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In order for agricultural systems to successfully mitigate and adapt to climate change

there is a need to coordinate and prioritize next steps for research and extension.

This includes focusing on “win-win” management practices that simultaneously provide

short-term benefits to farmers and improve the sustainability and resiliency of agricultural

systems with respect to climate change. In the Northwest U.S., a collaborative process

has been used to engage individuals spanning the research-practice continuum.

This collaborative approach was utilized at a 2016 workshop titled “Agriculture in a

Changing Climate,” that included a broad range of participants including university

faculty and students, crop and livestock producers, and individuals representing

state, tribal and federal government agencies, industry, nonprofit organizations, and

conservation districts. The Northwest U.S. encompasses a range of agro-ecological

systems and diverse geographic and climatic contexts. Regional research and science

communication efforts for climate change and agriculture have a strong history of

engaging diverse stakeholders. These features of the Northwest U.S. provide a

foundation for the collaborative research and extension prioritization presented here.

We focus on identifying research and extension actions that can be taken over the

next 5 years in four areas identified as important areas by conference organizers and

participants: (1) cropping systems, (2) livestock systems, (3) decision support systems

to support consideration of climate change in agricultural management decisions; and

(4) partnerships among researchers and stakeholders. We couple insights from the

workshop and a review of current literature to articulate current scientific understanding,

and priorities recommended by workshop participants that target existing knowledge
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gaps, challenges, and opportunities. Priorities defined at the Agriculture in a Changing

Climate workshop highlight the need for ongoing investment in interdisciplinary

research integrating social, economic, and biophysical sciences, strategic collaborations,

and knowledge sharing to develop actionable science that can support informed

decision-making in the agriculture sector as the climate changes.

Keywords: actionable science, climate services, knowledge coproduction, climate change, mitigation, adaptation,

agriculture, stakeholders

INTRODUCTION

Research at the nexus of climate change and agricultural
production in the United States has focused on two distinct
but related pathways of mitigation and adaptation. Mitigation
efforts have attempted to quantify the impacts of agricultural
production on climate change while also assessing practices
that can be used to mitigate greenhouse gas (GHG) emissions
associated with agricultural production. Adaptation research
efforts have sought to explore the way adaptive practices can
reduce the risks associated with climate change and build on
opportunities. Research has been conducted for well over a
decade on both mitigation and adaptation (e.g., Consortium for
Agricultural Soils Mitigation of Greenhouse Gases, Washington
State University Climate Friendly Farming Project, Southeast
Climate Consortium). Recently, there has been increased
emphasis on research focused on adapting agricultural systems to
a changing climate, which coincides with a growing recognition
in the land and resource management communities of the
inevitability of an atmospheric doubling of carbon dioxide (CO2)
(IPCC, 2014a,b,c). Federal programmatic focal areas and funding
for research in the past 5 years, exemplified by the United States
Department of Agriculture (USDA) Regional Climate Hubs,
reflect this intensified interest in agricultural adaptation (USDA
NIFA, 2016; USDA, 2017). Additionally, there is increasing
awareness that opportunities exist for “win-win” solutions that
will improve farm economics while also making agricultural
systemsmore resilient to a changing climate and lowering carbon
footprints (Rosenzweig and Tubiello, 2007; Pretty, 2008; Power,
2010; Smith and Olesen, 2010; Duguma et al., 2014; Yorgey and
Kruger, 2017).

The appeal of an approach that incorporates adaptation,
mitigation, and profits is clear because it could provide a wealth
of co-benefits to agriculture—and diverse stakeholders have
articulated an interest in more research to evaluate the efficacy
of potential management strategies across geographic regions
and in multiple agroecosystems (Prokopy et al., 2015a; Allen
et al., 2017). However, several intersecting factors make it difficult
in practice to prioritize amongst management strategies across
agro-ecosystems. First, many of these strategies have impacts
that are spatially and temporally variable. This makes it difficult
to make accurate projections of the costs and benefits for
particular farmers. For example, building soil organic carbon
(SOC) can enhance resilience by increasing soil water holding
capacity, improving farmers’ ability to withstand higher summer
temperatures. It can also provide mitigation benefits by drawing
carbon out of the atmosphere. However, the amount of SOC

stored on an individual field or farm varies considerably. Factors
including soil type and series, precipitation, and initial soil
carbon levels can, in some cases, be even more important than
management (e.g., reduction or elimination of tillage, cover
crops, amendments) in determining the magnitude of soil carbon
storage or loss (Paustian et al., 1997; Kemanian and Stöckle,
2010).

Second, the research and policy-making communities have
limited understanding of how producers make management
decisions, which makes it more difficult to identify and
test realistic strategies that producers might choose to use.
Agricultural producers must make resource management and
investment decisions on the basis of highly complex and
uncertain information from multiple sources. Thus, it is difficult
to assess what information will be most relevant and useful to
producers (Lemos et al., 2012; McNie, 2012; Weaver et al., 2013).

Third, there are limitations in climate scientists’ ability to
project the degree and rate of change of future climate, project
impacts for specific cropping systems, and forecast the extent
to which current crops and agroecosystems will be viable
(Abatzoglou et al., 2014; Antle et al., 2016; Cammarano et al.,
2016). For instance, to what extent can a producer increase
soil carbon storage to retain more water within an existing
crop or cropping system, before needing to change crops or
fundamentally redesign the cropping system in response to
climate change? Limitations in our ability to fully understand
the nature of future climate change complicate efforts to evaluate
agricultural adaptation andmitigation strategies, despite ongoing
improvements in the usability of climate change projections
for agricultural decision-makers (Antle et al., 2016; Parker and
Abatzoglou, 2016; Rupp et al., 2016).

Given the potential for severe climate change impacts on
agriculture and limits on time and financial resources, there
is a need for a strategic approach to prioritizing near-term
investments in research and extension to improve adaptive
capacity, even in the face of these challenges and uncertainties.
The Northwest United States is a good test-bed for evaluating
opportunities for adaptation and mitigation, and is well-situated
to test a collaborative approach to setting research and extension
priorities.

From a biophysical perspective, the region is geographically
and climatically heterogeneous, with a diversity of agro-
ecological systems. Dryland and irrigated cropland produces
over 250 commercially important crops, including nationally
significant production of apples, pears, cherries, berries, and
wheat (USDA NASS, 2015). The region encompasses a marked
precipitation gradient with mean annual precipitation ranging
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from 150 mm to over 750 mm, leading to variation in grain
crop varietals, cultivation strategies, and economic opportunities
and challenges for farmers (Schillinger et al., 2010). Livestock
are also important, with nationally significant production of
milk, cheese, cattle and calves, and livestock forage (USDA
ERS, 2015; USDA NASS, 2015). In 2012, the value of crop and
livestock agricultural production in Washington, Oregon and
Idaho was over $21.8 billion (USDA, 2012). The heterogeneity
of the region’s agricultural systems and ongoing work across
the region has the potential to highlight key differences among
systems, generating information that could provide a benchmark
that is helpful to other agricultural production regions.

From a social perspective, the agricultural research and
extension communities have long collaborated with farmer
and industry networks and advisory groups, including in
the realm of climate change. Comprehensive, interdisciplinary
research and extension programming in the climate change and
agriculture nexus has been occurring in the region for nearly 15
years, leading to substantial knowledge development, technology
transfers andmanagement adaptations (Table 1). In addition, the
public sector has become increasingly vocal in supporting long-
term investments in adaptation capacity and infrastructure, such
as new irrigation water supply infrastructure, which is necessary
to maintain a viable, if changing, agricultural resource base.

However, the level of complexity and uncertainty associated
with climate change impacts and potential responses suggests
the need for reinvigorating and advancing these long-standing
partnerships in new ways. Important enhancements include the
participation of a broad group of decision-makers at multiple
organizational levels, such as crop advisors, irrigation districts,
state and federal agencies, and private sector technology, and
service providers (Bizikova et al., 2014; Prokopy et al., 2015b;
Allen et al., 2017). There is also a need to more actively facilitate
a feedback loop between researchers and stakeholders, as the
applications of climate science to agricultural decision-making
may not be as straight-forward as the application of new crop
variety testing, innovations in machinery, or other similarly
applied areas of science (Prokopy et al., 2015a).

In an effort to prioritize and catalyze future regional research
and extension efforts, a workshop titled “Agriculture in a
Changing Climate” was held on March 9–11, 2016 (AgCC,
2016), a first step toward reinvigorating those partnerships.
The workshop’s 82 participants spanned the research-practice
continuum, including university faculty and students, crop
and livestock producers, and individuals representing state,
tribal, and federal government agencies, industry, nonprofit
organizations, and conservation districts (Figure 1). They
included many representatives of research teams and boundary
entities involved in studies to inform adaptation and mitigation
in agriculture in the region. Participants worked together to
synthesize recent research findings and identify priorities related
to climate mitigation and adaptation in the Northwest, with a
particular focus on actions for the next 5 years (AgCC, 2016).

This article documents insights and priorities from the
workshop, and expands the synthesis of recent research findings
through a more systematic review of the literature on agriculture
and climate change in the Northwest U.S. The findings of the
literature review summarize the state of the science on climate
impacts and mitigation, vulnerabilities, and opportunities to
adapt, and help articulate the knowledge gaps and challenges.
The research and extension priorities proposed for the next
5 years are based on the outcomes of the workshop and
target identified gaps, challenges, and opportunities. Priorities
are discussed in four topic areas identified by conference
organizers and participants: (1) cropping systems, (2) livestock
systems, (3) decision support systems to help producers and
others incorporate climate change considerations into longer-
term decisions (e.g., land transactions, perennial crop plantings,
irrigation system investments); and (4) efforts to foster effective
partnerships and communication between researchers and
stakeholders (AgCC, 2016). Effective, sustainable mitigation and
adaptation solutions will require addressing these interrelated
topic areas in coordination with one another.

While the priorities discussed here are specific to the
tri-state region of Oregon, Washington, and Idaho, many of
these recommendations are also relevant in other regions of

TABLE 1 | Major climate change and agriculture-related efforts in the Pacific Northwest from 2003 to 2016.

Project title Description

Climate Friendly Farming Project (http://csanr.wsu.edu/program-areas/climate-

friendly-farming/climate-friendly-farming-final-report/, Kruger et al., 2010)

Research and assessment of the potential for improved management and technology

deployment to reduce agricultural greenhouse gas emissions in the Pacific Northwest

Regional Approaches to Climate Change for Pacific Northwest Agriculture

(REACCH) (reacchpna.org)

Enhance sustainability of PNW cereal systems and contribute to climate change

mitigation

BioEarth (http://bioearth.wsu.edu/, Adam et al., 2015) Regional earth systems modeling to improve understanding of the interactions among

carbon, nitrogen, and water at the regional scale, in the context of global change

OFoot (https://ofoot.wsu.edu/ and

http://csanr.wsu.edu/organic-farming-footprints/)

Estimating carbon footprints for organic cropping systems

Site Specific Climate Friendly Farming Project (Brown et al., 2015) Precision N use in dryland cropping systems

US Dairy Adoption of Anaerobic Digestion Systems Integrating Multiple Emerging

Clean Technologies (http://csanr.wsu.edu/anaerobic-digestion-systems/)

Enhancing anaerobic digestion in dairy systems through advancement of add-on

technologies

Animal Agriculture in a Changing Climate (national project with a western region)

(http://articles.extension.org/pages/60702/animal-agriculture-and-climate-change)

Fosters animal production practices that are environmentally sound, economically

viable, and that create resiliency for animal producers and their partners

Watershed Integrated Systems Dynamics Modeling (WISDM)

(http://wisdm.wsu.edu/)

Improve understanding of interactions between water resources, water quality,

climate change, and human behavior in agricultural and urban environments
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FIGURE 1 | During the “Agriculture in a Changing Climate Workshop,” 82 participants from across the research-practice continuum worked collaboratively to identify

priorities relating to climate change and Northwest U.S. agriculture in four focus areas: cropping systems, livestock systems, decision support systems, and

partnerships and communication.

the U.S. with similar environmental conditions—for example,
other irrigated cropping regions of the Western U.S. In
addition, universal challenges are explored related to the
development of climate-related decision support systems and
effective partnerships along the full research-extension-practice
continuum. Nationally, there has been a rise in the number
and influence of institutions focused on coordinating efforts to
support agricultural sustainability and resilience, such as the U.S.
Department of Interior’s Landscape Conservation Cooperatives
and the U.S. Department of Agriculture’s Climate Hubs. This
article contributes to the ongoing discussion about how best
to integrate mitigation and adaptation research and extension
priorities, and demonstrates of the relevance of supporting
researcher-stakeholder partnerships across the country.

CROPPING SYSTEMS IN A CHANGING
CLIMATE

Climate Impacts and Vulnerabilities
Climate change in the Pacific Northwest is projected to lead
to warmer temperatures, especially in summer; more frost-
free days; wetter winters, and more variability in temperature
and precipitation (Mote et al., 2013; Abatzoglou et al., 2014).
Projected effects of climate change on agriculture in the
temperate climate of the Northwest U.S., tend to be less severe
than impacts projected for subtropical and tropical regions of
the world (Parry et al., 2005; Schlenker and Roberts, 2009). The
region’s relatively cool climate alsomeans that projected warming
may be less detrimental than in other regions for some crops,

and potentially beneficial for others. Because historical inter-
annual variability is high, many cropping systems also have a
significant amount of climate resilience built in, insulating them
from some impacts of climate change. Taken in combination,
these effects may lead to some benefits for the Northwest,
when markets are national, or even global. However, projected
climate change effects depend on the specific agricultural sector,
geographic location, global climate models, and greenhouse gas
concentration pathways considered (Eigenbrode et al., 2013).

Existing literature provides insights into crop yield and water
availability vulnerabilities in multiple regional crop production
systems. Increasing atmospheric CO2 levels are expected to
contribute to CO2 fertilization and greater water use efficiency for
dryland cereals, leading to stable or increased Northwest dryland
wheat yields until mid-century (Tubiello et al., 2007; Hatfield
et al., 2011; Karimi et al., 2017; Stöckle et al., 2017). By later in the
century, projected further annual average warming of up to 3.3–
4.4◦C (6–8◦F) in a high emission scenario may overwhelm the
positive yield impacts of CO2 fertilization by accelerating wheat
senescence, reducing grain-filling, and grain shriveling (Ferris
et al., 1998; Ortiz et al., 2008; Stöckle et al., 2010; Cammarano
et al., 2016). Some recent research also indicates that warmer,
drier summers may lead to increased fallowing throughout this
century for rainfed areas that are currently cropped on an
annual basis (Kaur et al., 2017). This could reduce overall yields,
accelerate erosion, and decrease carbon sequestration compared
to current conditions, increasing sustainability challenges.

For irrigated crops, a range of crop-specific impacts on
potential yields are projected, assuming the absence of water,
nutrient, or other stressors. Impacts depend on the relative
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importance of positive carbon dioxide effects and generally
negative warming effects for each specific crop (Rajagopalan,
2016). Pastures and grasses are an important exception because
these crops take advantage of a longer available growing season
and are benefited by carbon dioxide fertilization, and thus see
relatively larger increases in potential yields (Rajagopalan, 2016).
Warming generally affects annuals negatively, as the positive
carbon dioxide fertilization effects are outweighed by negative
effects from a shortened growth season. In terms of irrigation
demands, warming may allow for earlier planting (once spring
soil wetness is considered) and accelerated crop development
rates, leading to greater early irrigation demand for some crops
(Rajagopalan, 2016).

Meanwhile, in Washington, some watersheds are expected
to have reduced summer water supply (Hall et al., 2016). In
combination with changes in demand, this creates an increase
in the likelihood of water shortages (Hall et al., 2016) and
curtailment of water use (Vano et al., 2010; Rajagopalan, 2016),
but with reduced crop yields still within historical ranges
(Rajagopalan, 2016). Because drought severity and frequency are
expected to increase, drought will remain a key vulnerability
for irrigated crops. More work is needed to identify the specific
management challenges likely to arise for Northwest agricultural
systems.

Climate change may also contribute to crop quality issues,
particularly important for the many speciality crops produced
in the Northwest. Warming trends could lead to insufficient
chilling for some fruit and nut crops to develop, leading to
reduced crop quality and yields (Luedeling et al., 2011). There
are also indications that warming leads to decreased quality for
potatoes (Alva et al., 2002; Timlin et al., 2006) and some current
Northwest grape varieties (Jones, 2007; Diffenbaugh et al., 2011)
and warming combined with drought stress may be implicated
in the presence of diseases in vegetable seed crops. At the same
time, warming trends may allow some species and varieties of
tree fruit, nuts and grape varietals that are cold sensitive to be
grown successfully in the region (Jones, 2007; Diffenbaugh et al.,
2011; Luedeling et al., 2011; Parker and Abatzoglou, 2016).We do
not yet know enough about the specific types of climate change
impacts on crop quality to evaluate the usefulness of particular
practices for diverse crops.

The same trends in climate will also contribute to changing
ranges and behavior of plant pests (weeds, insects, and diseases),
as well as beneficials (e.g., pollinators). Existing evidence suggests
that individual pests, and the various biotic factors that regulate
them, will respond differently to a changing climate, with both
positive and negative impacts. As with the impacts on crop
quality, we do not yet know enough about the impacts on
specific pests and on particular crops to inform pest management
practices, or to make projections of combined overall effects
(Eigenbrode et al., 2017; Kirby et al., 2017). In addition, climate
change and increased global commerce increase the possibility of
invasive species, which can drastically change pest management
regionally, nationally, or internationally (Lee et al., 2011; Leskey
et al., 2012). Climate change is also projected to lead to
warmer spring temperatures that will accelerate the timing of
flowering, which could lead to amismatch between flowering and

availability of pollinators, thus impacting fruit setting (Houston
et al., 2017).

Climate Mitigation Opportunities
Croplands emit and sequester multiple GHGs, including carbon
dioxide (CO2), nitrous oxide (N2O), and small amounts of
methane (CH4). Soils across much of the region have lost carbon
under cultivation. For example, dryland soils in the inland
Northwest have lost an estimated 20–70% of their SOC since
agricultural conversion (Puraskayastha et al., 2008; Brown and
Huggins, 2012; Ghimire et al., 2015), a pattern seen elsewhere in
the U.S. as well (Lal, 2004). The Columbia Basin is one important
exception to this pattern, where irrigation and the associated
increased plant productivity have contributed to higher total
soil carbon under cultivation (Cochran et al., 2007). In both
dryland and irrigated cropping systems, there is an opportunity
for agricultural soils to sequester carbon by either reducing tillage
or burning, or by increasing carbon inputs through crop residues,
cover crops, or amendments (Paustian et al., 1997; Johnson et al.,
2006).

Over the last 20 years, efforts to build SOC across much of the
region have focused on encouraging the adoption of conservation
tillage. These efforts have generated very important soil erosion
reductions and soil health benefits (e.g., reduced bulk density,
improved soil aggregation, water infiltration, and water holding
capacity) over time, but experimental and modeling analyses
suggest the potential climate mitigation impact is relatively
modest (Brown and Huggins, 2012; Stöckle et al., 2012; Gollany
et al., 2013; AgCC, 2016). Opportunities to store carbon are
mostly from conversion to no-tillage in areas with greater
precipitation, where productivity, and thus crop residue inputs,
are higher. Stöckle et al. (2012) projected a change in SOC due to
tillage of 0.26–0.49 Mg CO2e ha

−1 yr−1 over the first 30 years in
the top 30 cm of soil from conversion to no-tillage in Pullman,
Washington, an annual cropping area, with much smaller gains
expected in drier and irrigated areas, or from conversion to
reduced tillage.

In comparison, on a per-acre basis, the use of manures,
biosolids, composts, and biochar may have greater potential for
increasing SOC in the Northwest (Lazzeri et al., 2010; Cogger
et al., 2013; AgCC, 2016), providing climate benefits as well as
agronomic benefits. In a field experiment in eastern Washington
State, biosolids application to a dryland grain-fallow system
increased total soil carbon from 0.94 to 1.64% over 20 years
(Cogger et al., 2013), while cover cropping in an irrigated
system every other year raised soil organic matter from 0.6 to
1.2% over 13 years (Lazzeri et al., 2010). Biochar (a carbon-
rich solid formed by pyrolysis of biomass) has garnered interest
for a potential role in mitigating climate change (Woolf et al.,
2010), and applications in corn in easternWashington State have
increased SOC (e.g., Bera et al., 2016), and raised pH (Streubel
et al., 2011; Awale et al., 2017), an intriguing possibility given
issues with soil acidification in some areas of the Northwest.
However, costs, logistics of application, and other barriers such
as pathogen concerns are sizeable (Galinato et al., 2011; AgCC,
2016), impacting the use of such soil amendments.
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In addition to the carbon-based emissions, cropland soils
(including those associated with livestock and poultry feed
production) emit N2O as a byproduct of the transformation
of nitrogen carried out by soil microbes (Wrage et al., 2001;
Zhu et al., 2013). Nitrous oxide emissions represent a significant
challenge in the Northwest and elsewhere, as nitrogen is added
to most cropland soils in fertilizers or manures, and negligible
losses from an agronomic perspective can have a substantial
impact from a GHG perspective (Post et al., 2012; Stöckle et al.,
2012; Venterea et al., 2012). Because warmer, wetter soils are
associated with high levels of N2O emissions, there is a concern
that emissions from agricultural soils may increase in the future
(Venterea et al., 2012).

Despite ongoing advances (e.g., Waldo, 2016), measurement
of N2O emissions remains a methodological and scientific
challenge (Henault et al., 2012; Venterea et al., 2012; Nicolini
et al., 2013). Some existing experimental and modeling studies
in eastern Washington State and southwest Montana have found
N2O emissions, as a percentage of nitrogen applied, that are
lower than the current Intergovernmental Panel on Climate
Change (IPCC) benchmark of 1% (0.1–0.9%; Cochran et al.,
1981; Dusenbury et al., 2008; Haile-Mariam et al., 2008; Engel
et al., 2010). However, other inland Northwest studies suggest
emissions are more in line with, or even notably above, the
IPCC benchmark (1.1–4.4%;Halvorson, 2010; Stöckle et al., 2012;
Waldo, 2016).

Even with these methodological challenges, wider use of
variable rate nitrogen application and of stabilized nitrogen
fertilizers would likely reduce losses of reactive nitrogen, as
existing research from other regions suggests that both can
reduce N2O emissions, including in semi-arid irrigated systems
(Shoji et al., 2001; Sehy et al., 2003; Akiyama et al., 2010;
Halvorson et al., 2011; Venterea et al., 2012). Both these practices
aim to better match available nitrogen with crop needs, allowing
for reductions in N-fertilizer inputs without negative impacts on
crop yields. However, both practices tend to incur higher costs
than traditional methods of nitrogen fertilization. Their broad-
scale adoption, therefore, is dependent on the benefits to farmers
outweighing increased costs.

Continuing improvements in process-based models (Stockle
et al., 1994, 2003; Adam et al., 2015; Malek et al., 2016)
and experimental work (Haile-Mariam et al., 2008; Brown and
Huggins, 2012; Chi et al., 2016; Waldo et al., 2016) provide
important insights and the capability to produce regionally-
relevant estimates of mitigation potential of agricultural GHG
reduction strategies. However, published estimates of the GHG
reduction potential of the region are still incomplete due to the
heterogeneity of the region’s agroecosystems. For instance, there
is very limited knowledge of the GHG impacts of the region’s tree
fruit, small fruit, and nursery, production systems; three cropping
systems of significant geographic scale and economic impact.

Priorities for Adaptation and Mitigation in
Cropland Agriculture
Based on the research and extension gaps that were identified
during discussions at the Agriculture in a Changing Climate
Workshop, the following priorities were identified for cropland

agriculture in the Northwest U.S. over the next 5 years.
These priorities are supported by a review of the current
literature on remaining challenges and opportunities for climate
change mitigation and adaptation in cropland agriculture. Each
priority that emerged from the workshop is followed by a brief
description of the supporting rationale and literature.

Cropping Priority A. Quantify vulnerabilities associated with
the timing, amount, and inter-annual variability in water supply to
support water-management decisions at multiple spatial and time
scales.

Climate change is projected to lead to reduced snowpack
and changes in timing of water availability, and is also
expected to increase drought frequency, increasing water-related
vulnerabilities. While changes in temperatures could also lead
to new opportunities for individual farmers who have secure
(senior) water rights, farmers’ and water managers’ water use
decisions will affect junior water-right holders in the context of
increased scarcity (Dang et al., 2016; Konar et al., 2016). In the
Columbia River Basin, water use for pastures and hay has a large
impact on aggregate water use and thus on shaping patterns of,
and responses to, shortages (Rajagopalan, 2016). Development
of adaptation strategies that can be used by individuals or
irrigation districts is likely to be important. Such strategies may
include improved irrigation efficiency, managed aquifer recharge
and storage, micro-storage of irrigation water, use of reclaimed
wastewater, and structures that facilitate water transfers to
highest value uses during times of shortages. The effectiveness
of different approaches may depend on the magnitude and
timing of water supply vulnerabilities. As their implementation
will require multiple years in some cases, quantifying potential
water deficiencies and savings is an urgent need. Research and
extension can also support development or improvement of
tools that provide specific data and information for water-
related decision-making, helping to promote more cost-efficient
allocation of water (Dang et al., 2016).

Adaptations to climate change may also affect water demand
through shifts in the crops and varieties grown, or through cover
cropping or double cropping that takes advantage of lengthened
growing seasons (Hall et al., 2016; Parker and Abatzoglou, 2016;
Rajagopalan, 2016). Improved understanding of the effect these
strategies have on water-related climate vulnerabilities will be
important for the long-term profitability of irrigated crops—
generally the higher-value products—in the region.

Cropping Priority B. Quantify expected climate change impacts
on crop quality and crop pests (weeds, diseases, and insects), and
evaluate strategies to address them, to support efforts to maintain
quality of production.

To date, agricultural climate impact assessment research in
the region has primarily focused on yield (quantity) effects.
Workshop participants recognized a need to complement
this with more information regarding the implications of
climate change for crop quality (AgCC, 2016). Climate-
related thresholds (e.g., consecutive days above important heat
thresholds, accumulated chilling degree days, first and last frost
dates) affect crop quality, either through direct impacts on the
crop itself, or indirectly through influence on pests. These crop
quality impacts should be investigated.

Frontiers in Environmental Science | www.frontiersin.org 6 August 2017 | Volume 5 | Article 52

http://www.frontiersin.org/Environmental_Science
http://www.frontiersin.org
http://www.frontiersin.org/Environmental_Science/archive


Yorgey et al. Priorities for U.S. Northwest Agriculture in a Changing Climate

A need exists to assess climate change effects on pest pressure
and to test control strategies for diverse locations throughout the
Northwest. This will be challenging because species-specific pest
and disease responses must be assessed for each crop of interest
(AgCC, 2016). This need is particularly pressing for specialty
crops, where crop protection costs are high and thresholds for
effects are low.

Cropping Priority C. Establish credible estimates of carbon
and nitrogen fluxes for Northwest agricultural systems to support
innovation in and adoption of GHG reduction strategies.

Understanding current carbon and nitrogen fluxes and their
variability can support GHG emissions reductions strategies.
For example, in the Northwest, an extension of an analysis
by Brown (2015) indicates that quantifying N2O emissions is
important to determining whether or not mitigation efforts could
be accelerated through incentive mechanisms. The monetary
incentive provided through existing GHG offset protocols is
likely to not be large enough to induce changes in management if
the lower end of the range of experimental emissions rates is used.
However, if higher experimental measurements are used the
incentive increases (e.g., $0.42–0.96 per hectare at an emissions
factor of 0.2% vs. $2.50–5.89 per hectare at 2.9%, at a price of $50
per Mg CO2 equivalent), especially when viewed in combination
with the savings from reduced fertilizer expenses (Brown et al.,
this issue).

Cropping Priority D. Develop technical or other approaches to
overcome existing barriers to increasing organic inputs in cropping
systems, to support adoption of practices with substantial potential
to increase carbon sequestration across the region.

Organic inputs to cropping systems can be increased through
a variety of strategies, including increasing residues through
choice of crop or variety, use of organic amendments, and
integration of grazing livestock into cropping systems. Better
understanding of the barriers that limit the use of organic
soil amendments in different locations and types of cropping
systems in the Northwest, and development of strategies to
overcome these barriers (e.g., engineering biochar to add value
through nutrients) could lead to more widespread use, increasing
soil carbon sequestration and providing additional soil health
benefits, even in the absence of a carbon market. Meanwhile,
while integration of cropping and grazing systems is currently
limited in the Northwest, an increasing number of innovative
producers are grazing cover crops in both irrigated and dryland
systems (Yorgey et al., 2017a,b).

Efforts to quantify the benefits provided by amendments
through improved SOC (e.g., in the form of improved water
holding capacity) could address these adoption barriers by
providing motivation to farmers to invest in SOC-building
strategies, especially in light of the recent emphasis on soil
health by NRCS and other public and private agricultural
advisors (AgCC, 2016). Understanding whether and under what
conditions amendments may increase N2O emissions is also a
need as existing data have shown that this may sometimes occur
(Collins et al., 2011; AgCC, 2016).

Cropping Priority E. Quantify under what conditions variable
rate application and stabilized nitrogen fertilizers are most likely to
decrease overall nitrogen use, and where that reduction is enough

to offset increased costs, to support adoption of effective nitrogen
management practices.

Variable rate nitrogen application and the use of stabilized
nitrogen fertilizers were identified as priorities because of the
likelihood that in some cases they can also provide short-
term financial benefits to farmers, thus representing a win-win
strategy. Variable rate nitrogen application, which aims to match
fertilizer application to crop nitrogen needs as they vary within
fields, has had variable impacts on overall nitrogen use. Based on
experimental data (Mulla et al., 1992; Fiez et al., 1994; Huggins,
2010; Taylor, 2016) researchers have suggested that reductions
of 10–35 kg ha−1 are achievable in low yielding areas of some
but not all dryland cropping systems depending on the type
of wheat grown, with low yielding areas varying, but in some
cases representing 30% of field area (Brown et al., this issue). In
addition to further research, extension efforts are also needed to
support management of these technologies and assist farmers in
evaluating performance (AgCC, 2016).

Enhanced efficiency nitrogen fertilizers reduce nutrient losses
and better match availability with plant needs either by slowing
release or by including additives that affect soil enzymatic
or microbial processes. Price premiums (in the range of 10–
40% in the late 2000s, Olson-Rutz et al., 2011) have been an
important barrier to use of advanced fertilizer formulations in
the Northwest and elsewhere. Prices had dropped significantly
by early 2016, due to expiring patents and other factors,
a change that makes these technologies more likely to be
economically beneficial to producers (AgCC, 2016). Anecdotal
evidence suggests that there is a need for decision-support to help
farmers use them effectively (AgCC, 2016).

LIVESTOCK SYSTEMS IN A CHANGING
CLIMATE

Climate Impacts and Vulnerabilities
While there have not been as many regional analyses of likely
climate change-related impacts on livestock as for crops, existing
studies suggest that higher temperatures projected for the twenty-
first century are likely to cause heat stress for livestock, which
will affect reproductive health, milk production, and can cause
mortality (Key et al., 2014; Mauger et al., 2015). However, climate
change impacts in the Northwest may be less detrimental than
other regions of the country. Thus there are reasons to expect
that the region may produce an increasing proportion of the
nation’s dairy and beef products in the future. For example,
an economic analysis of the effects of climate change on milk
production estimated that Washington State would experience a
0.4% loss in milk production from climate change by the end of
the century, compared to Florida’s projected 25% loss (Mauger
et al., 2015). There may be opportunities to expand use of many
heat stress reduction practices that are already implemented in
the Northwest U.S. and other regions (e.g., Pressman, 2010;
Brush et al., 2011; Key et al., 2014).

Historically, livestock production in the Northwest has
benefited from a diversity of alternative forage resources, and
from fewer and less severe droughts than other rangeland
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regions in the United States. However, it is important to
recognize that drought risks may change in the future (Luce
et al., 2016). Rangelands are particularly vulnerable to climate
change because of their large land extent, sensitive ecology,
inaccessibility to mechanical equipment, and relative low
economic value. Climate change affects forage growth cycles
and is likely to make spring grass available for grazing
earlier in the season and ending earlier. Recent analysis
suggests that Washington, Oregon, and Idaho are all likely to
exhibit higher levels of rangelands vulnerability by 2060 (and
beyond), among the higher for rangeland areas of the United
States (Reeves et al., 2017). In addition, increased variability
is expected to add significant challenges to implementing
responsive grazing management plans and adapting effectively
(Neibergs et al., 2017). Such planning could be important
because, though strategies exist for coping with expected impacts
and taking advantage of potential opportunities, their relative
effectiveness in Northwest livestock systems will likely be system
specific.

Mitigation Opportunities
In 2014, enteric fermentation in domestic livestock accounted for
22.5% of total U.S. CH4 emissions, while manure management
accounted for 8.4% of CH4 emissions and 4.4% of N2O emissions
(EPA, 2014). Global research suggests that production system
characteristics may affect GHG emissions (Eckard et al., 2010;
Cottle et al., 2011; Smith et al., 2014), but the potential for such
reductions in the Northwest remain uncertain.

Regular collection of manure prevents the significant GHG
emissions that can result from anaerobic conditions developing
within piles in the barn or feedlot pad (Sommer et al.,
2007, 2013). However, only limited research has sought to
quantify such GHG emissions in the Northwest (e.g., Brown
et al., 2008). A review by Brown et al. (2008) suggested that
improving manure management technology through improved
composting, lagooning (manure storage in lagoons), and
anaerobic digestion has significant potential to reduce livestock
emissions. Composting can reduce GHG emissions, odors, and
other air quality issues (Pattey et al., 2005). Liquid storage
with a covered or aerated lagoon can have similar reductions
in GHGs (Westerman and Zhang, 1997; VanderZaag et al.,
2008). Application of manure to fields that is timed to coincide
with crop or grass growth under mild temperatures and with
minimum precipitation reduces GHG emissions and other air
and water quality impacts (Ribaudo et al., 2003; Webb et al.,
2010). Livestock producers adopting these and other mitigation
practices to reduce emissions face challenges associated with
determining which strategies are most effective for their unique
system and are most likely to lead to net economic benefits over
the long term.

Anaerobic digestion of livestock manure reduces GHG
emissions and generates renewable energy by capturing CH4

and CO2 (Clemens et al., 2006; Holm-Nielsen et al., 2009;
Mitchell et al., 2015). Recovery of nutrients from the resulting
effluent further reduces the potential for nitrogen release
as N2O when applying the liquid to fields (Zeng and Li,
2006; Greaves et al., 2010), as well as for nitrogen (and

other nutrients) to be released into water bodies. However,
adoption of anaerobic digestion technologies has been slow
across the U.S., despite their benefits. Contributing factors
include unfavorable economics in light of current energy prices,
ongoing regulatory uncertainty, and the fact that anaerobic
digestion technology alone does not successfully alleviate
nutrient-related concerns which are a higher priority for most
dairies.

Follett et al. (2001) estimated that as much as 110 million
metric tons of carbon could be sequestered per year on
designated grazing land in the United States. Although, inland
Northwest rangelands are generally arid, with low productivity,
and susceptible to disturbance (and associated carbon loss)
particularly as the climate changes (DiTomaso, 2000; Bradley
et al., 2006; Neibergs et al., 2017), small changes to improve
grazing management across millions of acres have the potential
to increase or decrease total stored carbon in the region (Follett
et al., 2001; Schuman et al., 2002; Booker et al., 2013; AgCC,
2016; Teague et al., 2016). In addition, applications of soil
amendments (as discussed earlier in cropping systems) could
increase carbon storage (Brown andKurtz, 2010; Ryals and Silver,
2013), though questions remain about the economic feasibility
of using soil amendments to increase SOC on Northwest
rangelands. Experimental research on carbon sequestration in
rangelands has been limited in the region (Briske et al.,
2008), and the potential that such changes have to impact
carbon sequestration in Northwest rangelands has yet to be
quantified.

Priorities for Mitigation and Adaptation in
Livestock Systems
Livestock Priority A. Share information on flexible drought
management planning and on the effectiveness and cost of short-
and long-term strategies for coping with heat and water stress to
support adaptation.

Adapting livestock production to future climatic conditions
will likely result from a combination of changes in planning
(long-term) and changes in specific practices (both short-
and long-term). Drought management plans may become
increasingly important. This may entail a planned grazing
process with high-density, short-duration grazing. This approach
would allow for additional forage production during dry periods
andwould help producers to decide earlier whether they will need
to sell animals if feed supply is insufficient (Kachergis et al., 2014).
Selecting drought-tolerant feed species may also be an important
adaptation strategy to reduce the impact of drought.

Short term adaptation strategies for heat stress include
carefully monitoring ventilation systems, monitoring animal
behavior for signs of heat stress, improving protocols for
feeding animals in extreme weather, and adding more watering
locations, shade structures, or other heat abatement systems
(Pressman, 2010; Brush et al., 2011; Key et al., 2014). Many
of these short-term adaptation strategies mentioned are already
implemented on farms. Some producers are also making long-
term investments in animal genetics, selecting breeds that
respond relatively well to the dry and hot conditions, which are
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projected by climate models to occur more frequently (Place and
Mitloehner, 2010).

Livestock Priority B. Increase adoption of strategies that build
soil health andmaintain ecosystem resilience to support adaptation
of rangelands and other livestock systems to a changing climate.

Improved soil health across rangeland regions is critical
to successful adaptation, and would also provide a mitigation
benefit, even in the absence of incentive mechanisms. Current
research suggests that much of the rangeland forage use in
the Northwest is sub-optimal because of fixed turn-out and
grazing end dates required by state and federal leases, leading
to an inability to change grazing prescriptions in response to
dynamic rangeland conditions (Neibergs et al., 2017). Thus, there
is an opportunity to improve carbon storage and ecosystem
function through improved technology-assisted matching of
grazing to available forage resources (AgCC, 2016). Better
matching of grazing management to forage resources in a
dynamic planned grazing system could reduce the degradation
of forage resources—associated with increased disturbance and
carbon loss—increase productivity, and sequester carbon. The
development and implementation of such strategies is critical
given expected increases in rangeland vulnerability in the future.

The development of additional economically feasible models
for integrated cropping and grazing systems provide another
opportunity to support soil health in the region, with combined
benefits for adaptation and mitigation. In integrated systems,
ruminants increase SOC, biodiversity, and soil quality, which
improves soil resilience during extreme wet and dry periods
(Teague et al., 2016). In the areas of Washington and Oregon
west of the Cascade mountains, growing cover crops for feed
in rotation with annual crops such as corn silage (currently
done on less than half of the acres in western Washington
State), may significantly boost both local feed production and
carbon sequestration (Olson et al., 2014; Poeplau andDon, 2015).
Research to better understand barriers to integrating cropping
and livestock systems in the Northwest, and collaborative efforts
to develop practical integrated systems that overcome those
barriers, would be beneficial (AgCC, 2016).

Livestock Priority C. Quantify GHG emissions associated
with specific types of livestock operations, and evaluate animal
production system characteristics that lead to reduced emissions in
the Northwest, to facilitate their adoption.

Some of the most effective strategies for reducing the
GHG emissions of livestock agriculture involve changes to the
characteristics of animal production systems. Current research
efforts are investigating choice of species and species mixing,
and genetically-determined feed conversion and animal fertility
rates (Eckard et al., 2010; Cottle et al., 2011; Smith et al., 2014)
but there is a need to evaluate which of these strategies may
be most relevant and feasible for the Northwest U.S. There is
also potential for productivity improvements based on diet by
switching to feed crops grown with minimal agricultural inputs
(and therefore a smaller carbon footprint) and harvested in a
manner that supports soil carbon storage (Beauchemin et al.,
2009; Martin et al., 2010; Grainger and Beauchemin, 2011). Such
strategies are likely to provide cost reductions for producers and
facilitate adoption, even in the absence of carbon incentives.

Livestock Priority D. Update and share regional
recommendations and decision support tools that support
the appropriate use of existing technologies to plan and manage
manure nutrients, reduce GHG emissions, and limit nutrient
losses to soil, water, and air.

Limiting nutrient release from livestock systems, and the
resulting negative soil, water and air quality impacts is a priority
in several local areas of the Northwest with high concentrations
of livestock (Mitchell et al., 2005; Baldwin et al., 2006; Leytem
and Bjorneberg, 2009; USEPA, 2012). A robust manure nutrient
management plan is an essential first step to reducing nutrient
releases, and simultaneously reducing GHG emissions (Steed
and Hashimoto, 1994; Van Horn et al., 1994; Rico et al., 2007;
AgCC, 2016). In addition, manure management for intensive
livestock systems will need to adapt to climate change in several
ways. Adaptations to projected changes in timing, intensity, and
frequency of rainfall events include increasing manure storage
capacity and adjusting the timing of manure application (AgCC,
2016). Application setback distances may also play a role, though
understanding is currently poor (e.g., Giddings, 1993). Timing
of manure or fertilizer application may need to be adjusted to
accommodate changes in timing of crop growth resulting from
climate change. This points to a need for flexible regulation of
the timing of manure application. Producers also require up-
to-date recommendations about agronomic rates, potential risks
and advantages of building new manure or water storage vessels,
and redesigning outdoor pens to handle wetter early spring
conditions.

Livestock Priority E. Develop cost reduction strategies and
added value products that improve the economics for anaerobic
digestion and manure nutrient recovery systems to support their
adoption.

Continued research efforts are needed to improve the
economic viability of anaerobic digestion systems by reducing
costs and developing added-value products (Nasir et al., 2012;
Mitchell et al., 2015; AgCC, 2016). Further development of
emerging add-on technologies may also increase adoption rates
by addressing producers’ high priority concerns, such as nutrient
recovery technologies that reduce impacts of high nutrient
loads on water, air and other resources (Chen et al., 2005;
Yorgey et al., 2014). Research should assess economic and
non-economic benefits and challenges of these technologies
at different scales across the Northwest. Improved, un-biased
extension information about emerging technologies will also
support industry and producer decision-making as external
pressures change over time (AgCC, 2016).

DECISION SUPPORT SYSTEMS

Existing Use of Decision Support Systems
and Their Potential
Agricultural decision-makers need targeted cropping and
livestock system information that is easily integrated at the
appropriate time and location to be useful. Decision support
systems (DSS) are becoming a vehicle of choice to provide
information in complex situations (Magarey et al., 2002; Samietz
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et al., 2007; Jones et al., 2010). Many existing agricultural
decision support systems are aimed at dealing with time-sensitive
information—such as forecasting when pests and diseases require
various management interventions to prevent crop loss—and
are often paired with short-range weather forecasts to enable
users to respond. Data visualization tools can complement these
DSS, allowing users to peruse weather and climate information,
and in some cases also include derivative variables of particular
importance to agriculture (e.g., growing degree days, chilling
hours).

With this ongoing attention to DSS, there has been interest in
using decision support systems to help producers adapt to climate
change (Table 2). For the purpose of this paper, we refer to such
DSS as climate change-related DSS. Climate change-related DSS
need to incorporate insights learned from other types of DSS in
order to be successful. For example, investing in validation of
DSS outputs through testing model projections against empirical
data is critical to ensuring credibility of results. This is important
because producers have a long memory, and lack of validation
and subsequent model failure would set back adoption of the
system dramatically (AgCC, 2016).

Like non-climate related DSS, climate change-related DSS
requires a collaborative and interdisciplinary approach to
account for the complexity of solutions and to provide a suite
of options. Non-climate related DSS are often developed for a
relatively narrow purpose; for example, forecasting some part
of the life history of an insect important for management, or
predicting an epizootic for a particular plant disease. The users
of these DSS are generally trying to deal with a complex set
of problems that may occur at similar or different times of the
year. Therefore, from the user perspective, it is important for
the models included in the DSS to interact in some fashion.
Experience has shown that for a DSS to be deemed usable and
adopted by decision-makers, it must incorporate a significant
number of models so that users come to the DSS over a significant
fraction of the growing season (Jones et al., 2010). This sort

of DSS essentially opens a new communication channel that
allows a more efficient transfer of general (e.g., pest management
guidance) as well as specific (model-based) information.

Development of climate change-related DSS has some distinct
challenges.While many non-climate related DSS use information
from weather forecasts, most ignore the inherent uncertainty
and focus on a single result (e.g., forecasted high for tomorrow
of 72◦F). By contrast, seasonal climate forecasts (e.g., outlooks
for the next several months) often involve a range of possible
outcomes and uncertainty that a user of the climate change-
related DSS may incorporate into their decision-making process.
Likewise, longer-term climate change projections involve a large
amount of data that should not be distilled into a single result,
but instead should be viewed probabilistically, with uncertainties
relating to climate change projections clearly communicated
to the user (Wright-Morton et al., 2017). The construction of
these tools is made more complex due to the greater diversity
of potential clientele, ranging from agricultural producers to
government agency users and researchers, as well as the varied
time-scales of user interest.

Ongoing maintenance is essential to the long-term success of
any DSS, including climate change-related DSS. This challenge
requires creative and intentional planning to be successful.
Funding agencies are generally eager to fund tool development,
but much less willing to fund the maintenance of a tool or system.
Existing successful DSS in the Northwest such as WSU-DAS
or AIRPACT (Air-quality forecasting for the Pacific Northwest,
lar.wsu.edu/airpact) have generally relied on multiple funding
sources for ongoing programming and maintenance, including
institutional support (e.g., from the hosting university or agency
users), user fees, and support of the existing systemmade possible
through ongoing expansion (AgCC, 2016). Other approaches
that have been taken include voluntary support from users (so far
unsuccessful to our knowledge), and selling advertising space (so
far unsuccessful, but with potential). Partnerships with industry
may also be relevant for accessing data and ensuring financial

TABLE 2 | Examples of existing and developing DSS relevant to the Northwest that include a climate or climate change aspect or have potential to include these aspects.

Tool Description

COMET-Farm (http://cometfarm.nrel.colostate.edu/) and COMET-Planner

(http://www.comet-planner.com/)

A carbon and GHG accounting system for whole farms and ranches in the US. Planner

enables users to evaluate potential carbon sequestration and greenhouse gas

reductions from adopting NRCS conservation practices

AgBiz Climate and suite of AgBizLogic tools (http://www.agbizlogic.com) Economic, financial, and environmental decision tools for businesses that grow,

harvest, package, add value, and sell agricultural products

WSU-Decision Aid System (DAS) for tree fruits

(http://www.decisionaid.systems)

Integrates horticultural, insect and disease models to provide current management

recommendations to Washington State tree fruit growers

Northwest Climate Toolbox (https://climatetoolbox.org/) Synthesizes agriculturally relevant recent and projected climate information, allows

users to query specific locations, climate scenarios, models and time horizons

Cattle heat stress alert and forecast (https://www.ars.usda.gov/plains-area/

clay-center-ne/marc/docs/heat-stress/cattle-heat-stress-forecast/)

Uses National Weather Service 7-day forecast information to forecast animal heat stress

Dairy CropSyst

(http://modeling.bsyse.wsu.edu/rnelson/Dairy-CropSyst/index.html)

A whole farm emissions and nutrient fate modeling tool that can support dairy decision

making, with a focus on manure management

OFoot (https://ofoot.wsu.edu/) A calculator for estimating the carbon footprint of organic farms

Some are developed specifically for the Northwest, while others are national in scope. The USDA Northwest Climate Hub (https://www.climatehubs.oce.usda.gov/northwest), provides

links to many of these tools, and will be updated over time.

Frontiers in Environmental Science | www.frontiersin.org 10 August 2017 | Volume 5 | Article 52

http://cometfarm.nrel.colostate.edu/
http://www.comet-planner.com/
http://www.agbizlogic.com
http://www.decisionaid.systems
https://climatetoolbox.org/
https://www.ars.usda.gov/plains-area/clay-center-ne/marc/docs/heat-stress/cattle-heat-stress-forecast/
https://www.ars.usda.gov/plains-area/clay-center-ne/marc/docs/heat-stress/cattle-heat-stress-forecast/
http://modeling.bsyse.wsu.edu/rnelson/Dairy-CropSyst/index.html
https://ofoot.wsu.edu/
https://www.climatehubs.oce.usda.gov/northwest
http://www.frontiersin.org/Environmental_Science
http://www.frontiersin.org
http://www.frontiersin.org/Environmental_Science/archive


Yorgey et al. Priorities for U.S. Northwest Agriculture in a Changing Climate

sustainability, though issues related to proprietary information
and transparency of data collection and use need to be addressed.
Diversifying and customizing the DSS to a range of end-users
may be an important strategy, as it opens up the potential for
multiple complimentary revenue streams.

Depending on their purposes, specific tools within a DSS may
require weather or climate data at various spatial and temporal
resolutions. Existing climate and non-climate related DSS cope
with a variety of challenges related to use of individual datasets
(including data quality, spatial and temporal coverage, resolution,
and data biases). Implementing quality control procedures and
managing these challenges is a key ongoing cost of managing DSS
over time. Even with recent improvements, there are challenges
in maintaining seamless flow of real-time data and forecasts, and
some level of continual maintenance is required.

For this and other reasons, collaboration and centralized
infrastructuremay also be a key strategy for keeping development
and maintenance costs low over time. Expansion to new
geographic areas or commodities would be most cost-effective
if it takes advantage of a wide variety of existing infrastructure,
including environmental/forecasting subsystems, routines for
setting up user profiles, data display and manipulation, access
to management recommendations, and ancillary databases
for miscellaneous purposes. Successful collaboration and
maintenance lowers programming costs, allowing for more
efficient focus on development of specific models that provide
the decision-support outputs.

Priorities for Decision Support Systems to
Inform Climate Change Mitigation and
Adaptation
As described above, lessons learned in developing and using
traditional decision support systems must be incorporated into
the development of climate change-related DSS to be successful.
The priorities for such development described below arose from
discussions of those lessons in the literature and during the
Agriculture in a Changing Climate Workshop.

DSS Priority A. Integrate climate change-related DSS with
existing DSS tools and integrate financial planning components,
so producers can evaluate the economics of potential management
actions and investments.

A holistic approach is vitally important when developing
climate change-related DSS. Developers of climate change-
related decision support systems should consider incorporating
multiple models to improve the tool’s ability to walk producers
through a variety of factors that may be affected by climate
change (e.g., crop phenology, insect maturation, disease risk).
Developers of climate change-related DSS should consider
collaborating with providers of traditional DSS that producers
already know and use. There is value in providing users
with climate change-related information at online locations
where they already go for decision support, such as pest
management DSS (McNie, 2012; Kirchhoff et al., 2013).
Integrating climate change-related DSS with other agricultural
DSS creates opportunities to engage users who may not seek out
climate change-related tools on their own, or who are skeptical

about climate change (Feldman and Ingram, 2009; Akerlof et al.,
2012). Integrated tools enable producers to consider climate
as one of many risks that they need to plan for and manage
(Howden et al., 2007; McNie, 2012; Kirchhoff et al., 2013).

The utility of climate change-related DSS would be enhanced
by including models that evaluate the economics of different
management strategies in addition to modeling agronomic
impacts. Climate change-related DSS could thereby help
producers incorporate climate change considerations into
investment decisions, such as perennial crop plantings,
equipment purchases, land purchases, and long-term leases
(Allen et al., 2017; Capalbo et al., 2017; Kanter et al., in press),
by helping them analyze costs, outcomes, and tradeoffs of
alternative decisions. It is important that producers have access
to climate-related DSS that allow them to make more efficient
use of capital as well as inputs, as in many cases investment
decisions have longer-term outcomes, and thus incorporating
climate considerations is likely to improve readiness for future
changes.

DSS Priority B. Develop multi-scale climate change-related
decision support systems that focus on aggregate-scale as well as
individual (farm-scale) decision-making, to help decision-makers
at broader scales incorporate climate change.

Many of the available agricultural DSS are focused on
individual producer-level decisions. These systems generally
need data that have the highest spatial resolution and relatively
short forecast duration (e.g., 2–4 weeks) to help make decisions
regarding different management options. However, decisions are
also made at larger scales, including irrigation district, watershed,
or other political boundaries. Decisions made at each scale are
conditional on those made at other scales and affect each other
through feedbacks.

There are considerably fewer users at the aggregate scales,
primarily regulators, or policy makers. However, the effects of
poor decisions by this group can be extensive, and may result in
serious economic impacts to individual producers or managers.
There will also likely be higher development and support costs
per user for aggregate-scale DSS, both because of fewer users, and
because of the higher complexity of aggregate models. Yet these
users tend to have access to more significant financial resources.
Targeting these aggregate-scale decision-makers as users of
climate-related DSS could lead to broader incorporation of
climate change considerations in larger scale planning activities.
Multi-scale tools may also help the aggregate-scale decision-
makers visualize and evaluate the farm-scale impacts of their
broader scale decisions (and vice versa).

DSS Priority C. Develop a centralized, quality-controlled source
of input weather and climate data at multiple temporal scales so
DSS developers can focus on the decision support aspect to directly
inform adaptation decisions.

The majority of currently available climate projections are
aggregated to a time-scale that has limited utility for supporting
farm management decisions (Lemos et al., 2012; Weaver et al.,
2013; Newsom et al., 2016). Many climate change projections
are focused on a 20–30 year time-scale that are useful for policy
and infrastructural investment purposes, but not for most farm
management and investment decisions, which typically require
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shorter (2–10 year, or even seasonal) forecasts (Allen et al.,
2017). In addition, climate change projections often focus on
changes in average conditions, rather than extremes (e.g., heat
waves, drought) that tend to more directly impact agricultural
production (Lemos et al., 2012; Kirchhoff et al., 2013; Weaver
et al., 2013). If ongoing scientific advances enable reliable
seasonal forecasts and decadal climate prediction, as well as
projections of changes in the frequency and intensity of extreme
events, then their incorporation into climate-related DSS would
likely make them more valuable to producers for farm-level
planning and management (AgCC, 2016), especially if climate
changemakes it more difficult for producers to rely on experience
to inform their expectations.

The development of climate change-related DSS would be
greatly accelerated and considerably cheaper if there were
a centralized source of quality-controlled weather data and
climate forecasts. A central repository would also improve DSS
quality by improving access to independent datasets for filling
in missing data and for validation efforts. To illustrate the
potential cost savings, it is estimated that 70% of the effort
required to expand the Washington State University-Decision
Aid System (WSU-DAS) for tree fruits fromWashington State to
British Columbia will be the development of the environmental
monitoring/forecast system, with only 30% of effort for adapting
the DSS to the management differences (AgCC, 2016). Achieving
consistency and integration between one or more weather and
climate datasets that are of interest within a climate change-
related DSS can add to these challenges, as datasets will likely
combine historical observations and multiple climate change
projections.

Data should be available with a simple interface that would
allow users to quickly access the desired climatic parameters
for a particular location and time period (both historical and
forecast), as well as automated collection of the data by web-
based DSS. Users (DSS developers) should also be provided with
explanations that would help them understand the limitations
of the data and assumptions. For example, in climate projection
data sets, changes in temperature are typically more pronounced
than changes in precipitation, which needs to be considered when
DSS developers are using the data as inputs to run biological
models, or for deriving other variables.

PARTNERSHIPS AND COMMUNICATION
AMONG RESEARCHERS AND
DECISION-MAKERS

Existing Partnerships and Their Value
Recent decades have seen rapidly expanding efforts to conduct
research that directly informs policies and the decisions made
by agricultural producers, yet significant barriers remain in
the pursuit of usable science focused on climate change and
agriculture (Lemos et al., 2012; Kirchhoff et al., 2013; Wibeck,
2014). Active partnerships already exist in the Northwest U.S.
among individuals working at many points along the research-
extension-practice continuum on specific topics, in particular
geographies, or on specific crops or production systems (AgCC,

2016). There is a need for the research and extension community
to continue developing strategies for effective collaboration
and communication with stakeholders, who have diverse needs
and expertise (Moser and Ekstrom, 2010; Akerlof et al., 2012;
Wibeck, 2014; AgCC, 2016). Existing literature suggests effective
mechanisms for researchers to engage with agricultural decision-
makers, and for building the necessary extension capacity—
including that of conservation district staff, private-sector
technical service providers, and others—to deliver actionable
climate change information (McNie, 2012; Kirchhoff et al., 2013;
Wibeck, 2014; Prokopy et al., 2015a; Roesch-McNally et al., 2017).
In order to produce relevant tools and research, scientists need
to be well-versed in the concerns and challenges that regional
producers are facing and how those producers make decisions
(McNie, 2012; Kirchhoff et al., 2013; Weaver et al., 2013; Allen
et al., 2017).

Agricultural producers already manage multiple risks—
economic, production-based, environmental, weather—however,
managing for climate change-related risks is uniquely challenging
because impacts are uncertain, variable over space and time,
and often perceived as being only of concern in the distant
future (Moser and Ekstrom, 2010; Leiserowitz et al., 2011;
Akerlof et al., 2012). In some cases, discussions of climate
change with agricultural producers has been complicated both
by the politicized nature of the discussion (McCright and
Dunlap, 2011), and because decision-makers may discount
climate science as political rhetoric (Leiserowitz et al., 2011).
These complications pose added obstacles for moving toward
proactive, purposeful responses to long-term climate change
risks, balancing the trade-offs and finding approaches for which
the benefits outweigh the costs, for both individual producers and
society.

Fortunately, there are increasing opportunities in the
Northwest for effective collaboration among climate and
agriculture researchers, agricultural professionals, producers,
and other decision-makers who can use research results and
decision support systems to inform their decisions. Northwest
agricultural professionals recognize the effects of climate change
as a priority research area (Zimmerman et al., 2014; AgCC,
2016). Interest in the results of agriculture and climate change
research may also be growing in response to unprecedented
regional climate patterns from 2014 through 2016 (AgCC, 2016).
Workshop participants from different backgrounds—including
researchers, agricultural professionals, industry representatives,
and producers—voiced a sense of readiness in the Northwest
to communicate openly to address climate change impacts
through science, management, and policy channels (AgCC,
2016). There is also clear interest among scientists, producers and
policy makers in working collaboratively across institutions to
develop new technologies to monitor and manage agricultural
systems (AgCC, 2016). Regional priorities for research and
extension partnerships and communication in the Northwest
U.S. are consistent with a nationwide trend to increasingly
value and emphasize knowledge co-production and actionable
climate science for natural resource decision-makers (Sarewitz
and Pielke, 2007; McNie, 2012; Kirchhoff et al., 2013; Weaver
et al., 2013).
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Priorities for Partnerships and
Communication Among Researchers and
Decision-Makers
Specific recommendations for fostering the necessary
collaboration and co-production of agriculture and climate
change research in the Northwest U.S. emerged from discussions
at the Agriculture in a Changing Climate Workshop, and are
articulated in the following priorities.

Partnerships Priority A. Continue to build a robust network
of diverse agriculture professionals and researchers that
collaboratively identify research priorities and management-
relevant questions, and integrate results into useful decision
support systems.

The state of knowledge about climate change impacts and
mitigation is rapidly evolving, and new concerns and information
needs continue to emerge among agricultural decision-makers.
In addition, producers’ trusted sources of information are
rapidly diversifying, including family, friends, neighbors, crop
consultants, and input suppliers (Haigh et al., 2015; Prokopy
et al., 2015a; Wright-Morton et al., 2016), as well as a growing
use of web-based resources. Ongoing collaborations among
researchers and stakeholders are therefore essential in order
to (a) conduct relevant research and to develop effective
climate change-related decision support systems, and (b) to
make them available to users through the right channels,
and (c) with appropriate training and support to facilitate
their effective use. A clearinghouse for agriculture and climate
change research, tools, and news would meet the need for
such ongoing collaboration. The growing Agriculture Climate
Network and its cornerstone website (www.agclimate.net) that
shares and discusses agriculture and climate change research
topics and resources in the Northwest U.S. represents one effort
to foster such a robust network. This network is supported
by organizations and programs that also provide additional
climate science and tools, such as the Northwest Climate
Hub (https://www.climatehubs.oce.usda.gov/northwest) and the
Pacific Northwest Climate Impacts Research Consortium (http://
pnwcirc.org/circ).

Partnerships Priority B. Partner along the research-extension-
practice continuum to demonstrate the overall economic and
environmental costs and benefits of climate change adaptation
and mitigation strategies, to accurately inform individual adoption
decisions.

Agricultural systems are complex, and producers are generally

experienced in integrating many different considerations into

a single decision (Mase and Prokopy, 2014). Often, a focus

on short-term improvements and regulatory actions can have

unintended negative impacts on other parts of the production
system or the environment. Quantifying a holistic array of

environmental and economic costs and benefits (which requires

better incorporation of economic and social sciences) is one

important strategy for improving research at the intersection of

management and decision-making.
It is not realistic to expect producers to be motivated by

mitigation strategies that have an overall cost. Costs and benefits
of adaptation and mitigation strategies should be assessed and

demonstrated at short-, mid-, and long-term time scales, and
across the diverse agricultural systems of the Northwest. This will
allow stakeholders to identify and consider those strategies that
will be beneficial to them. In addition, producers may decide not
to follow an adaptation or mitigation approach not because of a
lack of scientific support, but because they are uncertain about the
economic implications or the logistical burden of changing their
operations. Ultimately, on-the ground demonstration of practice
effectiveness is often needed before a producer is willing risk new
methods or make significant investments on their farm (AgCC,
2016).

Partnerships Priority C. Communicate the limits of farm-
level adaptation strategies, as well as important thresholds or
tipping points at which climate change impacts may become more
detrimental, to help decision-makers understand vulnerabilities.

A balanced approach is needed in communicating the
potential effects of climate change. This approach should
acknowledge the potential for opportunities for Northwest
agricultural producers, and research indicating that individual
farm-level adaptationmay be adequate for many crops. However,
it should also acknowledge that uncertainty still exists in terms
of the magnitude of change in climatic variables, and that climate
changemay proceedmore quickly than indicated by the scenarios
currently used in many existing climate impacts studies for
agriculture. In addition, vulnerabilities still exist, particularly due
to impact of extreme events such as droughts, floods, and heat
waves.

There are few published studies that examine the effectiveness
and limits of individual farm-level adaptation strategies, such as
changing varieties, selecting alternative crops, or building soil
carbon storage (Stöckle et al., 2010). For some climate change-
related risks (e.g., water shortages, flooding), effective responses
may be required beyond the farm level. There is a need to
ensure that—at a minimum—management and policy decisions
implemented in the near term do not undermine farmers’ ability
to cope with more severe climate change impacts in the future
(Howden et al., 2007; Roesch-McNally et al., 2017).

CONCLUSION

Climate change impacts on agriculture in the Northwest are
projected to be generally milder than in many other agricultural
regions of the country and the world given that the region’s
historical climate is relatively cool. Thus for some crops,
moderate warming may be beneficial. Additionally, the region’s
cropping systems have a significant amount of resiliency built
in to address historical inter-annual climate variability. This
relative level of “regional climate change insulation” may lead
to improved global market opportunities for some Northwest
producers in the future.

Climate change, however, will likely create additional
sustainability challenges for agriculture in the Northwest. For
example, increased reliance on Northwest dairies for the United
States’ national milk production could exacerbate issues of water
availability and manure management in some areas of the
region. It could also increase the need to import feed, with
associated import of nutrients to the region, contributing further
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to nutrient-related air and water quality concerns. Another
significant concern is that climate change may cause farmers to
increase fallowing as a riskmitigation strategy in the dryland crop
production areas of the inland Northwest. This could threaten
decades of progress made in reducing soil erosion, and make
maintaining SOC more challenging (Kaur et al., 2017; Morrow
et al., 2017). Similarly, some strategies to limit emissions of
N2O could increase losses of nitrogen as ammonia or nitrate.
Investing in the necessary research and extension to understand
these sustainability challenges, quantify trade-offs, and test and
evaluate the cost and effectiveness of potential responses will
provide the scientific foundation to inform producer responses
as well as policies and incentives that support sustainable
agricultural production over the long term.

Other agricultural regions in the United States may face
more severe impacts from a changing climate, which may
pose different challenges and raise different environmental
concerns to those that are the focus in the Northwest. However,
as climate change progresses, it is important to understand
thresholds in environmental sustainability, the limits of farm-
level adaptation, and the points beyond which easily accessible
adaptation strategies will no longer be effective in each
production region. Building from the example above on soil
erosion, previously effective strategies in the Northwest and
elsewhere—such as adoption of no-till farming—may not be
sufficient to overcome the new challenges posed by a changing
climate, requiring transformative thinking and the development
of newmanagement approaches or genetic improvements not yet
envisioned.

We have synthesized the perspectives shared at the
Agriculture in a Changing Climate Workshop (AgCC, 2016) and
have provided specifics about research and extension priorities
based on a review of agriculture and climate change-focused
literature. Knowledge gaps, remaining challenges, and existing
opportunities have guided the definition of research and
extension priorities that are expected to help the Northwest’s
agricultural sector adapt to current and future climate change
and contribute to mitigation efforts.

Multiple, interrelated challenges exist for funding entities,
researchers, extension professionals, and agricultural advisors
pursuing these priorities. Agricultural systems in the region
are highly variable, so adaptation or mitigation practices that
are successful for one location or production system may
not be successful in another. Different decision-makers—from
policy-makers to producers—require information at different
scales. Also, efforts to address these priorities require an
understanding of the complexity and interconnected nature of
climate systems, agroecosystems, and society. Where possible,
this article anticipates these challenges and suggests effective
strategies that would lead to research that informs agricultural
decision-making at multiple levels. The specific research results
obtained by pursuing these priorities will be most directly
informative within the Northwest region and its specific
production systems, however, there are many lessons that
can be applied elsewhere related to effective approaches to
inform climate change adaptation and mitigation in agricultural
systems.

There are many challenges to the viability and sustainability
of agricultural systems in the Northwest U.S., including changing
national and global trade opportunities, labor issues, and
competing land use priorities (Allen et al., 2017). Climate change
impacts intersect with these existing challenges in multiple
ways. Managing agricultural systems to mitigate and adapt to
climate change presents new and complex issues for agricultural
decision-makers, yet there are good reasons to be cautiously
optimistic about the potential for increasingly sustainable and
resilient agricultural systems in this region. The agricultural
industry is experienced at adapting to climatic variability and
managing multiple risks. This experience in risk management,
coupled with the relatively moderate impacts expected in the
Northwest, suggest that proactive and informed producers can
likely adapt to future changes and continue to sustainably provide
agricultural products to the region and the country. The efforts
of producers must be supported by the work of agriculture
and climate change researchers from diverse disciplines (and
their supporting and funding institutions). These research and
extension priorities provide a roadmap for continuing to invest
strategically in collaboration and knowledge-sharing designed
to produce actionable science, to build capacity and facilitate
the use of such science. By pursuing these priorities we can
move toward implementing key adaptation and mitigation
strategies appropriate to the unique production systems of the
Northwest.
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