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Numerical models have become essential tools for simulating and forecasting hydro-

meteorological variability, and to help better understand the Earth’s water cycle across

temporal and spatial scales. Hydrologic outputs from these numerical models are

widely available and represent valuable alternatives for supporting water management

in regions where observations are scarce, including in transboundary river basins

where data sharing is limited. Yet, the wide range of existing Land Surface Model

(LSM) outputs makes the choice of datasets challenging in the absence of detailed

analysis of the hydrological variability and quantification of associated physical processes.

Here we focus on two of the world’s most populated transboundary river basins—the

combined Ganges-Brahmaputra-Meghna (GBM) in South Asia and the Mekong in

Southeast Asia—where downstream countries are particularly vulnerable to water related

disasters in the absence of upstream hydro-meteorological information. In this study,

several freely-available global LSM outputs are obtained from NASA’s Global Land

Data Assimilation System (GLDAS) and from the European Centre for Medium-Range

Weather Forecasts (ECMWF) Re-Analysis-interim/Land (ERA-interim/Land) and used

to compute river discharge across these transboundary basins using a river network

routing model. Simulations are then compared to historical discharge to assess runoff

data quality and identify best-performing models with implications for the terrestrial

water balance. This analysis examines the effects of meteorological inputs, land surface

models, and their spatio-temporal resolution, as well as river network fineness and

routing model parameters on hydrologic modeling performance. Our results indicate

that the most recent runoff datasets yield the most accurate simulations in most cases,

and suggest that meteorological inputs and the selection of the LSM may together be

the most influential factors affecting discharge simulations. Conversely, the spatial and

temporal resolution of the LSM and river model might have the least impact on the

quality of simulated discharge, although the routing model parameters affect the timing

of hydrographs.
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INTRODUCTION

South and Southeast Asia are currently home to the world’s
most densely populated areas (FAO, 2016). This region is also
characterized by extreme hydrologic variability with ∼70–80%
of the total annual rainfall occurring during the short June to
September window of the summer monsoon, causing flooding to
be a regular annual event (Mirza, 2011; Hoang et al., 2019). In
addition, the combination of climate change and anthropogenic
water diversions from rivers affect the region through increased
drought frequency (Khandu et al., 2016). Such demographic and
hydrologic extremes together make the two principal rivers of
South and Southeast Asia—the combined Ganges-Brahmaputra-
Meghna (GBM) and the Mekong—some of the world’s largest
rivers (e.g., Dai et al., 2009) and most populous transboundary
basins (Webster et al., 2010; Lakshmi et al., 2018). Surface water
from these rivers provides great benefits because it helps support
critical agricultural and energy production needs for over 690
million people (FAO, 2016), i.e., a tenth of the human population.
Yet, the benefits of surface water also come with challenges, most
notably for the downstream parts in these basins, which were
determined to have the world’s highest risks of exposure to floods,
but also to droughts (UNEP, 2016).

In Bangladesh, which is situated in the downstream portion
of the GBM basin, losses due to flooding are severely hampering
the economic growth of the country. Approximately 80% of the

country consists of floodplains such that, in a typical year, about

a third of Bangladesh is flooded during the monsoon (Brouwer

et al., 2007). During extreme flood years, two thirds of the

country can be inundated for ∼3 months, causing widespread
devastation on the region (Mirza et al., 2003). The mean annual
loss caused by normal flooding in Bangladesh is estimated about
US$175 million (Mirza, 2011). The World Resources Institute
ranks Bangladesh as first in the world in terms of percentage of
country GDP regularly exposed to flooding and second in terms
of population exposed (Priya et al., 2017).

While the Mekong River Basin is also characterized by the
intensity of its wet season (Hoang et al., 2019), the most critical
ongoing hydrologic challenge is the expected increase of large
hydropower dams on the main stem of the Lower Mekong River
(Kummu and Sarkkula, 2008; Bonnema and Hossain, 2017). The
proposed construction of 11 hydropower dams on the now free-
flowing river (Orr et al., 2012) is anticipated to have a significant
impact on the region’s ecohydrology (Pokhrel et al., 2018) and
aquaculture—the Mekong contains the world’s largest inland
fisheries (Hecht et al., 2019). These degradations are expected
to continue to grow in the future with a total of 90 and 136
dams to be built within the Lower Mekong basin by the year
2030 and 2060, respectively (Räsänen et al., 2012). Recent studies
reporting a 10-fold increase from water storage capacity from 2
to 20% of annual flow by 2025 indicate that the drastic impacts
of the proposed dam constructions on fisheries, agriculture, and
the environment are likely to persist (Kummu et al., 2010; Hecht
et al., 2019).

The high population density and hydrologic extremes in South
and Southeast Asia therefore pose a variety of challenges to
water management. The transboundary aspect of river basins in

the area and associated geopolitical challenges in data sharing
make water management endeavors rely heavily on simulations
from computer models (Hossain et al., 2014). Much of the
existing literature in the region has therefore focused on detailed
hydrologicmodeling endeavors with locally-tailoredmodels (e.g.,
Nishat and Rahman, 2009; Hossain et al., 2017). In the case of
Bangladesh, much effort has been dedicated to flood mitigation
through forecasting to further the economic progress and food
security with particular emphasis on increased lead time of flood
forecasting systems (CEGIS, 2006; Webster et al., 2010), i.e., the
latency between available forecasts and real-time events. Other
notable applications include the flood forecasting system of
Sikder and Hossain (2018), and antecedent studies of hydrologic
and hydraulic model development (e.g., Siddique-E-Akbor et al.,
2014; Maswood and Hossain, 2015).

Similarly, the planned and ongoing development of
hydroelectric dams in the Lower Mekong Basin has been a
subject of intense national and international argument for
the stakeholder countries of the Mekong basin and numerical
models have played an important role in such debate. Hanington
et al. (2017) showed how hydrological models can be used for
water resources planning and management in the Mekong delta
to support the agricultural production. Räsänen et al. (2012)
studied the hydrological impact of the proposed dams on the
downstream portion of the Mekong basin. Haddeland et al.
(2006) and Tatsumi and Yamashiki (2015) investigated the effect
of water diversions on the water and energy balances of the
Mekong basin using hydrological models. Hoang et al. (2019)
used a hydrological model to study the impact of climate change,
construction of dams and flow diversion on the future flow
of the Mekong river. Similar efforts by Johnston and Kummu
(2012) and Pokhrel et al. (2018) have studied the expected
evolution of the Mekong water resources in in the context of a
changing climate.

Besides the aforementioned water resources applications
of hydrologic models in the GBM and the Mekong basin,
Land Surface Models (LSMs) are also used as a core tool
for understanding the spatio-temporal variation of hydro-
meteorological variables and associated physical processes. The
importance of understanding the water cycle and quantifying
its various fluxes using LSMs is even more acute in the
case of ungauged and transboundary regions, where such
data can prevent large-scale disasters (Siddique-E-Akbor et al.,
2014; Murshed and Kaluarachchi, 2018). At this time, several
operational global LSMs are producing continuous estimates of
different hydrological fluxes, which can be used as an easily-
accessible alternative to locally-tailored hydrological models.
Numerous studies have used these readily available LSM outputs
to analyze different components of the water cycle. For example,
Lakshmi et al. (2018) quantified water availability in the world’s
major river basins using the Global Land Data Assimilation
System (GLDAS) model outputs (Rodell et al., 2004).

Perhaps the most widespread use of GLDAS or other global
LSMs in South and Southeast Asia is along with the Gravity
Recovery and Climate Experiment (GRACE) data to determine
groundwater fluctuations and changes in water storage. Rodell
et al. (2009) and Chinnasamy et al. (2015) used GLDAS soil
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moisture along with GRACE to estimate the groundwater
depletion rate in North India. Khandu et al. (2016) used GRACE
along with soil moisture estimates from different LSMs to
estimate the influence of precipitation extremes on the Total
Water Storage (TWS) in the GBM basin. A recent study by
Murshed and Kaluarachchi (2018) used GLDAS soil moisture
data to estimate freshwater availability in the Ganges Delta and
demonstrated how LSMs can be used to identify the complex
issues of water security.

Global LSM outputs are also often applied throughout the
world’s largest basins for comparison and validation against
satellite-derived data. Syed et al. (2008) used GLDAS and GRACE
separately to characterize the Terrestrial Water Storage Change
(TWSC) in major river basins and found a good agreement
in satellite- and model-derived TWSC. Rodell et al. (2011)
used GRACE and other observed and modeled data together
to estimate evapotranspiration for a few major river basins
and compared the results with models. Chen et al. (2013)
compared the Advanced Microwave Scanning Radiometer—
Earth Observing System (AMSR-E) and all four GLDAS LSM-
derived soil moisture with the in-situ station averaged soil
moisture data in the Tibetan Plateau and reported that three out
of four GLDAS LSMs perform better than the satellite product
in that region, though the LSMs generally underestimated
soil moisture.

Global LSM data products therefore have strong potential
for practical applications in ungauged and transboundary river
basins, including in South and Southeast Asia, and the accuracy
of these models is therefore critical for associated water resources
management endeavors (Wang et al., 2011). For these LSMs to
be most useful, they must be validated against in-situ data in
anticipation for practical (i.e., “real-world”) applications, as done
previously in several published studies. Berg et al. (2005) used
GLDAS and NLDAS models to prepare hydro-meteorological
forcing data (i.e., the continuous input data used to run
the model) for global soil moisture estimation and compared
their simulations with in-situ soil moisture data to find good
agreement between the anomaly of observed and modeled soil
moisture. Similarly, Bi et al. (2016) used in-situ soil moisture data
to validate the GLDAS LSMs in the Tibetan Plateau and found
that models can accurately capture the temporal variations, but
systematically underestimate soil moisture. However, validating
LSMs using distributed hydrological fluxes is challenging, since
the evaporation, soil moisture, and groundwater are difficult
to measure in-situ, and in-situ measurements only capture the
local state.

River flow does not face the same distributed challenge
because it is the integration of all upstream hydrologic processes
and many in-situ discharge datasets in the major rivers of the
world have continuous record. Therefore, river discharge can
also be used to validate global LSM simulations, granted that the
discharge is routed correctly (Zaitchik et al., 2010), the effects of
anthropogenic activities in hydrological processes are addressed
properly, and noting that observations are often difficult to obtain
(Hossain et al., 2014). Such a validation is critical because it
allows for the verification of the LSM estimates in an integrated
manner. Yet, most of the validations of existing operational LSMs

using river flow have been conducted in data-rich regions of
the world. For example, Mitchell et al. (2004) used the in-situ
discharge of the Contiguous United States (CONUS) to validate
the North American Land Data Assimilation System (NLDAS).
Xia et al. (2012b) updated the same validation study using the
LSMs of NLDAS-2. In contrast, very few studies were conducted
in other parts of the world. To the extent of our knowledge, only
Zaitchik et al. (2010) used discharge estimates for the world’s
major rivers to validate GLDAS, and identified that the four LSMs
of GLDAS performed differently and with distinct geographic
patterns to estimate the river flow. They also found that the
choice of meteorological forcing has a notable impact in the
simulated discharge.

Recently-updated global LSM products (e.g., GLDAS-2) are
now available but have not yet been evaluated against observed
river flow. Such a validation effort is particularly needed for
the transboundary river basins of South and Southeast Asia
where global LSMs can provide valuable estimates of water fluxes
and states. In this context, the primary goal of this study is to
identify optimal global LSMs for estimating river flow in South
and Southeast Asia. Furthermore, the accuracy of the model-
simulated river discharge can be expected to be sensitive to
the choice of the LSM, meteorological forcing, spatio-temporal
resolution of the models, and routing model parameters. A
secondary goal of this study is hence to identify the most
influential factors affecting the accuracy of the simulated flow.

This paper is organized as follows. Section Model and Data
describes the data and models used in this study, including
the global LSMs, the river routing model, and the in-situ
discharge data. TheMethodology follows in sectionMethodology
and section Results and Discussions describes our results and
discusses our analysis. Finally, section Conclusions presents
our conclusions.

MODEL AND DATA

Land Surface Models
Several publicly available LSM outputs from different projects
were considered for this study. Model outputs from 2001 to
2009 were used for river routing simulation and preliminary
analysis. This time window was carefully chosen to ensure that
the data from all global LSMs considered are available. A list and
the details of these LSMs are provided in Table 1, and further
discussed below.

The GLDASv1 (denoted by GLDAS hereafter) consists of four
different LSMs. These models are the Mosaic model (Koster
and Suarez, 1996), the Noah model (Chen et al., 1996; Koren
et al., 1999), the Common Land Model (CLM) (Dai et al.,
2003), and the Variable Infiltration Capacity (VIC) model (Liang
et al., 1994). A combination of meteorological datasets were
used as the input (i.e., “forcing”) for these LSMs: the National
Oceanic and Atmospheric Administration (NOAA) Global
Data Assimilation System (GDAS) atmospheric analysis fields,
the spatio-temporally disaggregated NOAA Climate Prediction
Center Merged Analysis of Precipitation (CMAP) fields, and
the Air Force Weather Agency’s AGRicultural METeorological
modeling system (AGRMET) method based in-situ downward
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TABLE 1 | Details of the Land Surface Model (LSM) outputs used in this study.

Projects Version Forcing LSM Resolution

Precipitation Radiation Others Temporal Spatial

GLDAS v1 CMAP AGRMET GDAS CLM v2.0 3 h 1◦

Mosaic

Noah v2.7.1

VIC

v2.0 Princeton meteorological forcing Noah v3.3 3 h 0.25◦, 1◦

v2.1 GPCP AGRMET GDAS Noah v3.3 3 h 0.25◦, 1◦

ECMWF ERA-interim/Land GPCP v2.1 ECMWF Re-Analysis HTESSEL Daily 80 km

shortwave and longwave radiation fields. The GLDASv1 outputs
are available from January 1979 to date. More details about
these models can be found in Rodell et al. (2004) and Rui and
Beaudoing (2017).

An updated GLDAS is now available and denoted GLDAS-2.
Two different versions of GLDAS-2 are available: GLDASv2.0 and
GLDASv2.1. Both GLDASv2.x used more recent meteorological
forcing than GLDAS in a unique LSM which is a newer version
of Noah. GLDASv2.0 used the Princeton meteorological forcing
data (Sheffield et al., 2006) that is available from January
1948 to December 2010. GLDASv2.1 used a combination
of NOAA/National Center for Environmental Prediction’s
GDAS atmospheric analysis fields, the spatio-temporally
disaggregated Global Precipitation Climatology Project (GPCP)
precipitation fields, and the updated AGRMET downward
shortwave and longwave radiation fields as the forcing data.
Other enhancements in GLDAS-2 include switching to MODIS
based land surface parameter datasets, and initialization of
soil moisture over desert (Rui and Beaudoing, 2019). The
model outputs of GLDASv2.1 are available for the period of
January 2000—present.

Another set of global LSM outputs is available from
the European Centre for Medium-Range Weather Forecasts
(ECMWF). These simulations used the ECMWF Re-Analysis
(ERA)-Interim data and the GPCPv2.1 adjusted precipitation
field as forcing for the latest version of the Hydrology-Tiled
ECMWF Scheme for Surface Exchanges over Land (HTESSEL)
LSM to produce the ERA-Interim/Land products. The outputs of
this model are covering a period of January 1979 to December
2010. More details of this dataset can be found in Balsamo et al.
(2012, 2015).

River Network Routing Model
The Routing Application for Parallel computatIon of Discharge
(RAPID) (David et al., 2011) is used as the river routing model
in this study to derive the daily flow throughout the river
basins. RAPID uses the Muskingum method (McCarthy, 1938)
to calculate flow at all nodes of a given river network using
surface and subsurface runoff from an LSM as inputs. One
of the key advantages of RAPID is that it can efficiently be
executed in a parallel computing environment by using a matrix
form of the Muskingum method. More detailed descriptions of
the Muskingum method and its use to propagate runoff from

LSMs are available in David et al. (2011). The river network
data for this study were obtained from the Hydrological Data
and Maps Based on Shuttle Elevation Derivatives at Multiple
Scales (HydroSHEDS) (Lehner et al., 2008). The fine resolution
river network was directly extracted from the 15 arc second
HydroSHEDS river network. The coarse river network was
derived from the upscaled 0.1◦ HydroSHEDS grid (Alfieri et al.,
2013; Snow, 2015). Apart from the given surface and subsurface
runoff from any LSM and a given river network, the basic model
setup requires two sets of model parameters. These parameters
are the Muskingum dimensionless diffusion coefficient (denoted
by x) and flow wave propagation time (denoted by k); and the
parameters can vary spatially on a reach-by-reach basis although
they are temporally constant.

Observed Discharge Data
Observed river flow data for different locations of the GBM
and Mekong river basins were obtained from the Bangladesh
Water Development Board (BWDB) and the Mekong River
Commission (MRC), respectively. The location of these in-situ

discharge stations are shown in Figure 1. The GBM discharge
data were available for the entire routingmodel simulation period
(2001–2009). The Mekong river flow data were available up to
2007 in a few stations, while the data were available up to 2006 in
most stations. Therefore, the in-situ flow data in between 2001
and 2006 were considered for the performance analysis of the
daily flow in all river stations for consistency. All available in-situ
flow stations downstream of the Tonlé Sap Lake were excluded
from the analysis due to its complex hydrological behavior.

METHODOLOGY

The primary objective of this study is to evaluate the performance
of each global LSM in South and Southeast Asia by comparing
routed runoff from a river model to daily in-situ river flow
observations. The secondary objective is to identify the factors
that significantly affect the simulated flow. To get a preliminary
perspective on the relative performance of each LSM, the basin-
averaged mean annual precipitation, evapotranspiration, and
runoff were computed. At first, the basin-scale mean annual
water budget error analysis was carried out in a way similar to
Xia et al. (2012a) who used 28 years of data to evaluate LSM
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FIGURE 1 | Location of the Ganges-Brahmaputra-Meghan (GBM) and Mekong river basins along with the in-situ discharge stations. The fine and coarse river

networks used for flow routing are shown in the background.

performance in the CONUS. In this study, the mean annual total
model input (i.e., precipitation) and mean annual total model
outputs (i.e., evapotranspiration, Runoff) were compared while
assuming that the change in water storage for a long-term average
should be negligible or close to zero. Here, 9 years of data (2001–
2009) were used, and the difference between the mean-annual
total input and output was reported as a percentage of the total
input (i.e., precipitation). Note that the assumption of water
balance closure over a 9-year period can be debated in light of
the numerous past studies highlighting the effect of groundwater
extraction on the terrestrial water balance (e.g., Rodell et al., 2009;
Purdy et al., 2019) although it is justified in this study given our
intended focus on readily-available LSM outputs. We define the
mean annual percentage error in water budget as:

errorma =
(ET + Qs + Qsb)ma − (Rain+ Snow)ma

(Rain+ Snow)ma

∗ 100 % (1)

Where, error, ET, Qs, Qsb, Rain, Snow are for the area-averaged
water budget error, the LSM simulated evapotranspiration,
surface runoff, sub-surface runoff, input rainfall, and
snowfall, respectively.

The evapotranspiration-precipitation and runoff-
precipitation ratios were also derived from the area averaged
mean annual variables. The spatio-temporal averaged runoff
was then compared to the observed mean annual discharge,
itself derived from the in-situ discharge of the most downstream
station of each river basin. These stations are the Pakse, Hardinge
Bridge, Brahmaputra, and Amalshid in the Mekong, Ganges,
Brahmaputra, and Meghna basins, respectively (Figure 1). Note
that all the area-averaged values discussed above were calculated
with respect to these downstream in-situ stations. Therefore, the
area covered by the spatio-temporal averaged variables is the
same as the upstream basin area of each station (i.e., not the
entire basin but a significant portion of it).

The river network routing model (i.e., RAPID) was then
used to derive the daily flow at multiple locations in the river
basins, and compared with available in-situ discharge data. To
identify the factors that affect the simulated flow significantly, the
simulated daily flows were compared to the observed discharge
while varying the choice of the LSM, atmospheric forcing,
model resolution, and routing parameters. Several experimental
setups were therefore designed to reveal the relative impact of
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these four different design factors on the simulated flow. The
comparisons were performed using a series of five traditional
metrics: correlation coefficient, Nash–Sutcliffe efficiency (NSE),
root mean square error (RMSE), bias, and standard error.

The impact of the choice of the LSM was first assessed. Since
GLDAS uses the same forcing in four different LSMs, data only
from this version (i.e., GLDASv1) were used for this initial
analysis. The ECMWF ERA-interim/LAND derived daily flow
was also used here for comparison with the other four LSMs,
although the forcing data and the LSM resolution of ECMWF
are different. To be consistent, in all cases the routing model
was executed using the fine resolution river network. The name
of each test case contains the project name and version, LSM
name, model spatial resolution (i.e., 10 for 1◦ LSM outputs),
and the river network resolution. For example, the name for the
GLDAS Mosaic derived flow from the 1◦ runoff using the fine
river network is: GLDAS-MOS10-Fine.

Precipitation—the primary input of water to land surface
models—and other meteorological inputs are also sources of
uncertainty in simulated streamflow. Therefore, a performance
analysis was conducted for different forcing inputs to the same
LSM. The Noah LSM outputs are available which was forced
by different meteorological datasets; GLDAS, GLDASv2.0, and
GLDASv2.1. Although GLDAS-2 products are available in two
different spatial resolutions (i.e., 0.25 and 1◦), only 1◦ resolution
LSM products were used here for consistency with GLDAS.
Like the previous experiment, the daily flow was derived using
only the fine resolution river network in all cases, and the
ECMWF ERA interim/LAND derived daily flow was used here
as reference. It is important to note that the Noahv2.7 was
used in GLDAS, while both GLDAS-2 versions used Noahv3.3
as the LSM. Also, the LSM used with the ECMWF ERA
interim data was different from Noah, and has a different model
resolution (∼80 km). The experimental design nomenclature
remains similar, but different GLDAS (i.e., v1, v2.x) versions were
used here.

In a third experiment, models with different spatio-temporal
resolutions were used. To control for LSM and forcing
variabilities, only the GLDASv2.1 was used here with different
spatial and temporal resolution, and discharge was simulated
using fine (∼5 km) and coarse (∼20 km) river networks
(Figure 1). The GLDASv2.1 (Noah LSM) model outputs are
available in 0.25 and 1◦ spatial resolution and with 3 h temporal
resolution. The 3 hourly data were temporally averaged to derive
daily forcing for the routing model with different temporal
resolutions (i.e., as daily LSM input). The name of each test
case starts with the project name and version, followed by
the LSM name, resolution (i.e., 10 and 025 for 1 and 0.25◦,
respectively), temporal resolution only for the daily scale (i.e.,
D) and the river network resolution (i.e., fine or coarse). For
example, both GLDASv2.1-NOAH025-Coarse and GLDASv2.1-
Noah025D-Coarse stand for the simulated river flow using the
coarse river network with the 0.25 GLDASv2.1 Noah LSMoutput,
but for the 3-hourly and daily temporal resolutions, respectively.

In a final experiment, river routing simulations were
performed by changing the two parameters of the routing model
(i.e., RAPID). These parameters are the diffusion coefficient

(denoted by x) and propagation time (denoted by k) of the
Muskingum method. Although, it is possible to vary sets of
parameters independently for each reach in RAPID, it is not
practical to do so for the large river basins with numerous river
reaches used here. Therefore, both sets of parameters were first
determined and subsequently changed through multiplication
by a spatially-constant scale factor from experience. The initial
values of the storage constants (k) of all cells of the model were
determined from a spatiotemporally-constant wave celerity of
1 km/h while accounting for the variable length of river reaches.
Similarly, the weighting coefficients (x) were initially set to the
commonly accepted value of 0.1. Note that no specific parameter
calibration is performed in this study. All the test simulations
were then conducted using the ECMWF ERA interim/LAND
outputs. The name of each test case starts with the model name
and followed by the k scale factor (i.e., k02 and k035 for k
scale factor 0.2 and 0.35, respectively), the x scale factor (i.e.,
x2, x3, and x4 for x scale factor 2, 3, and 4, respectively), river
network resolution. For example, ERAi-Land-k02-x3-Coarse
means the RAPID model was simulated using the ECMWF ERA
interim/LAND with coarse resolution river network, while the
scaling factor for k and x were 0.2 and 3, respectively. Note that
the values of the scale factors are based on accepted ranges of
values (e.g., Fread, 1993) and on past experience from previous
RAPID studies (e.g., David et al., 2011).

The timing of hydrograph is also a concern for discharge
simulations and motivate the use of an additional metric. To
determine the accuracy of the hydrograph timing, a lagged
cross-correlation was used (e.g., David et al., 2011; Allen et al.,
2018). The lagged cross-correlation determines the correlation
between two timeseries as a function of lag that is added
between them. Optimal simulations flow should therefore show
the maximum correlation with observations when the lag time is
zero. The lagged cross-correlation between the simulations and
observations is shown in Equation (2).

ρ =

∑n
t=1

[

Qob
(t)

− Qob

]

[

Qsim

(

t+τlag
)

− Qsim

]

√

∑n
t=1

[

Qob
(t)

− Qob

]2
[

Qsim

(

t+τlag
)

− Qsim

]2
(2)

Where, ρ, Qob, Qsim, t, and τlag are the lagged cross
correlation, observed flow, simulated flow, time step, and lag
time, respectively.

TABLE 2 | Mean annual error in model water budget with respect to the input

precipitation (%).

Model/Basin Mekong Ganges Brahmaputra Meghna

GLDAS-CLM 0.45 0.06 0.51 0.02

GLDAS-MOS 4.63 1.04 2.35 −0.36

GLDAS-NOAH 1.05 −0.18 0.5 −0.21

GLDAS-VIC 1.52 0.61 1.28 0.3

GLDASv2.0-NOAH 0.1 −0.06 0.05 0.17

GLDASv2.1-NOAH 0.15 −0.41 −0.01 0.11

ECMWF-ERAi/Land 0.15 −0.21 0.23 0.33
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A maximum of 10-day lag time was considered in this study,
and correlations between the observed and (–)10-day to (+)10-
day temporal offset of the simulated flow were calculated.

RESULTS AND DISCUSSIONS

The analysis of themean annual water budget following Equation
(1) is summarized in Table 2 where the errors are shown here as
a percentage of the input (i.e., precipitation). Assuming steady
state, the error should be close to zero for the most optimized
LSM, hence demonstrating that the water balance is properly
satisfied. Our results show that the overall performance of the
newer versions of GLDAS (i.e., GLDAS-2) and ECMWF is better
in terms of the accuracy in water balance. Among the four LSMs
of GLDAS, CLM is maintaining the lowest water balance errors
in all the river basins, while Mosaic shows the largest errors.
Additionally, and although all the four GLDAS models are using
the same input data, the variation in water balance errors is
significant within these LSMs. This may be due to differences in
the fluxes and storage within soil layers given that the number
of soil layers and their associated depths differ among models.
The Mosaic model has three soil layers up to 350 cm below the
ground, while the Noah model is using four soil layers up to
200 cm. CLM and VIC are using ten layers up to 343.3 cm and
three layers up to 190 cm depth, respectively (Bi et al., 2016; Rui
and Beaudoing, 2017).

The evapotranspiration-precipitation ratio was then used
to evaluate the models, as shown in Figure 2, and suggests
that the newest projects (i.e., GLDAS-2 and ECMWF) have
relatively similar behaviors throughout all river basins (with
little ET/P ratio variability on a per-basin basis) while the
earlier GLDAS LSMs (i.e., GLDASv1) have inconsistent behaviors
(high ET/P variability in each basin). Although consistency
among different models cannot be directly linked to simulation
quality, it does add confidence in simulations. CLM may be
showing the closest evapotranspiration-precipitation ratio to the
newer version of the models. However, if the mean annual
evapotranspiration (Figure 2, values are reported above the bars
in mm/year) is considered in place of the ratio, then VIC
and Noah appear to be the closest to the newer version of
the models and CLM would underestimates the mean annual
evapotranspiration. A similar pattern was found by Xia et al.
(2012b), where simulated evapotranspiration was compared
with observations for the CONUS using the NLDAS-2, and
where VIC and Noah produce similar evapotranspiration. The
GLDAS-2 and ECMWF were forced with similar amounts of
input precipitation (Figure 2, values are reported below the
bars in mm/year), while the GLDAS LSMs were forced with
low-biased precipitation relative to GPCP (Rui and Beaudoing,
2019). The case of the Ganges basin may be of particular
interest here, given that the amounts of input precipitation
are all very close in GLDAS, GLDAS-2, and ECMWF. In
this basin, CLM shows consistently lower evapotranspiration-
precipitation ratios, while Noah is more consistent with newer
simulations in GLDAS-2 and ECMWF. Our experiments are
therefore generally inconclusive in recommending a specific

LSM for evapotranspiration given that both evapotranspiration-
precipitation ratio and precipitation itself both vary greatly
in available experiments. However, the expected increase in
the quality of precipitation dataset and the consistency of
precipitation and evapotranspiration-precipitation ratios among
latest projects provides some level of confidence in GLDAS-2 and
ECMWF simulations.

Similarly, the runoff-precipitation ratio was derived
(Figure 3) along with the model simulated mean annual
runoff values (Figure 3, above the bars in mm/year) and the
observed mean annual runoff (Figure 3, on top of the charts).
Here again GLDAS-2 and ECMWF are showing similar results,
although the comparison with observed runoff (computed from
observed discharge) is here able to confirm better performance
in terms of mean annual runoff for the most recent projects. All
the four earlier GLDAS LSMs are consistently underestimating
runoff which is perhaps due to underestimated precipitation
for this earlier dataset. CLM appears to perform relatively
better in terms of runoff compared to the other GLDAS
LSMs. This may be related to CLM’s underestimation of
evapotranspiration combined with lower amounts of input
precipitation (Figure 2), generating relatively larger runoff.
However, CLM also overestimates runoff in the Ganges basin
due to more accurate precipitation there, which is associated
with the underestimated evapotranspiration by CLM in Ganges
basin. This confirms that a more accurate precipitation as input
in the earlier GLDAS LSMs could have changed their accuracy.
In general, GLDAS-2 and the ECMWF provide more accurate
runoff estimation, in addition to low errors in annual water
balance (Table 2). However, all LSMs significantly underestimate
runoff in the case of the Brahmaputra basin, which may be due
to unrealistic runoff-precipitation ratios or flawed amounts of
precipitation in that basin.

The RAPID model was then used to derive daily flows
from available global LSMs runoff throughout river basins and
simulated flows were compared with the in-situ measurements.
The analysis was carried out for the four aforementioned
experimental setups, since the simulated flow may be sensitive to
the selection the LSM, meteorological forcing, model resolution,
and model parameters. A sample output of RAPID simulation
is shown in Figure 4 for the Pakse station in the Mekong basin
where the simulated and observed discharge are plotted as a
function of: different LSMs (Figure 4A), different meteorological
forcing (Figure 4B), different spatio-temporal resolutions of the
models (Figure 4C), and different river network routing model
parameters (Figure 4D). Note that the number of test cases
considered in each experiment differs; and that this lack of
consistency in the number of ensembles of the experimental
setup may impede the fairness of comparisons. However, the
ensemble sizes for the first two experiments (i.e., for different
LSMs and different meteorological forcing) is dictated by
data availability and beyond our control. Nevertheless, this
preliminary analysis suggests that the simulated flow is mostly
influenced by the selection of the LSM and by the meteorological
forcing than it is influenced by the spatio-temporal resolution
of the models and by the routing model parameters. Further
analysis was conducted in all discharge stations of Figure 1 for
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FIGURE 2 | Mean annual Evapotranspiration-Precipitation ratio the Mekong and GBM basins. All the values shown above the bars and in the boxes are the simulated

mean annual evapotranspiration and input precipitation in mm, respectively.

FIGURE 3 | Mean annual Runoff-Precipitation ratio of the Mekong and GBM basins, along with the observed mean annual river flow. All the values reported above the

bars are the simulated mean annual runoff in mm. Analysis for Mekong basin was conducted up to 2006, constrained by the in-situ river flow data availability.
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FIGURE 4 | Example of the simulated daily flow hydrograph in the Mekong basin as a function of different (A) LSM, (B) input forcing, (C) spatio-temporal resolution of

LSM and routing model, and (D) routing model parameter. Observed river flow is shown in black line.

these four different design factors using the correlation, NSE,
RMSE, bias, and standard error, as discussed below.

Figure 5 shows the evaluation of the global LSMs as a function
of different land surface models used. In this experiment, all
the four models of GLDAS were considered, which were forced
by the same meteorological data. Outputs using the ECMWF—
forced with a different set of data—are also shown as a reference
for comparison. Based on the five metrics used in this analysis
(Figure 5), the selection of the LSM is an influential factor in river
discharge simulations, as expected because LSMs are responsible
for determining the amount of runoff that is available as inputs
to rivers. The NSEs show that CLM performs consistently better
among the other GLDAS LSMs. This can be explained by the
low estimation of evapotranspiration in CLM combined with the
underestimated precipitation forcing in GLDAS. CLM produces
relatively higher runoff among the GLDAS LSMs, which is closer
to the in-situ discharge observations. Overall, the model biases
show that the GLDAS generally underestimates runoff likely in
part due to the underestimated precipitation forcing. It is also
worth noting here that the discharge estimates obtained from
the ECMWF LSM runoff are far superior to that of the GLDAS
LSMs, for all stations considered, although the determination of
the underlying reasons for the relative higher quality is beyond
the stated scope of this study.

Figure 6 shows the evaluation metrics for the simulated river
flow at multiple locations as a function of the meteorological
forcing used. To be consistent, we focus on the Noah model with
different meteorological forcing. The ECMWF-based simulations

are also shown for reference, as done in the previous analysis.
Clearly, the forcing also has an impact on the accuracy of
the simulated flow, particularly in model bias. This impact on
simulated flow is also to be expected because precipitation is
a key driver of the terrestrial water cycle. Figure 6 suggests
that the updated precipitation forcing in GLDAS-2 helps reduce
the aforementioned negative bias of the simulated river flow
and improves model accuracy, which is evidenced by the
high NSE values obtained. The performance of the ECMWF
and GLDASv2.1 is similar in most cases. Yet, the ECMWF
performs better for all in-situ stations except the Meghna, where
the GLDASv2.1 metrics are slightly better. The accuracy of
the simulated flow using GLDASv2.1 is greater than that of
GLDASv2.0, and is followed by that of GLDAS.

The simulated flows are then evaluated for different spatio-
temporal resolutions of the LSMs and for the spatial resolution
of the river routing model (Figure 7). This analysis was carried
out for 3-hourly and daily LSM data with 0.25 and 1◦ spatial
resolution and using both fine and coarse resolutions for the river
network used in the RAPID model. Surprisingly, despite these
rather different spatio-temporal resolutions, Figure 7 shows that
the performance in all cases is very similar. The linearity of the
Muskingum equations that drive the RAPID model may be the
source of this similarity in discharge outputs. The analysis was
repeated using a few smaller catchments (e.g., 2,000–5,500 km2)
within the Mekong basin (not shown here) and suggests some
sensitivity of the simulated flow to varying spatial resolutions of
LSM (i.e., 0.25 or 1◦), which may be explained by the boundary of
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FIGURE 5 | Performance of simulated daily stream flow at different locations of the Mekong and GBM basin as a function of different LSMs. All the GLDAS LMSs in

this experiment were forced with the same meteorological inputs. ERA-interim/Land from ECMWF (with different resolution and uses a different meteorological forcing)

is shown here as a reference.
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FIGURE 6 | Same as Figure 5, but as a function of different meteorological forcing in the same LSM (i.e., Noah model).
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FIGURE 7 | Performance of simulated daily stream flow as a function of different spatio-temporal resolution of the same LSM using the same meteorological forcing

(i.e., GLDASv2.1-NOAH). Here, NOAH10 and NOAH025 are for different spatial resolutions, 1 and 0.25◦, respectively. The LSM outputs in daily scale, denoted here

by “D,” and the other test cases (i.e., without “D”) are for 3-hourly LSM outputs. The last part of each test case name is representing the river network resolution

(Figure 1) used for flow routing.
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FIGURE 8 | Sensitivity of using different flow routing parameters at different locations of the Mekong and GBM basins. All the routing simulations were conducted with

the same LSM outputs (i.e., ECMWF-ERA-interim/Land).
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the smaller catchments being better defined by the fine resolution
grid, also such effect remains limited.

The influence of the routing model parameters was also
evaluated for the simulated river flow (Figure 8). The river
flow was simulated using the ECMWF model runoff data with
different weighting coefficient (x) and storage constant (k) scale
factors. The analysis shows that the variation in simulated
flow accuracy due to different routing model parameter is
not as significant as the selection of the LSM or that of the
meteorological forcing. Note here again that the number of test
cases in this experiment (i.e., different routing model parameter)
is different from the number of test cases considered for different
LSMs and meteorological forcing. However, it is to be expected
that the storage constant should have an influence on the timing
of hydrograph, since this parameter is related to the time of
concentration of the basin. This variation is not visible with
the five metrics used in this analysis, possibly due to the large
temporal window of the analysis (i.e., 6 year). Therefore, an
additional metric was used here to determine the accuracy in the
timing of the simulated hydrograph.

The lagged cross-correlation was hence calculated by applying
a temporal offset to the simulated flow and determining the lag

for which the cross-correlation with observed data was highest.
The results of this analysis are shown in Figure 9, where the
lag time of the simulated flows corresponding to the maximum
correlation with the observed flows are reported. This analysis
was carried out for the simulated flow with different routing
model parameters (Figure 9A), as well as for different LSM
with different meteorological forcing (Figure 9B). Figure 9A

illustrates that the timing of hydrograph influenced by the storage
constant (k), as expected. Therefore, while the routing model
parameters are not significantly changing the accuracy of the
simulated flow as measured by traditional metrics (Figure 8),
the storage constant is important to fine-tune the hydrograph
timing of the simulated flow (Figure 9A). This suggests that
existing spatially-varying values of k (e.g., Allen et al., 2018)
may lead also to improved peak timing. However, the diffusion
parameter is relatively insignificant, as was already shown
previously (Koussis, 1978). Furthermore, the same analysis for
different LSMs with different meteorological forcing (Figure 9B)
shows that the timing of hydrograph is also influenced by the
selection of LSM, as it is by the meteorological forcing. Here
again, the timing of hydrograph for the ECMWF experiments
is relatively better than that of all versions of GLDAS LSMs

FIGURE 9 | Lag time corresponding to the maximum lagged cross correlation in between the observed and simulated flow at different locations of the Mekong and

GBM basins, as a function of different (A) routing model parameters, (B) LSMs and input forcing.
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in all discharge stations with the exception of the Meghna
basin (Figure 9B).

The overall analysis of the available global LSM data therefore
shows that GLDAS-2 and ECMWF performed relatively better
than the earlier GLDAS. This relative superiority is reported
here for mass balance residual errors (although with caveats
for the absence of groundwater processes and the relatively-
short study period), and for mean annual flow. The analysis
of the RAPID simulated daily river flow using five traditional
metrics (correlation, NSE, bias, RMSE, and standard error) with
respect to different LSMs and different meteorological forcing
together indicate that in most cases ECMWF outperforms the
other datasets considered in this study. Note that the different
ensemble sizes used for LSMs (five), precipitation (four), model
spatiotemporal resolution (eight), and river routing parameters
(four) is inconsistent among our experiments partly due to
data availability. However, the demonstrated sensitivity obtained
for available ensembles (Figures 4–8) remains remarkable. In

addition, the analysis of lagged cross-correlations also suggests
that the ECMWF-derived river flow more accurately maintains
the timing of hydrograph. In general, the ECMWF’s ERA-
interim/Land runoff derived river flow shows the most optimal
performance in our study of the Mekong and the GBM
river basin, although the determination of the source for this
superiority is beyond the scope of this paper. For further
illustration, the simulated flow hydrographs from the ECMWF
model along with the in-situ data at different locations of the
aforementioned river basins are shown in Figure 10.

CONCLUSIONS

Global Land Surface Models (LSMs) have the potential to help
fill the observational gap of ungauged and of transboundary river
basins. These models can be particularly valuable to mitigate
water resources challenges in the large and densely populated

FIGURE 10 | Comparison of the simulated daily stream flow using the ECMWF-ERA-interim/Land outputs in the fine scale routing model (i.e., with fine river network)

and in-situ discharge at different locations of the Mekong and GBM basins.
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transboundary river basins of South and Southeast Asia because
they provide valuable estimations of the hydrological fluxes and
states. Thus, the investigation of the appropriate global LSM
among the many available operational models is critical in order
to make best use of these model outputs. The primary goal of this
study is therefore to identify the most optimal global LSMs for
the region as it pertains to river flow estimation for the region.
Concurrently, it is of value to determine the factors influencing
the variance in the quality of model simulated flow.

The first part of this study’s analysis was carried out based
on the mean annual water fluxes estimated by several global
LSMs (i.e., GLDAS, GLDAS-2, ECMWF ERA-interim/Land)
to generally illustrate model accuracy. The ratios of the
model simulated mean annual evapotranspiration and runoff to
precipitation was evaluated in this context. The investigation
of available global LSMs was conducted with respect to in-situ
discharge because these data are reliable and more frequently
available than the distributed observed water fluxes. The analysis
of the simulated flow was executed using four traditional metrics
(correlation, Nash-Sutcliffe Efficiency, bias, standard error, and
root-mean-square error) to evaluation the sensitivity of the
simulated flow to the selection of the LSM, the meteorological
forcing, the spatio-temporal resolutions of the models, and the
routing model parameters. Finally, the lagged cross-correlation
analysis was conducted to evaluate the accuracy in the timing of
the simulated hydrograph.

The analyses based on the mean annual water fluxes indicate
that GLDAS-2 and ECMWF show better consistency with
observed data than the earlier version of GLDAS. The model
estimated mean annual runoff from GLDAS-2 and ECMWF
products are also show better agreement with the observed
runoff. Among the four LSMs of the GLDAS, CLM may appear
to perform relatively better in terms of the runoff, although
this may be due to underestimated precipitation combined with
underestimates of evapotranspiration. The four experimental
cases for the sensitivity analysis reveal that simulated river flow
is mostly influenced by the selection of the LSM and by its
input meteorological forcing. In contrast, the impact of the
spatio-temporal resolutions of the LSMs is much lower for
large river basins. A similarly low sensitivity is shown in the
case of different routing model parameters for the traditional
discharge metrics used. One should note that the varying size
of ensembles in our experiments was largely a result of data
availability and may have an impact in the sensitivity analysis
of this study although enforcing consistency in ensemble sizes
is beyond our intended scope. However, the analysis of lagged
cross-correlation suggests that the flow wave propagation time
has notable impact on the timing of hydrographs. Overall, the
discharge simulations using runoff from the ECMWF ERA-
Interim/Land outperform those from all other tested LSMs in
terms of the simulated river flow accuracy as well as the timing
of hydrograph in our study of the GBM and the Mekong basins.
Our results suggest that the accuracy of ECMWF-derived flows
is then followed by that of GLDASv2.1 GLDASv2.0, and GLDAS.
One notable limitation of this study is that it does not include
the anthropogenic effects (e.g., water diversions, dams, or land
use change) in the models or their analysis. However, previous

studies argued that the Brahmaputra basin is relatively in pristine
condition since there is no major human intervention in the
river (Biancamaria et al., 2011). There are also several existing
dams and barrages in the Mekong River basin, but the impact
of water use (i.e., for irrigation) on the mean annual flow
for these diversions is relatively insignificant, at least during
the study period. Haddeland et al. (2006) reported that the
total use of water in Mekong basin is only 2.3% of the mean
annual flow. While this small water use portion is applicable
to our study period, it is expected to grow for later dates as
a few large dams are under construction on the mainstem of
the Mekong river, which is expected to change the impact on
mean annual flow from ∼2% in 2008 to ∼20% in 2025 (Hecht
et al., 2019). Future similar studies could therefore consider the
inclusion of these anthropogenic activities, particularly in the
Mekong basin, but also in the GBM. It is important to note
here that the determination of the underlying reasons for the
relative superiority of ECMWF runoff in our study of South
and Southeast Asia is beyond the scope of this paper, and that
our results are likely to be geographically dependent. We do not
therefore make any recommendation for other river basins.
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