × 0.10 m–
cup length and diameter, respectively), randomized in the entire
experimental site, regardless of experimental blocks and plots.
After samples be collected and mixed, the sub-sample was
dried in the shade and soil chemical attributes were determined
according to the Raij et al. (2001) methodology. The following
results were verified in Table 1.

Weed control was performed with herbicides application of
glyphosate [1800 g ha−1 of the active ingredient (a.i)] and 2,4-D
(670 g ha−1 a.i). The mineral N and K fertilization was performed
with 30 kg N ha−1 (urea) and 60 kg K2O ha−1 (potassium
chloride) at seedling and for all treatments, based on the soil
analysis and corn crop requirements. Also, the application of
P2O5 rates was performed at seedling based on soil analysis and
crop requirements. The P2O5 rates (0, 17.5, 35, 70 e 105 kg ha−1)
corresponds to 0, 25, 50, 100, and 150% of the recommended rate,
respectively (Cantarella et al., 1997). The source of P2O5 applied
was triple superphosphate (18% of P2O5, 16% of Ca, and 8% of S).

The inoculation with A. brasilense strains Ab-V5 and Ab-
V6 was performed at a dose of 100 mL of liquid inoculant
per hectare [equivalent to 100 mL of inoculant per 73,400 corn
seeds planted – guarantee of 2 × 108 CFU (colony forming

TABLE 1 | Soil chemical attributes in 0–0.20 m layer before field trial beginning.

Soil chemical attributes 0–0.20 m layer

P (resin) 20 mg dm−3

S (SO4) 3 mg dm−3

Organic matter 24 g dm−3

pH (CaCl2) 5.3

K 1.6 mmolc dm−3

Ca 33.0 mmolc dm−3

Mg 20.0 mmolc dm−3

H + Al 28.0 mmolc dm−3

B (hot water) 0.19 mg dm−3

Cu (DTPA) 3.9 mg dm−3

Fe (DTPA) 21.0 mg dm−3

Mn (DTPA) 63.5 mg dm−3

Zn (DTPA) 1.6 mg dm−3

Base saturation 68%

n = 20.

unity) mL−1]. The inoculation with B. subtilis strain CCTB04
was performed at a dose of 100 mL of liquid inoculant per
hectare (equivalent to 100 mL of inoculant per 73,400 corn seeds
planted – guarantee of 1 × 108 CFU mL−1). The inoculation
with P. fluorescens strain CCTB03 was performed at a dose of
100 mL of liquid inoculant per hectare (equivalent to 100 mL
of inoculant per 73,400 corn seeds planted – guarantee of
1 × 108 CFU mL−1). These are commercial strains used in
Brazil [for both A. brasilense (brand name AzoTotal), B. subtilis
(brand name Vult) and P. fluorescens (brand name Audax)].
Both inoculations (A. brasilense, B. subtilis, and P. fluorescens)
were performed by coating and mixing the inoculants and
corn seeds in plastic bags, manually. The seed inoculations
were realized one hour before planting the corn crop and after
seed treatment with fungicide and insecticide [the fungicides
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thiophanate-methyl + pyraclostrobin (56 g + 6 g of a.i. per 100 kg
of seed) and the insecticide fipronil (62 g of a.i. per 100 kg of seed)
were used], when the seeds were completely dry. The control
treatment did not receive inoculations, however, the chemical
seed treatment with fungicide and insecticide was performed,
similarly to inoculated treatments.

The corn simple hybrid used was DOW 2B710 PW and the
planting took place on November 11, being planted 73,400 seeds
per ha. Seedling emergence occurred 5 days after sowing, on
November 16, 2016. When necessary, the corn crop was irrigated
with supplementary irrigation, using a center pivot sprinkling
system (water depth of 14 mm). Weed and insect control were
performed according to crop demand.

Nitrogen fertilizer (side dress application) was spread on the
soil surface without incorporation by placing the fertilizer in the
middle of the rows when the plants were in the V4 stage (with
four leaves completely unfolded) at the dose of 150 kg N ha−1

as urea source, for all plots. After N-fertilization, the area was
irrigated (14 mm depth) at night to minimize losses by ammonia
volatilization. The plants were harvested manually at 125 days
after emergence (DAE) on March 21, 2017.

The following nutritional evaluations were performed: (a) P
foliar concentration, in g kg−1 of dry matter, was determined
by collecting the middle third of 20 leaves of the main ear
insertion in each experimental plot in the female flowering stage,
according to the methodology described in Cantarella et al.
(1997). Also, the (b) P concentration in biomass and grains
were determined, at harvest time, and the P uptake in biomass
and grains were calculated, in kg ha−1. P determinations in
tissue and grains followed the methodology that was proposed in
Malavolta et al. (1997). Five soil samples (depth of 0–0.20 m) per
plot were collected at the harvest time to determine (c) P-resin
according to Raij et al. (2001).

The following productive components measurements were
performed: (d) plant height at maturity, defined as being at a
distance (m) from the ground level to the apex of the tassel;
(e) stem diameter in the second internode at corn maturation
plant using a manual caliper. Ten corn spikes were collected at
the harvest time to follow the evaluations: (f) spike diameter; (g)
spike length, determined from the base of the spike to the apex;

(h) number of rows per spike, obtained by counting the number
of all rows in each spike; (i) number of grains per row of spike,
determined by counting the number of grains in each row of
the spike; (j) number of grains per spike, obtained by counting
the number of grains in each spike; (k) mass of 100 grains,
determined at 13% moisture (wet basis) by a 0.01 g precision
scale; (l) phosphorus use efficiency (PUE) following the Eq. 1; and
(m) grain yield, determined by the spike collection in the useful
experimental area. After the mechanical track, the grains were
quantified and corrected to 13% moisture (wet basis), in kg ha−1.

PUE, adapted of Moll et al. (1982) :

[(GYF− GYW)÷ (amount of N applied)] (1)

Where, GYF = Grain Yield with fertilizer and GYW = Grain Yield
without fertilizer.

The data was analyzed by ANOVA in a 2-way factorial
design with P2O5 application rates and inoculation and their
interactions considered fixed effects in the model. Mean
separation was done when significant factors or interactions were
observed using the test Tukey. Regression analysis was used to
discern whether there was a linear or non-linear response to P2O5
rates in R software (R Core Team, 2015).

RESULTS

Statistical analysis showed that leaf P concentration, biomass P
uptake, grain P uptake, plant height, ear length, ear diameter,
number of grains per row, and grains per ear, mass of 100 grains,
PUE and grain yield were significantly affected by the interaction
between P2O5 rates × PGPB inoculation (Table 2). Phosphorus
resin in soil and stem diameter were significantly affected by
the main effects of P2O5 rates and PGPB inoculation (Table 2).
Number of rows per ear was not affected by P2O5 rates, PGPB
inoculation or the interaction between the factors (Table 2).

Control plots associated with low and average P2O5
application rates (0, 17.5 and 35 kg ha−1) resulted in greater
leaf P concentration compared to A. brasilense, P. fluorescens
and B. subtilis inoculated plots (Figure 2A). Also, control plots

TABLE 2 | F-values for leaf P concentration, biomass P uptake, grain P uptake, P-resin in soil, plant height, stem diameter, ear length, ear diameter, number of rows per
ear, grains per row and grains per ear, mass of 100 grains, phosphorus use efficiency and corn grain yield 2016/17.

F-values Leaf P
concentration

Biomass P
uptake

Grain P
uptake

P-resin in soil Plant height Stem
diameter

Ear length

P2O5 rates (R) 5.691** 3.405* 13.019** 10.938** 3.052* 2.756* 2.164ns

PGBP inoculation (I) 75.765** 0.828ns 8.017** 11.606** 19.637** 23.992** 7.976**

R x I 3.968** 3.043** 3.073** 1.285ns 3.685** 1.642ns 3.112**

F-values Ear diameter Rows per ear Grains per
row

Grains per ear Mass of 100 grains Phosphorus
use efficiency

Grain yield

P2O5 rates (R) 2.809* 1.462ns 1.740ns 2.168ns 1.635ns 26.856** 14.060**

PGBP inoculation (I) 2.124ns 1.815ns 2.510ns 3.085* 1.795ns 6.624** 11.287**

R x I 2.320* 1.514ns 3.452** 1.957* 2.553** 2.946** 3.471**

**, * and ns: significant at p < 0.01, p < 0.05, and not significant, respectively.
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associated with high P2O5 rates (105 kg ha−1) resulted in
greater leaf P concentration compared to A. brasilense and
B. subtilis inoculated plots (Figure 2A). Leaf P concentration
responded linearly to P2O5 application rates when P. fluorescens
was inoculated (Figure 2A). Differently, leaf P concentration
responded non-linearly to P2O5 application rates when B. subtilis
was inoculated (Figure 2A).

In the absence of P2O5 application, control plots resulted in
lower biomass P uptake compared to A. brasilense inoculated
plots (Figure 2B). Also, control plots associated with high P2O5
application rates (105 kg ha−1) resulted in lower biomass P
uptake compared to P. fluorescens inoculated plots (Figure 2B).
Biomass P uptake responded non-linearly to P2O5 application
rates without inoculation and when A. brasilense was inoculated
(Figure 2B). The A. brasilense inoculated plots associated with
low and high P2O5 application rates (0, 17.5 and 105 kg ha−1)
resulted in greater grain P uptake compared to control plots
(Figure 2C). In addition, A. brasilense inoculated plots associated
with 35 kg P2O5 ha−1 resulted in greater grain P uptake
compared to P. fluorescens inoculated plots (Figure 2C). Grain
P uptake responded linearly to P2O5 application rates when
B. subtilis was inoculated (Figure 2C). Differently, grain P uptake
responded non-linearly to P2O5 application rates when control
and A. brasilense was inoculated (Figure 2C). Phosphorus resin
in soil responded linearly to P2O5 application rates (Figure 2D).
In addition, control and A. brasilense inoculated plots resulted in
greater P-resin in soil compared to P. fluorescens and B. subtilis
inoculated plots (Figure 2E).

Control plots associated with low P2O5 application rates (0
and 17.5 kg ha−1) resulted in greater plant height compared
to A. brasilense, P. fluorescens and B. subtilis inoculated plots
(Figure 2F). In addition, control plots associated with 105 kg
P2O5 ha−1 resulted in greater plant height compared to
P. fluorescens inoculated plots (Figure 2F). However, B. subtilis
inoculated plots associated with 70 kg P2O5 ha−1 resulted
in greater plant height compared to A. brasilense inoculated
plots (Figure 2F). Plant height responded non-linearly to P2O5
application rates when A. brasilense, P. fluorescens and B. subtilis
were inoculated (Figure 2F). Stem diameter responded linearly
to P2O5 application rates (Figure 3A). In addition, A. brasilense
inoculated plots resulted in greater stem diameter compared to
control, P. fluorescens and B. subtilis inoculated plots (Figure 3B).

Ear length fluctuated throughout the P2O5 application
rates; however, in general, control plots showed reduced ear
length compared to A. brasilense, P. fluorescens and B. subtilis
inoculated plots (Figure 3C). Ear length responded linearly
to P2O5 application rates when P. fluorescens was inoculated
(Figure 3C). Differently, ear length responded non-linearly
to P2O5 application rates when B. subtilis was inoculated
(Figure 3C). Control plots and P. fluorescens inoculated plots
associated with average P2O5 rates (35 and 70 kg ha−1) tended
to result in lower ear diameter compared to A. brasilense
and B. subtilis inoculated plots (Figure 3D). Ear diameter
responded non-linearly to P2O5 application rates when control
and P. fluorescens was inoculated (Figure 3D).

In the absence of of P2O5 application, B. subtilis inoculated
plots resulted in greater number of grains per row compared

to control, A. brasilense and P. fluorescens inoculated plots
(Figure 3E). Grains per row responded non-linearly to P2O5
application rates when control and B. subtilis was inoculated
(Figure 3E). Similarly, in the absence of of P2O5 application,
B. subtilis inoculated plots resulted in greater number of grains
per ear compared to control, A. brasilense and P. fluorescens
inoculated plots (Figure 3F). Also, A. brasilense inoculated plots
associated with 105 kg P2O5 ha−1 resulted in greater number of
grains per ear compared to control plots (Figure 3F). Control
plots and P. fluorescens inoculated plots associated with average
and high P2O5 application rates (70 and 105 kg ha−1) tended
to result in lower mass of 100 grains compared to A. brasilense
and B. subtilis inoculated plots (Figure 4A). Mass of 100 grains
responded linearly to P2O5 application rates when B. subtilis
was inoculated (Figure 4A). Differently, mass of 100 grains
responded non-linearly to P2O5 application rates when control
and A. brasilense and P. fluorescens were inoculated (Figure 4A).

The B. subtilis inoculated plots associated with 17.5 kg P2O5
ha−1 resulted in greater PUE compared to control, A. brasilense
and P. fluorescens inoculated plots (Figure 4B). Phosphorus use
efficiency responded linearly to P2O5 application rates regardless
of inoculations (Figure 4B). The B. subtilis inoculation also
benefited grain yield when associated with low P2O5 rates (0
and 17.5 kg ha−1) as verified by greater grain yield compared
to control (Figure 4C). The A. brasilense inoculated plots
associated with 70 kg P2O5 ha−1 resulted in lower grain yield
compared to P. fluorescens and B. subtilis inoculated plots
(Figure 4C). However, A. brasilense inoculated plots associated
with 105 kg P2O5 ha−1 resulted in greater grain yield compared
to control and P. fluorescens inoculated plots (Figure 4C).
Grain yield responded linearly to P2O5 application rates when
A. brasilense was inoculated (Figure 4C). Differently, grain yield
responded non-linearly to P2O5 application rates when control
and P. fluorescens were inoculated (Figure 4C).

DISCUSSION

Phosphorus is the second nutrient that is most demanded by
corn plants and directly affects crop development and yield
(Dhillon et al., 2017). Thus, the higher P availability as a function
of the P2O5 application probably favored initial root system
development, reflecting on corn grain yield. The better growth of
P2O5-fertilized plants can be attributed to the P readily available
for absorption after being added to the soil as verified by the
linear increasing response in P content in soil to P2O5 application
rates. Phosphorus plays important roles in plant nutrition and
development (Lollato et al., 2019), for example composition of
adenosine triphosphate (ATP). In addition, P is responsible for
the storage and transport of energy for endergonic processes,
such as the synthesis of organic compounds and the active
uptake of nutrients (Marschner, 2012). Also, P is related to root
system development and plant growth (Sulieman and Tran, 2015;
Fink et al., 2016; Zhang et al., 2016). There are several studies
reporting the P fertilization benefits in corn crop (Wen et al.,
2016; Li et al., 2017; Schlegel and Havlin, 2017; Ortas and Islam,
2018; Preston et al., 2019). However, plant nutritional demand
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is limited as verified by the linear decreasing response in PUE
to P2O5 application rates, regardless of PGPB inoculation. In
addition, almost 80% of P content in soil can be fixed in forms
unavailable to plants (White and Hammond, 2008; Zhang et al.,
2016). Therefore, P application must be rational and optimized,
since the increased P2O5 application rates results in increased
losses and less utilization by cropping systems.

Although the response to PGPB inoculation under P2O5
application rates were different, the response to B. subtilis
and A. brasilense inoculation associated with P2O5 rates were
greater than control and P. fluorescens inoculation mainly when
P. fluorescens inoculation was associated with P2O5 application
rates. We verified this behavior on lower grain P uptake
(associated with 35 and 105 kg P2O5 ha−1), ear diameter (with
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35 and 70 kg P2O5 ha−1), mass of 100 grains (with 70 and
105 kg P2O5 ha−1) and grain yield (with 105 kg P2O5 ha−1) when
P. fluorescens inoculation was performed. Positive responses
to B. subtilis inoculation were verified mainly in the absence
and application of 70 kg P2O5 ha−1. In the absence of P2O5
application rates B. subtilis inoculation showed greater ear length,
number of grains per row and grains per ear. With application
of 70 kg P2O5 ha−1, B. subtilis inoculation showed greater ear
diameter and mass of 100 grains. In addition, when 17.5 kg P2O5
ha−1 was applied, B. subtilis inoculation showed greater PUE.
Grain yield was also positive affected by B. subtilis inoculation
in the absence of P2O5 application rates (increase of 39.5, 13.9,
and 16.3%), 17.5 kg P2O5 ha−1 (increase of 29.1, 14.2, and 13.5%)
and 70 kg P2O5 ha−1 (increase of 15.9, 41.3, and 9.2 compared to
control, A. brasilense and P. fluorescens, respectively). Similarly,
positive responses to A. brasilense inoculation were verified
mainly with application of 35 and 105 kg P2O5 ha−1. With
application of 35 kg P2O5 ha−1, A. brasilense inoculation showed
greater ear length and ear diameter. When 105 kg P2O5 ha−1 was
applied, A. brasilense showed greater mass of 100 grains and grain
yield. Grain yield increased by 34.7, 27.7, and 14.8% compared
to control, P. fluorescens and B. subtilis inoculated treatments,
respectively, when A. brasilense was inoculated and 105 kg P2O5
ha−1was applied. In addition, regardless of P2O5 application
rates, A. brasilense inoculation showed greater P-resin in soil
(increase of 19.7, 96.7, and 87.2%) and stem diameter (increase
of 5.7, 12.1, and 12.1% compared to control, P. fluorescens and
B. subtilis, respectively).

There was a dilution effect on P concentration as a function
of B. subtilis and A. brasilense inoculation. It was observed
that B. subtilis and A. brasilense inoculation promoted greater
P uptake, optimizing the use of the absorbed P by corn plant.
Our results showed that the inoculation with B. subtilis provided
an increase of 9.7% for biomass P uptake (40.37 to 44.28 kg
ha−1, respectively) and 12.6% for grain P uptake (49.87 to
56.13 kg ha−1, respectively) compared to control, regardless of
P2O5 application rates. Also, the inoculation with A. brasilense
provided an increase of increase of 10.% for biomass P uptake
(40.37 to 44.42 kg ha−1) and 21.3% for grain P uptake (49.87
to 60.50 kg ha−1, respectively) compared to control, regardless
of P2O5 application rates. The exact mechanisms underlying
the B. subtilis and A. brasilense effect on corn growth was not
evaluated in the present study, however, it is very likely that the
improvement in P availability and uptake reflecting on improved
PUE and grain yield by corn verified in this study is associated
with the well-known ability of A. brasilense and B. subtilis to
promote plant growth (Fukami et al., 2017; Jang et al., 2018;
Martins et al., 2018; Posada et al., 2018; Salvo et al., 2018). The
increase on PUE and corn yield as a function B. subtilis and
A. brasilense inoculation compared to control was, on average,
equivalent to 100.5 and 54.6% for PUE and 17.4 and 12.8% for
grain yield, respectively, regardless of P2O5 application rates.
Similar results with B. subtilis and A. brasilense inoculation were
reported with greater corn yield between 3.8 to 34% in inoculated
plants compared with non-inoculated plants (Kuan et al., 2016;
Müller et al., 2016; Traoré et al., 2016; Ahmad et al., 2019;
Galindo et al., 2019b).

The bacteria B. subtilis is well known to possess properties
of plant growth promotion, phosphate solubilization,
phytopathogen inhibition and heavy metal absorption (Traoré
et al., 2016; Rekha et al., 2017; Muñoz-Moreno et al., 2018;
Prakash and Arora, 2019). In addition, the strains Ab-V5
and Ab-V6 of A. brasilense share the genes related to the
synthesis of auxins (Hungria et al., 2018). Also, Azospirillum
spp. inoculation is related to nutrient availability increase
(Galindo et al., 2018b) and BNF (Pankievicz et al., 2015). This
growth promotion mechanisms might have improved the
ability of the plants to more efficiently explore the soil and
uptake P, as indicated in previous studies using B. subtilis and
A. brasilense (Traoré et al., 2016; Martins et al., 2018; Prakash
and Arora, 2019; Zeffa et al., 2019). According to Cormier et al.
(2013), two strategies may be devised for nutrient use efficiency
improvement: increasing the yield at a constant nutrient supply
and/or maintaining high yield when reducing nutrient supply.
Therefore, the results of our research show that inoculation
with B. subtilis and A. brasilense may be a potential strategy
to help improving PUE. It is not unusual that PGPB displays
several different plant-beneficial properties (Bruto et al., 2014;
Vacheron et al., 2016), which is thought to provide higher
positive effects on the plant (Bashan and de-Bashan, 2010).
This is expected to take place because (i) the effects of different
modes of action may add-up quantitatively, or (ii) it could
ensure that at least one mode of action is expressed in particular
environmental conditions (Vacheron et al., 2016). Indeed,
the most effective PGPB are typically multi-function strains
(Almario et al., 2014).

The inoculation with P. fluorescens had little quantifiable
effect on P uptake, corn development and grain yield. However,
P. fluorescens has been reported to favor biological control
of plants, production of natural antibiotics and protective
effect against secondary soil phytopathogens (Garrido-Sanz
et al., 2016), phosphate solubilization (Oteino et al., 2015)
and N2 fixation (Vacheron et al., 2016). Also, P. fluorescens
resulted in 35.3 and 7.8% increase in PUE and corn grain
yield compared to control treatment, respectively, regardless of
P2O5 application rates. Evidently, there is still great divergence
in the use of PGPB in corn and other grasses due to the
variable results with inoculation. However, it is important
to highlight the importance of research on the subject and
the potential of using this technology, mainly because it is
easy to apply, is low cost, and has a great potential to
promote plant growth.

CONCLUSION

Inoculation with B. subtilis and A. brasilense associated with P2O5
application rates were found to increase P uptake, benefiting
productive components development, leading to an improved
PUE, and greater corn grain yield. Yield increased by 39.5, 29.1,
and 15.9% when plants were inoculated with B. subtilis in the
absence of P2O5 application rates, associated with 17.5 and 70 kg
P2O5 ha−1, respectively. Inoculation with A. brasilense increased
grain yield by 34.7% when 105 kg P2O5 ha−1 was applied,
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showing the potential for improve PUE by the B. subtilis and
A. brasilense inoculation, positively reflecting on corn grain
yield. The inoculation with P. fluorescens had small effects
on P uptake, plant development and grain yield, however,
resulted in 35.3 and 7.8% increase on PUE and corn grain yield
compared to control. Therefore, studies conducted under biotic
or/and abiotic conditions are necessary to better understand
the role of PGPB, inoculated alone or in combination as the
co-inoculated method.
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