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Various abiotic stress factors significantly contribute to major worldwide-losses in crop
productivity by mainly impacting plant’s stress tolerance/adaptive capacity. The latter is
largely governed by the efficiency of antioxidant defense system for the metabolism
of elevated reactive oxygen species (ROS), caused by different abiotic stresses. Plant
antioxidant defense system includes both enzymatic (such as superoxide dismutase,
SOD, E.C. 1.15.1.1; catalase, CAT, E.C. 1.11.1.6; glutathione reductase, GR, E.C. 1.6.4.2;
peroxidase, POD, E.C. 1.11.1.7; ascorbate peroxidase, APX, E.C. 1.11.1.11; guaiacol
peroxidase, GPX, E.C. 1.11.1.7) and non-enzymatic (such as ascorbic acid, AsA; glutathione,
GSH; tocopherols; phenolics, proline etc.) components. Research reports on the status of
various abiotic stresses and their impact on plant growth, development and productivity
are extensive. However, least information is available on sustainable strategies for the
mitigation of abiotic stress-mediated major consequences in plants. Brassinosteroids
(BRs) are a novel group of phytohormones with significant growth promoting nature. BRs
are considered as growth regulators with pleiotropic effects, as they influence diverse
physiological processes like growth, germination of seeds, rhizogenesis, senescence etc.
and also confer abiotic stress resistance in plants. In the light of recent reports this
paper: (a) overviews major abiotic stresses and plant antioxidant defense system, (b)
introduces BRs and highlights their significance in general plant growth and development,
and (c) appraises recent literature available on BRs mediated modulation of various
components of antioxidant defense system in plants under major abiotic stresses including
metals/metalloids, drought, salinity, and temperature regimes. The outcome can be
significant in devising future research in the current direction.
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INTRODUCTION
ABIOTIC STRESSES AND PLANT ANTIOXIDANT DEFENSE SYSTEM
Plants are inevitably exposed to various environmental stress fac-
tors of like abiotic and biotic types. In particular, abiotic stresses
such as temperature (heat, chilling, and freezing), water (drought,
water logging), salt, heavy metals, light (intense and weak), radi-
ation (UV-A/B) etc. are serious threats to agriculture worldwide
(Bray et al., 2000). Elevation in the generation of various reactive
oxygen species (ROS; such as superoxide radicals, O2−; hydroxyl
radicals, OH−; perhydroxyl radicals, HO2−; alkoxy radicals, RO−;
hydrogen peroxide, H2O2; singlet oxygen, 1O2.) is a common
consequence in plants growing under abiotic stresses (Anjum
et al., 2010, 2012, 2014; Gill and Tuteja, 2010). Important sig-
nal transduction functions and triggering and/or orchestration of
plant responses to varied (abiotic) stresses can be possible with
minimal levels of ROS. However, major ROS and their reaction
products that escape antioxidant-mediated scavenging can dis-
turb the ROS/antioxidant homeostasis in plant cells, cause oxida-
tive stress, bring critical damages to the primary metabolites of

plants viz., proteins, lipids, carbohydrates and DNA and halt cel-
lular metabolism (Anjum et al., 2010, 2012, 2014; Gill and Tuteja,
2010). To survive such stresses, plants have evolved many intricate
defense mechanisms to increase their tolerance and survive under
such extreme environmental conditions. Plant stress tolerance
requires the activation of complex metabolic activities including
antioxidative pathways, especially ROS-scavenging systems within
the cells that in turn can contribute to continued plant growth
under stress conditions (El-Mashad and Mohamed, 2012). Plant
antioxidant defense system consists of the enzymes such as super-
oxide dismutase (SOD: EC 1.15.1.1), catalase (CAT: EC 1.11.1.6),
peroxidase (POD: EC 1.11.1.11), ascorbate peroxidase (APX:
E.C. 1.11.1.11), glutathione reductase (GR: EC 1.6.4.2), glu-
tathione sulfo-transferase (GST: EC), polyphenol oxidase (PPO:
E.C. 1.14.18.1), guaiacol peroxidase (GPX: EC 1.11.1.7), monode-
hydroascorbate reductase (MDHAR: EC 1.1.5.4), dehydroascor-
bate reductase (DHAR: EC 1.8.5.1) etc. Whereas, non-enzymatic
components may include osmolytes like proline, glycine betaine,
sorbital, mannitol etc., and reduced glutathione (GSH), ascorbic
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acid (AsA) that are needed for osmotic adjustment, stabilization
of membranes, and ROS-scavenging (Anjum et al., 2010, 2012,
2014; Gill and Tuteja, 2010) (Figure 1).

BRASSINOSTEROIDS
OVERVIEW
Brassinosteroids (BRs) are a new type of polyhydroxy steroidal
phytohormones with significant growth-promoting influence
(Vardhini, 2012a,b; Bajguz and Piotrowska-Niczyporuk, 2014).
Mitchell et al. (1970) discovered BRs which were later extracted
from the pollen of Brassica napus by Grove et al. (1979). BRs can
be classified as C27, C28 or C29 BRs according to the number of
carbons in their structure (Vardhini, 2013a,b). Sixty BRs related

FIGURE 1 | Schematic representation of major abiotic stresses, their

consequences and the components of plant antioxidant defense

system. (CAT, catalase; APX, ascorbate peroxidase; GR, glutathione
reductase; GPX, glutathione peroxidase; GST, glutathione sulfo-transferase;
SOD, superoxide dismutase; PPO, polyphenol oxidase; AsA, reduced
ascorbic acid; GSH, reduced glutathione; Pro, proline; Man, mannitol; Sorb,
sorbitol; GlyBet, glycine betaine; PGRs, plant growth regulators; ROS,
reactive oxygen species) (Modified after Anjum et al., 2014).

compounds have also been identified (Haubrick and Assmann,
2006). However, brassinolide (BL), 28-homobrassinolide (28-
HomoBL) and 24-epibrassinolide (24-EpiBL) are the three bioac-
tive BRs those are widely used in most physiological and exper-
imental studies (Vardhini et al., 2006) (Figure 2). BRs are con-
sidered ubiquitous in plant kingdom as they are found in almost
all the phyla of the plant kingdom like alga, pteridophyte, gym-
nosperms, dicots and monocots (Bajguz, 2009). BRs are consid-
ered also as a new group of plant growth hormones that perform
a variety of physiological roles like growth, seed germination,
rhizogenesis, senescence, and resistance to plants against various
abiotic stresses (Rao et al., 2002).

SIGNIFICANCE IN GENERAL PLANT GROWTH AND DEVELOPMENT
BRs have to their credit a host of roles in general plant growth
and development. BRs can activate the cell cycle during seed ger-
mination (Zadvornova et al., 2005), control progression of cell
cycle (González-Garcia et al., 2011), induce exaggerated growth
in hydroponically grown plants (Arteca and Arteca, 2001), and
also control proliferation of leaf cells (Nakaya et al., 2002). In
addition, reports are also available on the role of BRs in growth
promotion of apical meristems in potato tubers (Meudt et al.,
1983), acceleration of rate of cell division in isolated protoplasts
of Petunia hybrida (Ho, 2003) and cell division and leaf expan-
sion (Zhiponova et al., 2013). Initially BRs were identified based
on their growth promoting activities; however, subsequent phys-
iological and genetic studies revealed additional functions of BRs
in regulating a wide range of processes, including source/sink

FIGURE 2 | Examples of commonly used bioactive brassinosteroids.
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relationships, seed germination, photosynthesis, senescence, pho-
tomorphogenesis, flowering and responses to different abiotic
and biotic stresses (Deng et al., 2007). The work with BR biosyn-
thetic mutants in Arabidopsis thaliana (Tao et al., 2004) and
Pisum sativum (Nomura et al., 1997) have provided strong evi-
dences that BRs are essential for plant growth and development
and BR- signaling plays a positive in plant growth and develop-
ment (Fábregas and Caño-Delgado, 2014). A simple BR- analog
2α, 3α-dihydroxy-17β-(3-methyl butynyloxyl) 7-oxa-B-homo-5α

androstan-6-one induces bean second node splitting which is
considered as the prominent physiological feature of BRs (Strnad
and Kohout, 2003). Dwarf and de-etiolated phenotypes and BR—
deficient species of some Arabidopsis mutants were rescued by
application of BRs (Bishop and Yakota, 2001). Even Pharbitis nil,
Uzukobito was a defective BR- biosynthetic dwarf mutant strain
(Suzuki et al., 2003) which emphasized that BR-deficient and
defective BR-biosynthetic species exhibited abnormal growth.
Friedrichsen et al. (2002) also reported that three redundant BR
genes encode transcription factors which are required for nor-
mal growth, indicating the necessity of BRs for normal growth.
Similarly, the inhibition of growth (Asami et al., 2000) and sec-
ondary xylem development (Nagata et al., 2001) of cress (Lepidius
sativus) by brassinozole, a specific inhibitor of BL synthesis was
reversed by the exogenous application of BL, further emphasizing
the necessity of BRs for normal plant growth.

BRs also exhibit synergistic effect with other phyohormones
in regulating the plant growth and metabolism. BRs interact
with auxins, cytokinins, gibberellins (Domagalska et al., 2010),
abscisic acid (ABA) (Domagalska et al., 2010), ethylene (ET)
(Manzano et al., 2011) salicylic acid (SA) (Divi et al., 2010) and
jasmonic acid (JA) (Creelman and Mullet, 1997; Peng et al., 2011)
to promote plant growth and metabolism. Ability of 24-EpiBL
to control the basic thermotolerance and salt tolerance of the
mutants has been evidenced (Divi et al., 2010). In addition, these
authors also reported synergistic role of 24-EpiBL, where treat-
ment with 24-EpiBL increased expression of various hormone
marker genes in both wild type and mutant Arabidopsis seedlings
those were either deficient in or insensitive to ABA, ET, JA, and
SA. Notably, BRs may be applied/supplied to plants at different
stages of their life cycle viz., vegetative stage (Vardhini and Rao,
1998), flowering stage (Vardhini, 2012a, 2013a), meiosis stage
(Saka et al., 2003), grain filling stage (Vardhini, 2012a), anthesis
stage (Liu et al., 2006) etc. as foliar spray (Vardhini et al., 2008),
seed treatment (Zhang et al., 2007; Kartal et al., 2009), root appli-
cation (Shang et al., 2006; Song et al., 2006) and even as shot gun
approach (Hayat et al., 2010a). Examples of a range of other major
functions of BRs and related compounds reported in different
plants can be found in Figure 3.

BRASSINOSTEROIDS-MEDIATED MODULATION OF PLANT
ANTIOXIDANT DEFENSE SYSTEM UNDER MAJOR ABIOTIC
STRESS
Extensive research over the years’ has established stress-impact-
mitigating role of BRs and associated compounds in different
plants exposed to various abiotic stresses such as high temper-
ature (Zhou et al., 2004; Kurepin et al., 2008; Janeczko et al.,
2011), low temperature in terms of chilling (Divi and Krishna,

2010; Liu et al., 2011; Wang et al., 2014) as well as freezing
(Janeczko et al., 2009). Reports are available on the significance
of BRs and associated compounds in different plants exposed to
salinity (Avalbaev et al., 2010; Abbas et al., 2013), light (Wang
et al., 2010, 2012; Kurepin et al., 2012; Li et al., 2012a), drought
(Anjum et al., 2011; Li et al., 2012b; Mahesh et al., 2013), flood-
ing (Lu et al., 2006; Liang and Liang, 2009), metals/metalloids
(Arora et al., 2010a,b; Ashraf et al., 2010; Bajguz, 2010), herbicides
(Sharma et al., 2013a), pesticides (Xia et al., 2006), insecticides
(Xia et al., 2009b, 2011), organic pollutants (Ahammed et al.,
2012a, 2013a), newly reclaimed sandy soil (Ahmed and Shalaby,
2013) and preservatives (Hu et al., 2014).

Hereunder, recent reports on the role of BRs (and associ-
ated compounds) in the modulation of both enzymatic and
non-enzymatic components of antioxidant defense system in abi-
otic stressed plants are critically appraised. The discussion will
consider primarily metals/metalloids followed by temperature
regimes (high and low), drought, salinity and other major abiotic
stresses.

METAL/METALLOID STRESS
Foliar application of homoBL was reported to improve Cd-
tolerance in Brassica juncea through increasing activity of antiox-
idative enzymes (such as CAT, POD, SOD) and the content of
osmolyte (such as proline) (Hayat et al., 2007). Improved Cd-
tolerance in Phaseolus vulgaris was possible as a result of 24-epiBL
(5 μM)-mediated increased activity of antioxidative enzymes, and
proline content and subsequent improvements in the membrane
stability index (MSI), relative leaf water content (RLWC) (Rady,
2011). Nullification of the damaging effect of Cd was reported
in totamato cultivars (K-25 and Sarvodya) as a result of 28-
homoBL/24-epiBL (10(−8) M)-mediated improvement in pho-
tosynthetic machinery and antioxidant defense system (Hasan
et al., 2011). Application of BRs (10−8 M) to Cd (3.0, 6.0, 9.0,
and 12 mg kg−1) stressed Solanum lycopersicum plants enhanced
antioxidant system activity and improved fruit yield and qual-
ity (Hayat et al., 2012). Cd-impact-ameliorative role of 24-epiBL
and 28-homoBL (3.0 μM) was evidenced in Raphanus sativus,
where these BRs enhanced levels of free proline, antioxidant
enzymes CAT, SOD, APX, GPX, and also reduced the activity
of POD and AAO (Anuradha and Rao, 2007b). In Cd (0.5, 1.0,
and 1.5 mM)-exposed Raphanus sativus, a diminished oxidative
stress via 24-epiBL (10−7, 10−9, and 10−11 M)-supplementation-
mediated elevation in the activity of GST and PPO enzymes was
reported (Sharma et al., 2012). Earlier, these authors evidenced
28-homoBL (10−11, 10−9, and 10−7 M)-assisted amelioration of
Cd (0.5, 1.0, and 1.5 mM) impacts in Raphanus sativus, where
improved biomass and seedling growth was argued as a result of
28-homoBL-mediated regulation of the activity of APX, CAT, GR,
POD, and SOD (Sharma et al., 2010). Hasan et al. (2008) also
reported 28- homoBL-mediated elevated activity of CAT, POD,
and SOD and the protection of Cicer arietinum against Cd (50,
100, or 150 μM).

Application of 24-epiBL ameliorated Ni-stress in Brassica
juncea by enhancing mainly the activity of antioxidant enzymes
(Kanwar et al., 2013). Earlier, these authors reported BRs (24-
EpiBL, CS, dolicholide and typhasterole)-mediated significant
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FIGURE 3 | Summarized roles of brassinosteroids and related

compounds reported in plants. 1Zadvornova et al., 2005;
2González-Garcia et al., 2011; 3Hartwig et al., 2011; 4Manzano et al.,
2011; 5Yamamoto et al., 2001; 6Jin et al., 2014; 7Carange et al., 2011;
8Pokotylo et al., 2014; 9Vardhini and Rao, 1999; 10Upreti and Murti,

2004; 11Arteca and Arteca, 2001; 12Lu et al., 2003; 13Borcioni and
Bonato-Negrelle, 2012; 14Vardhini and Rao, 2002; 15Weng et al., 2007;
16Vogler et al., 2014; 17Nakaya et al., 2002; 18Zhiponova et al., 2013;
19Malabadi and Nataraja, 2007; 20Aydin et al., 2006; 21Cheng et al.,
2014; 22Haubrick et al., 2006; 23Xia et al., 2014.

mitigation of Ni (0.2, 0.4, and 0.6 mM)-stress in Brassica juncea
plants by elevating the activity of ROS-metabolizing enzymes
(and also via lowering the metal uptake) (Kanwar et al., 2012).
Significantly elevated activity of antioxidant enzymes (such as
GPX, CAT, GR, APX, and SOD) in Brassica juncea seedlings
emerged from the homoBL (0.01, 1.0,and 100 nM)-treated seeds
was argued to provide tolerance of this plant to Ni concen-
trations (25, 50, and 100 mg dm−3) (Sharma et al., 2008). In
Brassica juncea, the spraying of homoBL was evidenced to par-
tially neutralize the toxic effect of 50 or 100 μM Ni, where elevated
activity of POD and CAT, and content of proline was observed
in leaves and roots (Alam et al., 2007). Spraying of 24-epiBL
(1.0 μM) to Ni-exposed Brassica juncea was reported to detox-
ify Ni-impacts (Ali et al., 2008a). Elevated CAT, POD, and SOD
activity via the spray of 0.01 μM of 28-homoBL was argued
to protect five wheat (Triticum aestivum) cultivars (PBW-373,
UP-2338, DL-LOK-01, DL-373, and HD-2338) against Ni con-
centrations (50 and 100 μM) (Yusuf et al., 2011b). Raphanus
sativus seedlings emerged from seeds pre-soaked in 24-epiBL,

exhibited elevated activity of APX, SOD, CAT, GPX, MDHAR,
DHAR, and GR; that eventually resulted in reducing lipid per-
oxidation, enhanced proline and protein contents, and improved
enhancing the root/shoot length, fresh biomass under Ni expo-
sure (Sharma et al., 2011a). Application of 10−6 M 24-epiBL as
shotgun approach (pre-sowing seed soaking) to the Ni-stressed
T-44 (Ni-tolerant) and PDM-139 (Ni-sensitive) varieties of Vigna
radiata plants improved biological yield, number of nodules,
leghemoglobin content, and the activity of CAT, POD, and SOD
enzymes. The 24-epiBL-mediated up-regulation of antioxidant
enzyme activity and the elevated level of proline (osmolyte) were
argued to confer Ni-tolerance and improve growth, nodulation
and yield attributes (Yusuf et al., 2012). Recently, these authors
reported BRs-mediated improved antioxidant defense (and also
nitrogen metabolism) in two contrasting cultivars of Vigna radi-
ata under different levels of Ni (Yusuf et al., 2014).

The role of BRs and associated compounds in the mitigation
of elevated levels of Cu has also been reported in plants. To this
end, treatment of Brassica juncea seedlings with 10−10, 10−8, and

Frontiers in Environmental Science | Environmental Toxicology January 2015 | Volume 2 | Article 67 | 4

http://www.frontiersin.org/Environmental_Toxicology
http://www.frontiersin.org/Environmental_Toxicology
http://www.frontiersin.org/Environmental_Toxicology/archive


Vardhini and Anjum Brassinosteroids and plant-abiotic stress tolerance

10−6 M homoBL improved growth and photosynthetic traits via
decreased H2O2 and elevated activity of CAT, POD, and SOD
(Fariduddin et al., 2009b). Recently, these authors reported an
improved growth of NaCl+Cu (100 mg kg−1) stressed Cucumis
sativus via epiBL-mediated enhancements in the activity of CAT,
POD, and SOD (Fariduddin et al., 2013a). Supplemantation of
10−7, 10−9, and 10−11 M 24-epiBL to Raphanus sativus amelio-
rated the oxidative stress caused by Hg (0.5, 1.0, and 1.5 mM)
by enhancing the activity of ROS-metabolizing enzymes such
as GST and PPO (Sharma et al., 2012). Recently, 24-epiBL
(10−7, 10−9, 10−11 M)-mediated increased activity of antiox-
idative enzymes such as SOD, CAT, APOX, GPX, GR, MDHAR
and DHAR, and also the contents of GSH were argued to help
radish plants to counteract the consequences of Hg (Kapoor et al.,
2014).

Supplementation of 24-epiBL reduced Pb toxicity and
enhanced the growth in radish (Raphanus sativus L.) seedlings
by increasing the activities of antioxidant enzymes like CAT,
APX, GPX, SOD and reducing POD activity (Anuradha and Rao,
2007a). Mitigation of the consequences of Pb (100 or 200 μM)
was reported in tomato plants as a result of 24-epiBL-mediated
increases in the activities of SOD, CAT, APX and GR, and the
contents of AsA and GSH (Rady and Osman, 2012). 24-epiBL
ameliorated Cr (VI) stress in 7-d old Raphanus sativus L. cv.
“Pusa chetki” seedlings by enhancing the pools of reduced GSH
and AsA, the activity of GR, SOD, and APX enzymes, and
also the contents of phytochelatins, proline, and glycinebetaine
(Choudhary et al., 2011). Co-application of epiBL and spermi-
dine (polyamine) was also evidenced to remarkably enhance the
titers of antioxidants (GSH, AsA, proline, glycine betaine and total
phenols) and the activity of GPX, SOD, and GR) in Cr-stressed
Raphanus sativus (Choudhary et al., 2011). Seed pre-soaking
treatment of 28-homoBL at 10(−7) M was effective in ameliorat-
ing Cr(VI) stress in Raphanus sativus L. (Pusa Chetaki), where
an increased activity of antioxidative enzymes (except GPX) and
the contents of proline and proteins but reduced lipid peroxida-
tion were evidenced (Sharma et al., 2011b). 24-EpiBL-mediated
diminution of Cr-toxicity in Brassica juncea was reported, where
increased activity of GPX, CAT, GR, APX, SOD, MDHAR, and
DHAR was argued to improve plant health (Arora et al., 2010b).
Amelioration of Al-impacts was evidenced through epiBL or
homoBL spraying to mung bean (Vigna radiata), where these
BRs increased RLWC, water use efficiency, photosynthetic rate
via enhancing the activity of antioxidative enzymes such as CAT,
POD, and SOD in leaves (Ali et al., 2008b). Plant tolerance to Pb
(and also to Cu and Cr) is possible via BL-mediated significant
activation of enzymes (such as SOD, CAT, APX, and GR) and
non-enzymes (such as reduced GSH, total AsA) (Bajguz, 2010)
(Table 1).

Least reports are available on the role of BRs in plants under
Zn, Bo, Co, Mn, and As stress. Supplementation of 28-homoBL
to Raphanus sativus seedlings was reported to help this plant to
tolerate Zn toxicity by enhancing antioxidative enzyme activities,
strengthening GSH metabolism and redox status, and improv-
ing the contents of non-enzymatic antioxidants and proteins
(Ramakrishna and Rao, 2013). The role of 28-homoBL (Arora
et al., 2008b) and that of 24-epiBL (Arora et al., 2010a) was

reported respectively in Zea mays and Brassica juncea under Zn
stress. In the previous studies, increased activity of SOD, CAT,
APOX, GPX, GR, MDHAR and DHAR and the contents of
GSH were reported to control Zn-accrued lipid peroxidation.
Application of 28-homoBL (10(−8) M) to Bo (0.50, 1.0, and
2.0 mM)-exposed Vigna radiata improved the growth, water rela-
tions, photosynthesis by enhancing antioxidant enzymes (such as
CAT, POD and SOD) (Yusuf et al., 2011a). Foliar spray treatment
with 24-epiBL (0, 10−10, 10−8, and 10−6 M) alleviated the stress
generated by Co (0, 5 × 10−4, 10−3, 1.5 × 10−3, and 2 × 10−3

M) ion in Brassica juncea through significantly improving the
activities of SOD, CAT, POD, GR, APOX, MDHAR, and DHAR
enzymes (Arora et al., 2012). Under elevated lelevs of Mn, epiBL
application was reported to enhance the activities of SOD, POD,
CAT, APX, DHAR, and GR, and the contents of AsA, and GSH
that eventually controlled lipid peroxidation and metabolized
superoxide radical and H2O2 in Zea mays (Wang et al., 2009).
Recently, Raghu et al. (2014) reported BRs-mediated improved
As-tolerance in Raphanus sativus as a result of increased activity
of SOD and CAT.

TEMPERATURE REGIMES
BRs and associated compounds have been extensively reported
to modulate different components of antioxidant defense system
and to play a positive role in the mitigation of the consequences
in different plants exposed to both high (Mazorra et al., 2002,
2011; Zhou et al., 2004; Cao and Zhao, 2007; Ogweno et al., 2008;
Hayat et al., 2010b) and low (Janeczko et al., 2007; Liu et al., 2009;
Kumar et al., 2010; Aghdam et al., 2012; Wang et al., 2012; Hu
et al., 2013; Xi et al., 2013; Aghdam and Mohammadkhani, 2014)
temperatures (Table 1).

Young seedlings of two Indica rice (Oryza sativa) cultivars
namely Xieqingzao B (heat-sensitive) and 082 (heat-tolerant),
subjected to high temperature; sprayed with 0.005 mg L−1 of
BR exhibited significant enhancement in activities of POD and
SOD isozyme expression levels, reduction in MDA level and leak-
age of leaf electrolytes (Cao and Zhao, 2007). Supplementation
with 28-homoBL to Vigna radiata c.v. T-44 plants detoxified the
stress generated by high temperature by improving the mem-
brane stability index (MSI), leaf water potential (ψ) via increased
the activities of antioxidative enzymes and the level of proline
(Hayat et al., 2010b). Pre-treatment of 24-epiBL to Lycopersicon
esculentum Mill. cv. 9021 plants exposed to high temperature
(40/30◦C; for 8 days) significantly alleviated high-temperature-
caused inhibition of photosynthesis by increasing the activities of
SOD, APX, GPX, and CAT, and reducing total H2O2 and MDA
contents (Ogweno et al., 2008). Pre-incubation of tomato leaf
discs with 24-epiBL or MH5 (polyhydroxylated spirostanic analog
of BR) (for 24 h) stimulated the activities of CAT, POD and SOD,
controlled cell damage under heat stress (40◦C) (Mazorra et al.,
2002). EpiBL-induced tolerance to heat shock (HS) in tomato
seedlings (BR-deficient mutant, extreme dwarf d(x)), a partially
BR-insensitive mutant curl3(-abs) allele (curl3 altered brassinolide
sensitivity; and a line overexpressing the dwarf, BR-biosynthesis
gene, 35SD) was argued as a result of reduced ion leakage,
lipid peroxidation through enhanced activities of antioxidative
enzymes (Mazorra et al., 2011).
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Table 1 | Summary of representative studies on brassinosteroids (BRs) and related compounds in the mitigation of major abiotic

stress-impacts in different plant species.

Brassinosteroids and related compounds Abiotic stresses Plant species References

BRs Cd Raphanus sativus Anuradha and Rao, 2007b

Brassica juncea Hayat et al., 2007

Lycopersicon esculentum Hayat et al., 2010a

Lycopersicon esculentum Hasan et al., 2011

Triticum aestivum Kroutil et al., 2010

Solanum lycopersicum Hayat et al., 2012

Helianthus annuus Filova et al., 2013

Helianthus tuberosus Gao et al., 2013

Solatium nigrum Zhao et al., 2013

Al Vigna radiata Ali et al., 2008b

Glycine max Dong et al., 2008

Ni Brassica juncea Kanwar et al., 2012

24-epiBL Cd Brassica napus Janeczko et al., 2005

Raphanus sativus Anuradha and Rao, 2009

Phaseolus vulgaris Rady, 2011

Ni Brassica juncea Kanwar et al., 2013

Raphanus sativus Sharma et al., 2011a

Cu Cucumis sativus Fariduddin et al., 2013a

Co Brassica juncea Arora et al., 2012

Zn Brassica juncea Arora et al., 2010a

Pb Raphanus sativus Anuradha and Rao, 2007a

24-EpiBL and 28-HomoBL Ni Brassica juncea Ali et al., 2008a; Sharma et al.,
2008

28-HomoBL Cd Cicer arietinum Hasan et al., 2008

Raphanus sativus Sharma et al., 2010

Cu Brassica juncea Fariduddin et al., 2009b

Cr Raphanus sativus Sharma et al., 2011b

Bo Raphanus sativus Yusuf et al., 2011a

Zn Raphanus sativus Ramakrishna and Rao, 2013

BRs High temperature Lycopersicon esculentum Ogweno et al., 2008

Low temperature Vigna radiata Huang et al., 2006

Brassica napus Janeczko et al., 2007

Solanum lycopersicum Aghdam et al., 2012

Cucumis sativus Jiang et al., 2013

Brassica napus Ma et al., 2009

24-epiBL High temperature Solanum lycopersicum Singh and Shono, 2005

Hordeum vulgare Janeczko et al., 2011

Cucumis melo Zhang et al., 2013

Low temperature Cucumis sativus Hu et al., 2010

Brassica juncea Kumar et al., 2010

Vitis vinifera Xi et al., 2013

28-HomoBL Cucumis sativus Fariduddin et al., 2011

BL Low temp Campsicum annum Wang et al., 2012

Solanum lycopersicum Aghdam and Mohammadkhani,
2014

Oryza sativa Wang et al., 2014

High temp Brassica napus Kurepin et al., 2008

(Continued)
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Table 1 | Continued

Brassinosteroids and related compounds Abiotic stresses Plant species References

BRs Drought Phaseolus vulgaris Upreti and Murti, 2004

Sorghum vulgare Vardhini and Rao, 2005

Lycopersicon esculentum Behnamnia et al., 2009

Solanum lycopersicum Yuan et al., 2010

Carica papaya Gomes et al., 2013

Raphanus sativus Mahesh et al., 2013

Flooding Brassica napus Liang and Liang, 2009

BL Drought Robinia pseudoacacia Li et al., 2008

Glycine max Zhang et al., 2008

Xanthoceras sorbifolia Li and Feng, 2011

Arachis hypogaea Savaliya et al., 2013

Flooding Cucumis sativus

Glycine max Lu et al., 2006

24-EpiBL Drought Capsicum annuum Hu et al., 2013

Brassica napus Mousavi et al., 2009

Cucumis sativus Kang et al., 2009

28-homoBL Drought Brassica juncea Fariduddin et al., 2009a

BRs Salinity Lycopersicon esculentum Ali et al., 2006

Cucumis sativus seedlings Shang et al., 2006

Cucumber seedlings Song et al., 2006

Triticum aestivum Shahbaz and Ashraf, 2007

Cucumber Wang et al., 2011

Trifolium alexandrinum Daur and Tatar, 2013

Oryza sativa Sharma et al., 2013b

BL Salinity Medicago sativa Zhang et al., 2007

Zea mays El-Khallal et al., 2009

Vigna unguiculata El-Mashad and Mohamed, 2012

Oryza sativa Das et al., 2013

Cucumis sativus Lu and Yang, 2013

24-EpiBL Salinity Triticum aestivum Talaat and Shawky, 2013

Pisum sativum Fedina, 2013

Cucumis sativus Fariduddin et al., 2013a

Cajanus cajan Dalio et al., 2013

Capsicum annuum Abbas et al., 2013

Lactuca sativa Ekinci et al., 2012

Solanum melongena Ding et al., 2012

Phaseolus vulgaris Rady, 2011

Pisum sativum Shahid et al., 2011

Cajanus cajan Durigan et al., 2011

Fragaria x ananassa Karlidag et al., 2011

Triticum aestivum Avalbaev et al., 2010

Hordeum vulgare Tabur and Demir, 2009

Triticum aestivum Shahbaz et al., 2008

28-HomoBL Salinity Cicer arietinum Ali et al., 2007

Zea mays Arora et al., 2008a

Vigna radiata Hayat et al., 2010b

Triticum aestivum Yusuf et al., 2011b

Brassica juncea Alyemeni et al., 2013

www.frontiersin.org January 2015 | Volume 2 | Article 67 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Environmental_Toxicology/archive


Vardhini and Anjum Brassinosteroids and plant-abiotic stress tolerance

Literature is full also on the role of BRs in plants under
low temperature stress. BR infiltration prior to cold treatment
can reduce the ion leakage in chilling-exposed rape plants
(Janeczko et al., 2007); whereas, 24-epiBL can increase the
antioxidant defense (and also osmoregulation) in chilling
stressed young grapevines (Xi et al., 2013). Application of 24-
EpiBL to suspension cultured cells of low temperature (4 and
0◦C)-exposed Chorispora bungeana alleviated oxidative damage
through enhancing the activity of ROS-metabolizing enzymes
such as APX, CAT, POD and SOD and the content of AsA (Liu
et al., 2009). In chilling (4◦C) exposed Brassica juncea seedlings,
exogeniously applied 24-epiBL alleviated the toxic effect of H2O2

through increasing the activities of various enzymes involved in
antioxidant defense system like CAT, APX, and SOD (Kumar
et al., 2010). Hu et al. (2010) reported that exogenous applica-
tion of 24-epiBL alleviated the 12/8◦C chilling-induced inhibition
of photosynthesis in cucumber (Cucumis sativus) by reducing
ROS generation and accumulation through increasing the activi-
ties of SOD, APX. In another study on cucumber pretreated with
24-epiBL (0.3 and 1.0 mmol·L−1 chlorpyrifos) and exposed to
chilling stress, these authors reported elevations in the activities
of APX, GR, CAT, and GPX that eventually alleviated the chilling-
accrued phytotoxicity (Hu et al., 2013). 28-homoBL (10−8, or
10−6 M)-mediated significantly increased activities of antioxidant
enzymes like CAT, POD, and SOD (and also the elevated con-
tent of proline) in cucumber (Cucumis sativus) were reported to
improve tolerance of this plant to chilling temperatures (10/8◦C,
5/3◦C) (Fariduddin et al., 2011; BRs 5, 10, and 15 μM) effectively
reduced chilling injury of pepper fruit during 18-day storage at
3◦C by reducing the electrolyte leakage, MDA content; increasing
the activities of antioxidant enzymes including CAT, POD, APX,
and GR (Wang et al., 2012). Aghdam et al. (2012) reported that
treatments with 3.0 and 6.0 μM BRs to tomato fruits stored at
1◦C for 21 days reduced the chilling injury, electrolyte leakage,
MDA content; enhanced proline, total phenol contents, pheny-
lalanine ammonia-lyase (PAL) activity and maintained mem-
brane integrity. In a recent work, these authors reported that
application of 0, 3 and 6 μM BL to tomato fruits subjected to 1◦C
chilling stress can inhibit the activities of phospholipase D (PLD)
and lipoxygenase (LOX), major causes of chilling injury induction
in tomato fruits (Aghdam and Mohammadkhani, 2014). BRs pro-
tected the photosynthetic apparatus from cold-induced damage
in Cucumis sativus plants by activating the enzymes of Calvin cycle
and increasing the antioxidant capacity, which in turn mitigated
the photo-oxidative stress and plant growth inhibition during the
recovery of chilling injury (Jiang et al., 2013).

DROUGHT STRESS
Reports are extensive on the role of BRs and related compounds
in plant drought tolerance (Li and Van Staden, 1998a,b; Li et al.,
1998, 2008, 2012b; El-Khallal, 2002; Vardhini and Rao, 2003a,b,
2005; Zhang et al., 2008; Behnamnia et al., 2009; Fariduddin et al.,
2009a; Farooq et al., 2010; Yuan et al., 2010; Anjum et al., 2011;
Mahesh et al., 2013). Field and pot experiments of 0.2 mg L−1 BL
application to 1-year-old Robinia pseudoacacia seedlings grown
under drought stress increased the activity of SOD, POD and
CAT, and the contents of soluble sugars and free proline (Li et al.,

2008). Application of 0.1 μM 24-epiBL increased the resistance
in drought-stressed Chorispora bungeana by reducing the lipid
peroxidation (measured in terms of MDA content), membrane
permeability as a result of increased activities of antioxidative
enzymes and the pools of non-enzymatic antioxidants such as
AsA and GSH (Li et al., 2012b). BL ameliortaed the negative
effect water stress (Poly Ethylene Glycol:PEG for 24 h) on cal-
lus tissues of drought-resistant (PAN 6043) and drought-sensitive
(SC 701) cultivars of Zea mays by enhancing the activities of
SOD, CAT, APX, POD, and GR (Li and Van Staden, 1998a,b).
Earlier also, BL was reported to increase the activities of SOD,
CAT, and APX eznymes, and the contents of AsA and total
carotenoids in seedlings of drought-resistant (PAN 6043) and
drought-sensitive (SC 701) cultivars of Zea mays under water
stress (−1.0 MPa PEG 6000) (Li et al., 1998). Exogenous appli-
cation of BL alleviated the detrimental effects of drought in Zea
mays by enhancing enzymatic antioxidant enzyme activities and
the contents of proteins, relative leaf water and proline (Anjum
et al., 2011). 28-HomoBL and 24-epiBL ameliorated the negative
impact of PEG-imposed osmotic/water stress in CSH-14, ICSV
(Vardhini and Rao, 2003a) and CSH-15 (Vardhini and Rao, 2005)
varieties of Sorghum vulgare seedlings by increasing the activity of
CAT and the contents of free proline and nucleic acids. Seedlings
of Triticum cultivars Sakha 69 (drought-resistant) and Giza 164
(drought-sensitive) subjected to water stress (by soaking the roots
for 48 h in 30% PEG 6000; −0.9 MPa) and BR treatment, exhib-
ited higher RWLC, MSI, proline, regulation of expression of water
stress-inducible proteins as well as induced de-novo synthesis of
specific polypeptides (El-Khallal, 2002). Exogenously applied 24-
epiBL (0.01 μM) improved the drought tolerance in rice (Oryza
sativa) cultivar Super-Basmati which was sturdily associated with
the greater tissue water potential, increased synthesis of metabo-
lites and enhanced capacity of antioxidant system (Farooq et al.,
2010). Spraying with HBL (0.01 μM) to 30-day stage seedlings of
Brassica juncea subjected to drought stress (for 7 days at the 8–14
(DS1)/15–21 (DS2) days stage of growth) improved the activi-
ties of antioxidant enzymes such as CAT, POD and SOD, and
the content of proline (Fariduddin et al., 2009a). Foliar applica-
tion of BRs elevated the activities of POD and SOD, increased
the concentrations of soluble sugars and proline that eventualy
resulted into decreased MDA concentration and electrical con-
ductivity in the leaves of drought exposed Glycine max (Zhang
et al., 2008). Lycopersicon esculentum, subjected to drought stress
and pretreated with BR showed increased activities of POD, SOD,
CAT and APX, and the contents of non-enzymatic antioxidants
such as AsA and proline (Behnamnia et al., 2009). Yuan et al.
(2010) also reported that 1.0 μM 24-epiBL treatment significantly
alleviated water stress and increased the activities of antioxidant
enzymes such as CAT, APX, and SOD that decresaed the levels of
H2O2 and MDA in two Lycopersicon esculentum genotypes viz.,
Mill. cv. Ailsa Craig (AC) and its ABA-deficient mutant nota-
bilis (not). 24-epiBL and 28-homoBL-mediated reduction in the
inhibitory effect of water stress on seed germination and seedling
growth of radish (Raphanus sativus) subjected to water stress
(imposed by 15% (w/v) PEG) was a result of elevated levels of
SOD, CAT and APX and the free proline content (Mahesh et al.,
2013) (Table 1).
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SALINITY STRESS
Modulation of various components of antioxidant defense sys-
tem via BRs and associated compounds in salinity exposed plants
has been extensively reported (Nunez et al., 2003; Özdemir et al.,
2004; Song et al., 2006; Shahbaz and Ashraf, 2007; Zhang et al.,
2007; Ali et al., 2008b; Arora et al., 2008a; El-Khallal et al.,
2009; Hayat et al., 2010b; Rady, 2011; Vardhini, 2011; Ding
et al., 2012; El-Mashad and Mohamed, 2012; Abbas et al., 2013;
Fariduddin et al., 2013b; Lu and Yang, 2013; Sharma et al.,
2013b) (Table 1). BL mitigated the negative impact of salt stress
in Zea mays by inducing the activities of different antioxidant
enzymes (El-Khallal et al., 2009). Application of 28-homoBL
(10−7, 10−9, and 10−11 M) for 7 days improved seedling growth,
lipid peroxidation via elevating antioxidative enzyme activities
(SOD, CAT, GR, APX, and GPX) in the seedlings of Zea mays
(var. Partap-1) subjected to salt (25, 50, 75, and 100 mM NaCl)
stress (Arora et al., 2008a). 24-EpiBL applied as a foliar spray
could alleviate the adverse effects of salt on two hexaploid wheat
(Triticum aestivum) cultivars, S-24 (salt tolerant) and MH-97
(moderately salt sensitive), grown in saline conditions (150 mM
of NaCl) by enhancing the activity of POD and CAT (Shahbaz
and Ashraf, 2007). BL treatment increased the activities of CAT,
SOD and GR; reduced the activities of POD and PPO of two vari-
eties of sorghum plants (“CSH-5” and “CSH-6”) grown in two
saline experimental sites of Karaikal (Varchikudy and Mallavur),
thus indicating its ability to counteract the negative impact of
saline stress (Vardhini, 2011). Exogenous BL (0. 01 mg × L
(−1)) markedly decreased the salt stress index, mortality rate,
MDA, electrolyte leakage via enhancing the activities of SOD,
POD, and CAT in Cucumis sativus seedlings (Song et al., 2006).
Exogenous BR (0.005, 0.01, 0.05, 0.1, and 0.2 mg/L−1) protected
Cucumis sativus seedlings against salt stress by elevating the activ-
ity of SOD, POD and CAT, and that in turn distinctly lowered
the salt injured index (40.2%) and increased the contents of
free-proline, soluble sugars (Shang et al., 2006). Application of
epiBL to salinity-exposed Cucumis sativus seedlings decreased leaf
superoxide anion production rate, H2O2, MDA, cell membrane
permeability, improved seedlings growth as a result of increased
the activities of SOD, POD, CAT (Lu and Yang, 2013). Application
of epiBL to the Cu+NaCl (150 mM) stressed seeds of two cultivars
(Rocket and Jumbo) of Cucumis sativus plant enhanced the activ-
ities of various antioxidant enzymes viz., CAT, POD, SOD, that
eventually improved growth, carbonic anhydrase activity, photo-
synthetic efficiency (Fariduddin et al., 2013b). Seed priming with
5.0 μM L−1 BL was reported to improve the seed germination
and seedling growth of 3 lucerne (Medicago sativa L.) varieties,
viz., Victoria, Golden Empress, and Victor by significantly increas-
ing the activities of POD, SOD, and CAT under salt stress (13.6
dS/m NaCl solution) (Zhang et al., 2007).

In salinity (120 mM NaCl) exposed IR-28 Oryza sativa
seedlings, 24-EpiBL considerably alleviated oxidative damage and
improved seedling growth by increasing APX activity and reduc-
ing lipid peroxidation (Özdemir et al., 2004). A polyhydroxy-
lated spirostanic brassinosteroid analog (BB-16; 0.001 or 0.01 mg
dm−3) application to salinity (75 m NaCl)-exposed O. sativa
seedlings showed significant increases in the activities of CAT,
SOD, and GR (Nunez et al., 2003). Exogenous application of

24-epiBL to Oryza sativa var Pusa Basmati-1, grown under salt
stress conditions exhibited improvement in growth, levels of pro-
tein, proline contents and antioxidant enzymes activities through
expression of various BRs (OsBRI1, OsDWF4) and salt (SalT)
responsive genes (Sharma et al., 2013b). Eggplant seedlings, when
exposed to 90 mM NaCl with 0, 0.025, 0.05, 0.10, and 0.20 mg
dm−3 of epiBL for 10 days exhibited decreased electrolyte leak-
age, superoxide production, MDA, H2O2 probably as a result of
increased activities of SOD, GPX, CAT and APX enzymes and
the contents of non-enzymatic antioxidants such as AsA and
GSH (Ding et al., 2012). 24-epiBL decreased the adverse effects
of salinity stress on two varieties of pepper (Capsicum annuum)
arguably by increasing the activities of antioxidative enzymes and
the contents of proline, total anthocyanins and minerals (Abbas
et al., 2013). Spraying of 1.0 μM of 24-epiBL to NaCl-exposed
Brassica junceadetoxified the stress generated by NaCl by enhanc-
ing antioxidative enzymes and the level of proline (Ali et al.,
2008b). Supplementation of Vigna radiata c.v. T-44 plants with
28-homoBL detoxified the stress generated by NaCl by elevating
the activities of antioxidative enzymes and the proline content
that in turn improved the MSI, leaf water potential (ψ) (Hayat
et al., 2010b). In a similar study, Rady (2011) reported that
spraying 5 μM of 24-epiBL to NaCl-exposed Phaseolus vulgaris
improved the MSI, RLWC as a result of significant elevations
in the activities of antioxidative enzymes and proline content.
Imbibition with 24-epiBL to pea (Pisum sativum L.) cv. climax
seeds, subjected to sodium chloride stress significantly elevated
the activity of SOD, POD, and CAT enzymes the helped plants to
improve fresh and dry biomass, seedling height, photosynthetic
rate, stomatal conductance, and the total chlorophyll content
(Shahid et al., 2011). Treatment with 0.05 ppm BL as foliar spray
mitigated salt stress-impacts in cowpea (Vigna sinensis) by induc-
ing the activities of antioxidant enzymes such as SOD, POD, PPO
and GR and the contents of AsA (El-Mashad and Mohamed,
2012).

OTHER ABIOTIC STRESSES
Apart from the discussed above major abiotic factors, BRs and
associated compounds can also play significant roles in plants
under a range of other abiotic stress factors such as pho-
toinhibition/light stress, waterlogging/flooding stress, pesticides,
neonicotinoid insecticide, imidacloprid (IMI) etc. (Kang et al.,
2006, 2009; Lu et al., 2006; Xia et al., 2006, 2009a,b; Liang and
Liang, 2009; Hayat et al., 2010c; Ogweno et al., 2010; Ahammed
et al., 2012c; Lu and Guo, 2013; Sharma et al., 2013a,b). 24-BL
(0.01 mg l−1) has been benefitted tomato (Lycopersicon esculen-
tum Mill.) to maintain net photosynthetic rate (Pn), quantum
efficiency of PSII (�PSII) and photochemical quenching (qP)
under photoinhibition/light stress by decreasing lipid peroxi-
dation as a result of efficient ROS-metabolism via enhanced
activity of SOD, GPX, CAT, and APX enzymes (Ogweno et al.,
2010). In another study, exogenous application of 24-epiBL was
reported to enhance the tolerance of elite Indica O. sativa variety
(Pusa Basmati-1 seedlings) to stress generated by neonicotinoid
insecticide, imidacloprid (IMI) by elevating the activity of antiox-
idative enzyme such as SOD, APX, CAT, GR and MDHAR, up-
regulating the expression of most of the genes like Cu/Zn-SOD,
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Fe-SOD, Mn-SOD, APX, CAT and GR, and decreasing lipid per-
oxidation (Sharma et al., 2013a). In 80 mM Ca(NO3)2-exposed
Cucumis sativus cv. Jinyou No. 4, EpiBL (0.1 μM) protected the
photosynthetic membrane system by up-regulating the ROS-
scavenging capacity of the antioxidant system (Yuan et al., 2012).
Folair spray of epiBL or homoBL to Lycopersicon esculentum
Mill. cv. K-21 showed lowered sodium nitroprusside (SNP)
concentration (10−5 M) and improved growth and the con-
tent of pigment contents via strengthning antioxidant system
(Hayat et al., 2010c). Application of 24-epiBL-mediated increased
H2O2-metabolism and decreased lipid peroxidation via enhanced
activity of GST and the content of GSH were argued to help
Solanum lycopersicum seedlings to counteract three-ringed PAH
(phenanthrene-PHE)-accrued consequences (Ahammed et al.,
2012a,c). Alleviation of impacts caused by phenanthrene and
pyrene phytotoxicity in tomato plants has been evidenced as a
result of 24-epiBL-mediated increased activities of GPX, CAT,
APX and GR and decreased content of MDA) (Ahammed
et al., 2012b). Recently, these authors reported that 24-epiBL
(100 μM) can alleviate PCB (polychlorinated biphenyls)-induced
oxidative stress in tomato plants by enhancing the activities of
antioxidant enzymes, and maintaining photochemical efficiency
of PSII Fv/Fm), the quantum efficiency of PSII photochem-
istry [�(PSII)] and photochemical quenching coefficient (Pq)
(Ahammed et al., 2013b). The 24-epiBL-mediated strengthning
of antioxidant defense system and eventually decreased mem-
brane lipid peroxidation was reported in plants exposed to
phenanthrene + Cd co-contamination (Ahammed et al., 2013a).
Pretreatment of Cucumis sativus with 24-epiBL alleviated the
phytotoxicities of nine pesticides (paraquat, fluazifop-p-butyl,
haloxyfop, flusilazole, cuproxat, cyazofamid, imidacloprid, chlor-
pyrifos, and abamectin) by increasing the activities of antioxi-
dant enzymes, and CO2 assimilation capacity (Xia et al., 2006).
Significant role of 24-epiBL was also reported in plants exposed to
Chlorpyrifos (a widely used insecticide), where elevated activity
of GST, POD, and GR was argued to regulate net photosynthetic
rate and quantum yield of PSII [Phi(PSII)] (Xia et al., 2009a).
BRs and associated compounds were reported to provide toler-
ance to waterlogging/flooding stress in different crops including
soybean (Lu et al., 2006), cucumber (Kang et al., 2006, 2009; Lu
and Guo, 2013) and oilseed rape (Liang and Liang, 2009) mainly
as a result of decreased oxidative damage via enhanced activities
of SOD and POD.

CONCLUSION AND FUTURE PROSPECTS
It is a well-established fact that environmental stresses are the
primary cause of crop loss worldwide, reducing average yields
for most major crop plants adversely affecting the global crop
production and the adverse impacts are getting more serious
in the past few decades. Environmental stresses induce the pro-
duction of ROS, alter the activity of antioxidant system and
adversely affect the process of photosynthesis. The crop physi-
ologists and scientists have employed strategies to mitigate the
elevated ROS (and their reaction products)-accrued oxidative
stresses/damages via strengthening antioxidant defense system in
plants exposed to various abiotic/stress factors. In this regard,
the use of different plant growth regulators (PGRs) has been

considered as a better sustainable alternative, and also as a tech-
nically simpler approach (Khan et al., 2012; Iqbal et al., 2013;
Asgher et al., 2014). To this end, in addition to playing significant
roles under general plant growth, development and metabolism,
BRs and associated compounds have been extensively reported
to counteract consequences of various abiotic stresses includ-
ing temperature (heat, chilling, and freezing), water (drought,
water logging), salt, heavy metals, light (intense and weak) and
radiation (UV-A/B). Though much has been achieved in the cur-
rent context, integrated approach is required to investigate more
insights into molecular-genetic mechanisms of BRs and associ-
ated compounds-mediated modulation of various components
of antioxidant defense system and subsequently the control of
abiotic stress-consequences in plants.
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