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Information is a critical resource in disaster response scenarios. Data regarding the

geographic extent, severity, and socioeconomic impacts of a disaster event can help

guide emergency responders and relief operations, particularly when delivered within

hours of data acquisition. Information from remote observations provides a valuable tool

for assessing conditions “on the ground” more quickly and efficiently. Here, we evaluate

the social value of a near real-time flood impact system using a disaster response case

study, and quantify the Value of Information (VOI) of satellite-based observations for rapid

response using a hypothetical flooding disaster in Bangkok, Thailand. MODIS imagery

from NASA’s Land, Atmosphere Near real-time Capability for EOS (LANCE) system is

used to produce operational estimates of inundation depths and economic damages.

These rapid Earth observations are coupled with a decision-analytical model to inform

decisions on emergency vehicle routing. Emergency response times from vehicles routed

using flood damage data are compared with baseline routes without the benefit of

advance information on road conditions. Our results illustrate how the application of

near real-time Earth observations can improve the response time and reduce potential

encounters with flood hazards when compared with baseline routing strategies. Results

indicate a potential significant economic benefit (i.e., millions of dollars) from applying near

real-time Earth observations for improved flood disaster response and management.

Keywords: value of Information, near real-time, emergency response, applied Earth observations, socioeconomic

INTRODUCTION

Natural disasters like floods can have devastating societal impacts. Direct damages from flooding,
such as the loss of human life or the destruction of infrastructure have immediate social
ramifications, while indirect impacts like reduced business production or loss of income can lead
to more protracted socioeconomic effects (Haraguchi and Lall, 2015). This is especially true in
regions like the Lower Mekong River Basin (LMRB), where its combination of high population
density, seasonal monsoons, and low-lying topography make it particularly susceptible to flooding
(Gale and Saunders, 2013) (Figure 1a).

Managing flood hazards in such a flood-prone region requires an acute understanding of the
risk of future events. Flood risks are defined by the function of the probability of occurrence, the
exposure (e.g., population and assets subject to flooding), and vulnerability, which is a measure of
the society’s ability to cope with an event (Koks et al., 2015). Emergency management operations
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FIGURE 1 | (a) Map of Lower Mekong River Basin countries with flood extent from 2011 event (pink shaded region). (b) Study extent showing results of the triangular

interpolated network (TIN) produced by extracting land elevations from around the perimeter of the flood extent. (c) Resulting inundation depth raster produced by

flood impact analysis.

are typically divided into four phases: Preparedness, Response,
Recovery, and Mitigation (Altay and Green, 2006). Preparedness
refers to the capacity-building period before a disaster strikes.
After the onset of an event, the Response phase focuses on
saving lives and averting additional damages. Post-event activities
include Recovery, in which communities seek to return to pre-
flood capabilities, and Mitigation, which refers to resiliency
initiativesmeant to strengthen the community from future events
(Howden, 2009).

Each stage in the disaster management cycle presents its own
set of challenges, with the highest uncertainties occurring in the
Response phase immediately after a disaster strikes (Okuyama,
2003; Ortuño et al., 2013). A single flood event can impact
multiple interdependent systems, such as telecommunications,
transportation, and power infrastructure, thereby hindering

coordination between decision makers, emergency responders,
and populations in need (Comfort et al., 2004).

In such situations, information about the extent, severity,
and impacts of flooding becomes a time-critical resource. The
2005 World Disasters Report notes that in disaster response
scenarios, information can be considered as vital a form of aid
as “. . .water, food, medicine, or shelter,” with respect to its ability
to save lives and extend resources (Walter, 2005). Due to the high
uncertainties and dynamic nature of the disaster response phase,
information is most valuable when obtained as soon after the
flood event as possible. In a survey of 52 EmergencyManagement
Agencies, 82% expressed a need for flood impact information
within 24 h of the event (Hodgson et al., 2009).

Geospatial technologies like remote sensing, aerial footage, or
volunteered geographic information (VGI) provide a valuable

Frontiers in Environmental Science | www.frontiersin.org 2 September 2019 | Volume 7 | Article 127

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Oddo and Bolten Value of Applied Earth Observations

way of obtaining useful intelligence at broader scales and with
shorter latency than traditional methods (Hodgson et al., 2009;
Goodchild and Glennon, 2010; Haworth and Bruce, 2015). These
Earth-observing technologies have been widely incorporated
into the emergency management cycle, from providing early
warning systems for flood preparation (Koriche and Rientjes,
2016) to improving hazard mapping to inform long-term
planning and mitigation strategies (Shivaprasad Sharma et al.,
2017). Yet despite the obvious benefits of Earth observations,
comparatively little research has been done to quantify the
value that these data provide, particularly in the Response phase
(Hodgson et al., 2009).

To this end, there remain several questions regarding
the extent to which satellite-based information can aid in
disaster management and planning, rapid response cases, and in
improving the allocation of resources. To investigate the utility
of operational Earth observations during a flood, we present
a simple decision-analytical model based on a hypothetical
flood response scenario. We use a Value of Information (VOI)
framework to identify management objectives that could benefit
from applied satellite data, and determine the potential time and
cost savings achieved when incorporating geospatial information
into emergency vehicle routing. In this context, routing is defined
as the turn-by-turn navigation from a predefined dispatch center
to a location of potential need. We accomplish this by coupling
flood inundation estimates from an operational near real-time
(NRT) satellite-based flood monitoring system with an open-
source routing platform to evaluate how management objectives
perform both in the presence and absence of advance flood
information. In doing so we attempt to address the following
main questions:

(1) How does the presence of NRT flood impact information
affect the response times of emergency vehicles when
compared to baseline routes?

(2) What model parameters are most important in determining
vehicle response times?

(3) What is the potential social value of rapid earth observations
when applied to a disaster response scenario?

Thus, the objective of this study is not to assess the
performance of the flood monitoring system against other flood
monitoring methods or products. Rather, we aim to get a better
understanding of the value of these or similar satellite-based NRT
observations and quantify to what degree they can potentially
improve and support disaster risk management and response
decisions. The following sections introduce the concept of VOI
and review its application to geospatial data. We then describe
the model design using the 2011 Southeast Asia Floods as an
illustrative example. Finally, we present the results and discuss
the broader impacts from the analysis.

BACKGROUND AND PREVIOUS WORK

Quantifying the Value of Information
In a decision making context it is important to understand
how the introduction of new information can improve a
given strategy. VOI methodologies were originally presented in

economics literature as a way to quantify the marginal benefits
produced by reducingmodel uncertainties (Howard, 1966, 1968).
In economic terms, the VOI describes the amount of money
a rational agent would be willing to pay for new information
before making a decision (Alfonso et al., 2016). While these
concepts have been widely implemented in the field of decision
analysis, they have become increasingly common in Earth science
applications. Some recent examples include investigations into
learning about potential climate thresholds (Keller et al., 2007),
petroleum engineering (Bratvold et al., 2009), or drought
monitoring (Bernknopf et al., 2017). Here, we extend the VOI
concept to a flood-related disaster management scenario.

Since the creation of the first weather satellites, global Earth-
observing technologies have raised new questions about the
benefits of geospatial data (Mjelde et al., 1989; Obersteiner
et al., 2017). Macauley (2006) provides a broad overview of
the concept of VOI in decision making using a simple crop
harvesting scenario (Figure 2). In this example, a farmer has a
choice whether to harvest the crop immediately or to harvest
over the course 2 days. Harvesting over 2 days would net a
higher payout, yet there is a chance that if it rains, part of
the harvest could be ruined. Improved information about the
probability of rain would be valuable to the farmer, and the
information is of the most value when the farmer’s subjective
uncertainty is highest. In the diagram describing this decision

FIGURE 2 | Illustration of Value of Information based on the decision whether

or not to harvest crops. Table shows the expected payout matrix for the

decision of when to harvest. (a) Expected payout based on the subjective

probability of heavy rain in the future. (b) Expected Value of Information for

improved rain forecast. The dashed vertical line represents the point at which

the farmer’s uncertainty is highest, representing the highest value of

information. Figure adapted from Macauley (2006).
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problem, the vertical dashed line represents this threshold where
the farmer’s subjective belief about the probability of rain is the
most uncertain (in this case, p= 5/22.5, or∼22%). At this point,
the most the farmer would be willing to pay is $3,888; above that,
the expected costs of improved weather information outweigh its
benefits. This simple approach can be applied in numerous ways
to help quantify and convey the VOI for informing decisions.
In this analysis, access to satellite-based maps of inundated
regions serve as a proxy for information on the current state of
the world.

The Value of Applied Earth Observations in
Emergency Management
In the field of Emergency Response operations, improvements to
satellite spatial resolution and latency have led to a wide adoption
of geospatial informatics. Some data, such as those provided
through NASA’s Land, Atmosphere Near real-time Capability for
EOS (LANCE) system, can commonly be made available within
3 h of overpass, making it suitable for NRT applications (Davies
et al., 2015). Examples of such initiatives include NASA’s NRT
Flood Mapping (Ahamed et al., 2017; Fayne et al., 2017; Policelli
et al., 2017), UMD’s Global Flood Monitoring System (GFMS,
Wu et al., 2014), and the Dartmouth Flood Observatory (DFO,
Brakenridge and Anderson, 2006).

In the LMRB, several recent studies have demonstrated
how rapid Earth observations can be used operationally
to inform flood management. Ahamed and Bolten (2017)
produced automatic flood extents by applying a dynamic surface
water classifier to data from the Moderate-resolution Imaging
Spectroradiometer (MODIS) sensors on the Aqua and Terra
satellites. Oddo et al. (2018) then demonstrated how the resulting
flood extents can be combined with socioeconomic data to
produce rapid estimates of flood impacts using depth-damage
curves for different types of land cover and infrastructure. This
study attempts to determine how the flood detection and impact
assessment metrics produced by the preceding analyses can be
further applied to emergency response (Figure 3).

METHODS

To investigate how applied Earth observations can be used to
improve flood response operations, we consider a hypothetical
emergency response scenario based on the 2011 Southeast Asia
Floods. In this scenario, we use the output of the previously
described flood damage assessment to identify a number of
population sites that may have been impacted and require
emergency attention. Emergency response vehicles stationed at
dispatch centers are routed to each of the population sites and
their response times and navigation details are evaluated in the
presence and absence of information on flood conditions. The
following sections outline these steps in more detail.

Flood Impact Assessment: 2011 Southeast
Asia Floods
The 2011 Southeast Asia Floods resulted in the highest-ever
insured losses of any freshwater flood disaster (Gale and

Saunders, 2013). In parts of Thailand, rainfall increase of up to
143% combined with land subsidence to produce widespread
flooding in the region around Bangkok (Haraguchi and Lall,
2015). A surface flood extent raster for this 2011 flood was
obtained through the DFO, which maintains an archive of
historical events. Imagery collected by NASA’s MODIS sensor
shows the extent of surface inundation between December 24,
2011 and January 2, 2012 at a spatial resolution of 250-m
(Brakenridge et al., 2011) (Figure 1a). The flood extent was
vectorized using QGIS software and a triangular interpolated
network (TIN) was generated by sampling land surface elevations
around the perimeter (Figure 1b). The resulting TIN serves as
an estimate of flood surface elevation across the detected extent.
Subtracting the underlying digital elevation model (“Multi-
Error-Removed Improved-Terrain”—MERIT DEM) produces a
raster of estimated flood depths (Figure 1c) (Yamazaki et al.,
2017). For a more detailed discussion of the methodology
and limitations of this approach, see sections 3 and 5 of
Oddo et al. (2018).

Estimated flood depths were intersected with a land
use/land cover map produced by NASA SERVIR’s Regional
Land Cover Monitoring System (https://rlcms-servir.adpc.
net/en/landcover/). Land cover classifications were derived
from atmospherically-corrected imagery from Landsat 4, 5,
7, and 8 to produce a map of the entire LMRB at ∼30-m
ground resolution. Damages to specific land cover types were
assessed using regionally-derived depth-damage functions
(Oddo et al., 2018). Additionally, damages to populations
and infrastructure were estimated by intersecting flood
depths with population data from NASA’s Socioeconomic
Data and Applications Center (SEDAC) and open-source
infrastructure data from OpenStreetMap (OSM), respectively
(CIESIN, 2016; OpenStreetMap Contributors, 2019).

The resulting socioeconomic damage map
(Supplementary Figure 1) was used to identify a total of
75 potential population sites that may have been most highly
impacted by the flooding. Emergency response dispatch sites
were chosen as ambulance and fire station locations in OSM (n=
10). Finally, estimated flood depths were used to delineate areas
that were considered Highly Flooded to average vehicles. The
threshold for Highly Flooded areas was identified as 300mm of
inundation, according to the modeled relationship between flood
depth and vehicle speed in Pregnolato et al. (2017) (Figure 4).
This was found to be the average depth at which a passenger
vehicle would begin to float, signifying areas that would cause
the most significant delays to emergency vehicles. Regions within
the flood extent that exceed this threshold were exported as a
GeoJSON object using QGIS for use in the routing model. Those
areas that impacted yet were below the 300-mm threshold were
identified as simply Flooded.

Routing Model
The coordinate locations of the dispatch and populations
sites were used as endpoints for the vehicle routing model,
which was built using the open-source OpenRouteService (ORS)
navigation service. ORS provides free location based-services
generated from user-defined geographic data from OSM. In
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FIGURE 3 | Workflow for generating near real-time (NRT) routing information from Earth observations. MODIS imagery is ingested from LANCE server to produce

surface water extents. Extents are digitized and used to estimate flood depths and damage estimates. Finally, these damages can be incorporated into the value of

information analysis for emergency response.

addition to providing travel routes and navigation information
via a graphical front-end, ORS also provides an application
program interface (API) for the directions service with a variety
of customizable parameters. Among these parameters is an
“avoid_polygon” option, which allows users to identify the
coordinates of polygon vertices to avoid when calculating the
optimal routes (Figure 5). Route information is returned as
a GeoJSON object, which includes information on distance

(meters), travel time (seconds), and velocity (meters/second) for
each segment along the route. Average velocities across an entire
route were calculated for use in the decision analytical model
by averaging the travel time and distance across each individual
segment (see section Decision Analytical Model).

Vehicle routes were generated under both baseline conditions,
and in the presence of flood information. Baseline routing simply
used the coordinate locations from each of the 10 dispatch
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FIGURE 4 | Modeled relationship between flood depth and vehicle speed. Estimated function was used to determine extent of Highly Flooded zones for routing.

Figure adapted from Pregnolato et al. (2017).

centers and found the optimal route to each of the 75 population
sites for a total of 750 routes. Of these, a number of the
routes resulted in an unsuccessful API response (i.e., no viable
route found) and did not return an accompanying GeoJSON.
Possibilities for undetermined routes could be due to incomplete
road segments not attached to the full network or the lack of
a geolocated address at either the start or end points. These
were removed from the analysis, resulting in a total of 518
valid routes.

We contrast the baseline routes against those generated using
the NRT flood information. In this scenario, we assume the
vehicles have been given some advance warning of potentially
adverse road conditions and choose to circumvent the most
highly impacted regions. Here, we assign the coordinates of
the Highly Flooded polygon to the “avoid_polygon” parameter
when calculating routes (Figure 5c). Routes which intersect
flooded regions are assumed to experience a decrease in
velocity for the duration of the impacted road segment.
A velocity reduction coefficient, derived from the empirical
relationship between flood depth and vehicle velocity, is
used to impose slower speeds on impacted routes (Figure 6).
Routes which intersect Highly Flooded regions are assumed
to experience more severe reductions, modeled here as
reductions greater or equal to the 75th percentile of the
coefficient distribution.

Decision Analytical Model
For each of the 518 valid route combinations, we evaluate
how emergency response vehicles perform both under baseline
conditions and with the benefit of NRT Earth observations. To
do this we identify the following management objectives:

1. Minimize the length of impacted roads relative to the total
route length (O1). The objective function is:

1

r

r
∑

n=1

DF+DHF

DT
(1)

where DF is the “flooded” length, DHF is the Highly Flooded
length, and DT is the total route length for each route, r.

1. Minimize the expected value of emergency response time
(O2). The objective function is:

E

[

1

r

r
∑

n=1

DT

µr
+

DF

(µr ∗ α)
+

DHF

(µr ∗ β)

]

N

(2)

In this formulation, µ represents the average velocity for each
route, r, while α and β are stochastic rate reduction coefficients
which reduce the average velocity by a specified percentage
according to the degree of flooding. The E[ ]N notation refers
to the expected value for each of r routes over 10,000 uncertain
states-of-the-world. We focus on the expected (average) outcome
due to its emphasis on classic decision theory, which states
that a rational agent will seek to optimize expected utility (Von
Neumann and Morgenstern, 1945).

Sensitivity Analysis
Finally, we perform a one-at-a-time sensitivity analysis to
determine how variations in the model parameter inputs affect
the objective outcomes (Hamby, 1994). Sensitivity analyses can
serve as useful diagnostic tools to identify the parameters that

Frontiers in Environmental Science | www.frontiersin.org 6 September 2019 | Volume 7 | Article 127

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Oddo and Bolten Value of Applied Earth Observations

FIGURE 5 | (a) Demonstration of OpenRouteService routing API from origin

point A to destination point B. (b) Example of “avoid_polygon” parameter in

which the system will route around a user-specified roadblock. (c) Coordinates

of the flood vertices used as “avoid_polygon” feature to simulate Highly

Flooded areas.

may require additional calibration and to identify potential
knowledge gaps. The one-at-a-time method is known as a local
sensitivity analysis because it quantifies the extent to which
individual parameters influence model output. We perform
this analysis by varying individual parameters in isolation

while holding all others constant. The isolated parameters are
sampled from the 1st to 99th percentile of its prior distribution
(Supplementary Figure 2). The results of this analysis then serve
to rank the parameters in order of their impact to model variance
(Saltelli, 2002).

RESULTS

The geographic distribution of baseline routes differed
significantly from the routes that avoided the Highly Flooded
areas (Figure 7a). Without any forewarning of possible flood
conditions, baseline routes optimized the route for fastest arrival,
often taking the most geographically direct path. Doing so,
however caused many of the baseline routes to unknowingly
intersect Flooded and Highly Flooded road segments. Routes
that avoided Highly Flooded areas were an average of 11.1 km
longer across all 518 route combinations. That said, by avoiding
the Highly Flooded areas, the routes utilizing the satellite-based
maps of flood inundation also incidentally avoided much of
the less severe Flooded regions. Baseline routes contained an
average of 16.6 km of impacted roadway (DF + DHF), while
the avoidance routes by definition encountered no Highly
Flooded areas (Figure 7b), and contained an average of 8.7 km
of Flooded roadway.

The response times for the baseline and avoidance routes
showed similar distributions. Baseline routes results had lower
minimum and maximum response times than the corresponding
avoidance routes, yet the median, mean (expected), and third
quartile response times of the avoidance routes were lower than
the baseline counterparts (Figure 8). When evaluating for the
expected response time over each uncertain SOW, routes that
avoided the Highly Flooded regions (and thereby much of the
Flooded region as well), were on average∼9 min faster.

The results of the one-at-a-time sensitivity analysis
demonstrate which parameters exert the largest influence
on the response time objective (Figure 9). The left pane shows
the percent of the total model variance attributable to each of
the individual parameters, with the width of the colored bars
representing the magnitude of the influence. Similarly, the
vertical displacement of the curves in the right pane indicate
the degree of sensitivity as parameters are varied from the 1st
to the 99th percentile of their prior distribution. We see that
the rate reduction coefficient for Flooded road segments, α, has
the highest degree of influence over the response time objective.
The comparatively smaller influence of the Highly Flooded
coefficient, β, may be explained by the fact that, on average,
Highly Flooded segments only comprised about 2.3% of the total
route length. Flooded segments comprised an average of 14% of
the total route length, indicating that vehicles were roughly six
times more likely to encounter roads that were Flooded but not
necessarily ones that were Highly Flooded.

DISCUSSION AND CONCLUSIONS

The disaster response scenario described in this study represents
a theoretical example of how NRT Earth observations can
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FIGURE 6 | Rate reduction coefficient used to adjust velocity of flooded road segments. Distribution derived from empirical relationship between water depth and

vehicle velocity outlined in Figure 4.

FIGURE 7 | (a) Geographic distribution of routes under baseline conditions (black) and with advance Earth observations (green) with opacity indicating density of

routes. (b) Example of single route combination. Inset graph shows relative lengths of Flooded and Highly Flooded roads (blue and red shading, respectively).

potentially be used to inform a disaster management decision.
When evaluating the social value of that decision, we can
relate our management objectives to an established economic
metric. In a review of Thai emergency services, Jaldell et al.
(2014) investigated the relationship between ambulance response
time and mortality to quantify the social benefits of improved
emergency operations. They found the value of a 1-min
decrease in response time for each dispatch over the course
of a year totaled 1.6 billion Thai baht (∼$50,500,000 US).
While Jaldell et al. (2014) doesn’t explicitly consider explore
flood disaster scenarios, they found that the greatest monetary
savings occurred during medical emergency and traffic accident
calls—both scenarios being likely results of extreme flooding.
The potential time savings demonstrated in this analysis are
highly dependent on the fidelity of the inundation estimates
and the choice of velocity reduction coefficient. Yet while the

apparent improvements may appear small initially (∼9min, on
average), when viewed in aggregate, the economic value of the
improved information can result in substantial cost reductions
and potential lives saved.

An important component of a NRT flood mapping system,
as demonstrated here, is how readily it can be deployed to
produce potentially useful information. While geospatial
data is increasingly commonplace in disaster response
and humanitarian logistics, only a small fraction of studies
operationally integrate real- or near-real time data (Özdamar
and Ertem, 2015; Yagci Sokat et al., 2016). Some of the variables
discussed in this analysis have non-trivial uncertainties (e.g.,
the depth raster and resulting damage map (see section
Caveats and Future Research Needs for a discussion of these
limitations). That said, imperfect information—delivered
operationally and at a latency determined by regional service
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providers and disaster responders—may often outweigh
more reliable information that comes too late (Eidsvik et al.,
2015).

We find that emergency response times are highly
dependent on the detected flood inputs, as well as the
relationship between estimated inundation depths and
vehicle speeds. When accounting for parametric uncertainties
and evaluating for model objectives over different route
combinations, we find that routes which circumvent
the most impacted regions (i.e., Highly Flooded) also
avoid additional Flooded regions, resulting in shorter
expected response times. The social value of these Earth
observations, particularly when evaluated in the context
of potential lives saved, can be on the order of millions of
dollars annually.

FIGURE 8 | Boxplots of expected (mean) response times across 10,000

states-of-the-world for 518 routes. Red star shows mean values.

CAVEATS AND FUTURE RESEARCH
NEEDS

While the results presented here demonstrate the potentially
high value of applied satellite information, the analysis has
some notable caveats and limitations. One such limitation is the
resolution and availability of the data used to generate the flood
detection and impact analysis. Because time is a critical factor in
any emergency response situation, MODIS imagery was selected
to produce the flood detection due to its fast revisit time (twice
daily) and low latency (∼3 h). An important tradeoff is that the
imagery is only of moderate resolution (250-m) and is unable
to penetrate cloud cover, making it not as suited for applications
requiring high-resolution floodmaps. Future implementations of
the analysis could feasibly utilize any flood extent—regardless of
the sensor used to generate it—providing that imagery is available
immediately following the event.

The impact assessment portion of the analysis also includes
non-trivial uncertainties. Depth estimates were generated using
the MERIT DEM, which improves on many of the sources
of error in other global elevation datasets (e.g., vegetation
biases, striping, and speckling), yet still has significant errors in
vertical accuracy (Yamazaki et al., 2017). The use of open-source
materials, including the OpenRouteService routing platform
and infrastructure data from OpenStreetMap provide important
benefits for accessibility and scalability, yet they often present
the challenge of being incomplete and potentially inconsistent.
Therefore, the socioeconomic damage map used to identify the
potential population sites (Supplementary Figure 1) also has
associated uncertainties. Despite this, we find that the provisional
damage estimates can still be instructive for identifying areas that
may be most highly impacted [for more detail, see the discussion
section 5.2—Damage Estimate Validation in Oddo et al. (2018)].

Another broad limitation of this analysis is how it models
the complex geophysical and behavioral dynamics inherent
in a real-world disaster response scenario. The flood extent
used here is currently treated as static. In reality, floods are
highly dynamic phenomena, causing inundated areas to change
over time. Furthermore, in a real-life scenario there could be

FIGURE 9 | One-at-a-time (OAT) sensitivity analysis for the emergency response time objective. Width of the bars and steepness of curve inclines indicate the degree

of sensitivity to each model parameter.
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a number of compounding factors that could affect vehicle
response times during flood conditions. Congestion from other
cars due to evacuations, for instance, would likely be a significant
factor, particularly in a densely populated area like Bangkok.
This analysis only considers road impediments due to flood
inundation, whereas other factors (e.g., fallen trees, construction,
or downed power lines) would likely also occur.

On the behavioral side, the model contains several simplifying
assumptions for how individuals respond to the potentially
chaotic conditions during a flood event. For one, it is assumed
that the satellite data is the only source of information on
regional road conditions, and that this information is able to be
communicated readily to emergency responders. In reality, there
may be other sources of intelligence available (i.e., radios, satellite
phones, or aerial imagery) and the ability to process and transmit
flood maps may be impaired. We also make assumptions for how
emergency responders utilize the satellite data. Currently, once a
driver decides on a specified route (either the most direct route
under baseline conditions or when avoiding the Highly Flooded
regions), they do not deviate over the course of the trip. A more
realistic portrayal would allow a rational driver to continue until
encountering an impediment before subsequently choosing to
re-route. Finally, we only consider ground transportation as a
mechanism for emergency response, whereas a coordinated flood
operation would likely involve support through other means
(e.g., helicopters or boats).

Due to the assumptions described here, this analysis is not
intended to be prescriptive in how to route emergency vehicles
in a real-world flood situation. Rather, the results are intended
to serve as a didactic example of how applied Earth observations
can be operationally combined with econometric data to produce
insights for decision-making. Future refinements to this system
could include routes constrained by actual emergency vehicle
observations, more advanced behavior on the part of the drivers,
and a more dynamic treatment of how flooded areas change
through time.
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