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Abuse and residues of antibiotics cause great harm to organisms and the environment.
Appropriate sample pretreatment is usually required for sensitive determination, because
of the low content presence of a variety of antibiotics in complicated matrices. Molecular-
imprinting-based solid-phase extraction (MISPE) has been widely used for sample
pretreatment of antibiotics, using molecularly imprinted polymers (MIPs) as adsorbents.
Herein, we comprehensively review the recent advances of MISPE of antibiotics, followed
by chromatographic analysis. Various solid-phase extraction (SPE) modes based on MIPs
are briefly introduced, such as conventional SPE, dispersive SPE, magnetic SPE, matrix
solid-phase dispersion, and pipette-tip SPE. Then, several emerging preparation
techniques for antibiotics MIPs are summarized including surface imprinting,
nanoimprinting, living/controlled radical polymerization, multitemplate imprinting,
multifunctional monomer imprinting, and dummy template imprinting. Subsequently,
applications of MISPE to analysis of a variety of antibiotics residues since 2018 are
overviewed, including sulfonamides, quinolones, tetracycline, and others. Finally, the
preparation and application of antibiotics MIPs are prospected.

Keywords: molecularly imprinted polymers, antibiotics, sample preparation, solid-phase extraction, review,
imprinting technique

INTRODUCTION

Antibiotics are produced by bacteria, molds, or other microorganisms in the course of life, which can
interfere with or inhibit the survival of pathogenic microorganisms (Fleming, 1929; Stachelek et al.,
2021). They can be categorized into seven main kinds, namely, sulfonamides (SAs), quinolones
(QNs), tetracyclines (TCs), macrolides (MALs), chloramphenicol (CAPs), β-lactams (BLAs), and
aminoglycosides (AGs) (Chen et al., 2017; Ming et al., 2021). Besides being widely used to prevent
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and treat animal and human diseases, antibiotics are also widely
used as growth-promoting agents in animal husbandry and
aquaculture, playing an important role in improving animal
and human health (Ming et al., 2021). However, with the
increasing use and abuse of antibiotics, bacteria are quickly
adapted to the antibiotics, and all kinds of “superbugs” are
being born (Stachelek et al., 2021). Consequently, antibiotic
residue has become one of the most important environmental
issues in the world. The residues and accumulation through
various pathways in animals and the environment not only
induce the growth of drug-resistant bacteria with increasing
numbers and species (Stachelek et al., 2021) but also
accumulate toxicity through the food chain, causing great
harm to the ecological environment and human health (Liu
et al., 2020). It is urgently required to develop effective
analytical methods toward antibiotics residues.
Chromatography and mass spectrometry (MS) based methods
are commonly utilized, especially high-performance liquid-phase
chromatography- (HPLC-) and tandem MS (HPLC-MS/MS).
Despite high sensitive detection techniques, such as HPLC-
MS/MS, it is still quite imperative to use influential sample
preparation/pretreatment steps prior to detection, owing to the
characteristics of low residual amounts, various interfering
factors, and complicated sample matrices (Dugheri et al., 2021).

At present, sample pretreatment is widely employed in the
analysis of trace analytes in complex matrices to purify and enrich
the analytes and thereby will improve the sensitivity and accuracy
of analytical methods (Zhang Y. et al., 2020). Currently, solid-
phase extraction (SPE) that uses solid adsorbent to adsorb the
target analytes is commonly used in the process of sample
pretreatment, since it has many advantages, such as less time-
consuming, simple operation, high efficiency, low or without
solvent, and good compatibility with different analytical methods
(Wu et al., 2021). SPE has a variety of modes, mainly including
conventional SPE, dispersive SPE (DSPE), magnetic SPE (MSPE),
matrix solid-phase dispersion (MSPD), solid-phase
microextraction (SPME), stir-bar sorptive extraction (SBSE),
and pipette-tip SPE (PT-SPE). It is well known that solid
adsorbent is the key parameter of SPE efficiency. Nowadays,
commercially available solid adsorbents like HLB, C18, and Oasis
MCX usually exhibit nonspecific adsorption on the target
analytes, which decrease the selectivity and specificity for
antibiotics, thus greatly limiting the application of trace
analysis of antibiotics in complicated matrices. Molecularly
imprinted polymers (MIPs) with structure predictability,
recognition specificity and application universality, easy
preparation, low cost, and so on have gained great popularity
as SPE adsorbents (Li et al., 2013; Chen et al., 2016; BelBruno,
2019; Arabi et al., 2020).

MIPs are prepared by molecular-imprinting technology based
on the principle of antigens and antibodies specifically
recognizing and binding, and the technology has often been
vividly described as the “artificial lock” technology for
preparing to recognize “molecular key” (Li et al., 2013). MIPs
have been widely used for sample pretreatment (Płotka-Wasylka
et al., 2016), chromatographic separation (Wang and Cao, 2015;
BelBruno, 2019), chemical/biosensors (Chen et al., 2016; Gaudin,

2020; Arabi et al., 2021), and other fields (BelBruno, 2019; Haupt
et al., 2020). Using MIPs as the adsorbents in SPE, molecularly
imprinted or molecular-imprinting-based SPE (MISPE) can
specifically recognize targets, which can effectively adsorb
targets in complex matrices. Therefore, MISPE is extensively
used for the highly selective cleanup and enrichment of trace
antibiotics in complex samples. Furthermore, MISPE combined
with separation and detection technologies such as
chromatography has been swiftly developed and applied to
achieve rapid, simultaneous, selective enrichment, and
sensitive detection of multiple antibiotics contaminants (Li and
Row, 2017; Wang J. et al., 2018; Wang S. et al., 2018; Hu et al.,
2018; Zhu et al., 2019b; Lu et al., 2019).

Therefore, in this work, the application of MISPE coupled with
chromatographic analysis of antibiotics is reviewed
comprehensively, focusing on the recent advances since 2018.
Firstly, the classification of SPE and the commonly used advanced
preparation techniques of MIPs are overviewed. Then, the
applications of MISPE for the analysis of a variety of
antibiotics are emphasized. Finally, some attempts to facilitate
the wide application of MISPE in the field of sample pretreatment
are proposed.

VARIOUS SPE MODES BASED ON MIPS

SPE is a technology to separate the component to be tested from
the interfering component by the difference of the adsorption
ability of solid adsorbent on each component in the liquid sample.
The separation efficiency is increasing with the improvement of
the selectivity of solid adsorbent toward target analyte (Fan,
2020). Therefore, the use of highly selective MIPs as SPE
adsorbent can achieve efficient extraction and enrichment of
target analytes, which has been widely used in antibiotics
residues detection (Lian and Wang, 2018; Xie et al., 2018;
Hammam et al., 2019; Negarian et al., 2019; Zhu et al., 2019b;
Tan et al., 2020; Yu et al., 2020). Various SPE modes based on
MIPs, i.e., conventional SPE, DSPE, MSPE, MSPD, SPME, SBSE,
and PT-SPE, are briefly introduced below.

SPE generally means the conventional SPE, namely, packed
SPE, and it is a common method for sample preparation. The
column is packed with a solid adsorbent to make the sample be
tested flow through the column so that the solid adsorbent can
adsorb the target compounds, and then the target compounds can
be separated and enriched by chemical reagent elution or heating
desorption. The high selectivity of MIPs can greatly improve the
extraction efficiency of SPE. The SPE with MIPs as extraction
adsorbent has been widely used in the determination of antibiotics
(Huang L. et al., 2019; Ma and Row, 2019; Qin et al., 2020).

DSPE does not need the packing and washing steps, the
extraction time is short, and the adsorbent can be more fully
dispersed into the sample solution to improve the adsorption
effect. After the purified sample is shaken and centrifuged, the
supernatant can be directly or simply processed into the next step
of the analysis. This method proves to be quick, easy, cheap,
effective, rugged, and safe and is also known as the QuEChERS
method. As an efficient and rapid sample pretreatment
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technology, DSPE is widely used in the analysis and detection of
contaminants and antibiotics residue analysis (Song et al., 2018;
Lu et al., 2019).

MSPE is a technique in which a magnetic or magnetizable
material is used as a solid adsorbent for SPE. Instead of being
packed in the extraction column, a magnetic adsorbent is directly
added to the sample solution or suspension so as to attain a full
dispersion. The target analyte is adsorbed on the surface of the
dispersed magnetic adsorbent, and an external magnetic field is
utilized to separate the target analyte from the sample matrix
(Liang J. et al., 2018). MSPE requires only low consumption of
adsorbents and equilibrium time to realize the enrichment and
separation of trace analytes. MSPE can avoid column blockage,
which is a very important problem in traditional SPE (Li et al.,
2019). MagneticMIPs (MMIPs)materials have been widely used in
the detection of many types of antibiotics (Liu et al., 2017; Nazario
et al., 2017; Kunsa-Ngiem et al., 2018; Li Z. et al., 2018; Qin et al.,
2019; Dil et al., 2021; Gao et al., 2021; Lamaoui et al., 2021).

MSPD is the basic process as follows: adding solid-phase
adsorption materials directly to the sample matrix, mechanical
mixing resulting in a semidry mixture, using the obtainedmixture
as a packed column, cleaning the column with a small amount of
reagent to remove impurities, and finally eluting the target analyte
by a small amount of eluent. MSPD combines with sample
crushing, extraction and purification, which not only avoids
sample loss but also save solvent/time. MSPD has the
advantages of simple and quick operation, high extraction
efficiency, no special equipment, and so on; large quantities of
automatic analysis can be carried out through MSPD. Therefore,
MSPD is widely used in the analysis of antibiotics residues (Wang
S. et al., 2018; Soares et al., 2021), contaminants (Liang et al.,
2019), and harmful components (Tang et al., 2019). As a kind of
solid-phase adsorbent with high selectivity, MIP has been used in
MSPD, which provides powerful technical support for the
analysis of pollutants (Wang S. et al., 2018) and harmful
components (Balsebre et al., 2018) in a complex matrix.

SPME is a solvent-free pretreatment method developed on the
basis of SPE. It is easy to be combined with gas chromatography
(GC), HPLC, and capillary electrophoresis (CE), so it has been
widely used (Barahona et al., 2019; Huang S. et al., 2019; Guo
et al., 2020). SPME has been successfully applied in the analysis of
organic and inorganic substances in gas, water, soil, sediment,
and other environmental samples (Reyes-Garces et al., 2018).
SPME process is actually the adsorption/desorption process of
each component in the sample on the surface of the extracted
fiber coating, and its principle depends on the distribution
balance between the analyte in the sample matrix and the
extraction phase. By selecting different groups of coating
heads, SPME can attain ideal extraction efficiency toward
targeted components, while other components are restrained.
The MIP coating, because of its simple preparation, good
repeatability, high mechanical strength, good resistance to high
temperature, and solvent resistance, especially the advantage of
efficient choice specificity for trace target in complex
environment medium analysis, has a broad application
prospect and become a research hotspot of selective SPME
coatings (Barahona et al., 2019; Liu et al., 2019).

SBSE is a variant of SPME, in which the glass tube with an inner
magnetic core is coated with an extractive adsorption coating. After
the distribution balance between the sample matrix and the coating
on the surface of the stirring rod is reached, the sample is analyzed by
thermal desorption or solvent desorption technology.
Polydimethylsilane (PDMS) is the widely used coating material of
SBSE. The coating prepared by the sol-gel method is compact in
structure, highly hydrophobic, and stable in chemical properties. It is
suitable for the extraction of nonpolar andweak polar compounds in
the water phase. The SBSE has been developed to improve the
sensitivity by using a larger volume of extraction phase. The
difference is that a magnetic core is required for self-stirring to
accelerate mass transfer, as thicker extractive coatings are usually
prepared. However, since the SBSE format withmagnetic agitation is
not as convenient for sampling in vivo or in the field as fiber and film
shapes, SBSE is commonly used for in-bottle extraction (Rodriguez-
Gomez et al., 2018). However, the MIP coating-based SBSE is rarely
used in antibiotic detection (Cui et al., 2021; Yang et al., 2017).

PT-SPE fills the pipette head with an adsorbent, making SPE
setup smaller and analysis more environmentally friendly. PT-SPE is
currently the most concerned SPEmodes, mainly because it requires
fewer adsorption materials, significantly reduces organic solvents
consumption, and saves the cost. Thismethod is simple and does not
need extra special instruments. The transfer and distribution
mechanism of the analytes to be enriched is roughly the same as
that of the traditional SPE. The eluted solution can be directly used
for LC or MS analysis without vacuum concentration. The pipetting
nozzle can realize sampling, purification, enrichment, and
quantification, at the same time, which makes up for the
technical defects of traditional pretreatment methods, such as
complicated operation, large amount of organic solvent, and easy
loss of targets (de Oliveira et al., 2016; Teixeira et al., 2018; Zhang Y.
et al., 2020; Hashemi et al., 2019).

Relative occurrence of the above-mentioned MISPE toward
antibiotics residues detection within 2018–2021 is shown in

FIGURE 1 | Relative occurrence of the various samples pretreatment
methods combined with MIPs detection antibiotics residual form 2018 to 2021 in
this review. This data was extracted fromWeb of Science on June 08, 2021. [TS �
imprint * AND solid phase extraction (or dispersive solid phase extraction,
magnetic solid phase extraction, matrix solid phase dispersion, pipette-tip solid
phase extraction, respectively)* AND antibiotics] NOT AU-Smalley RE.
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Figure 1. As seen, conventional SPE is the most frequently used
(54%), followed byMSPE andDSPE at 22 and 11%, respectively, and
the two modes of SPME and MSPD are not higher than 10%, while
PT-SPE and SBSE are both just 1%. The main characteristics,
advantages, and disadvantages of the seven types of SPE
techniques are listed in Table 1, with a reasonable expansion and
modification of Figure 1 of our previous work (Arabi et al., 2020).

EMERGING TECHNIQUES FOR MIPS
PREPARATION

Various efficient MIPs toward antibiotics have been prepared by
virtue of emerging techniques such as surface imprinting,

nanoimprinting, and living/controlled radical polymerization
(LCRP) technology and multitemplate, multifunctional monomer,
and dummy template imprinting strategy. Figure 2 schematically
illustrates the six techniques’ basic processes/mechanisms.

Surface Imprinting
Surface imprinting technology means preparing imprinted
materials by controlling templates to locate at the surface or in
the proximity of materials surface to create more effective
recognition sites (Chen et al., 2016). It can overcome the
disadvantages of low binding capacity and difficulty in elution
of traditional MIPs. Core-shell structured MIPs are the major
type of surface imprinting MIPs, owing to the increased surface
area and larger binding capacity, and thus, they are widely used

TABLE 1 | The main characteristics, advantages, and disadvantages of SPE.

SPE
mode

Schematic Main characteristics Advantage Disadvantage

SPE No phase separation operation; easy to
realize automatic batch processing.

Simplicity and flexibility; influential clean up;
having high enrichment factor; high recovery rate
and wide application.

High consumption of organic solvents and
sorbent; incompatible with solid sample;
channeling or blockage of cartridge.

DSPE No need to wash; short extraction time; the
adsorbent can be more fully dispersed into
the sample solution to improve the
adsorption effect.

Higher efficiency and faster compared with
packed SPE; no need of conditioning; short
extraction consumption of organic solvents.

Possibility of spoiling the sorbent in
complex sample; incompatible with solid
sample; remaining residual of sorbent
sample solution.

MSPE Magnetic and magnetically modified
adsorbents have high adsorption extraction
capacity.

Simplicity of operator; high selectivity; short
extraction time and low cost; green; large specific
surface area; superparamagnetism; multiple
adsorption sites.

Magnetic nanoparticles (Fe3O4) have poor
selectivity and affinity for oxidation,
aggregation, and adsorption; fewer
varieties available; some materials are
magnetically unstable; the practical
application device is not perfect and the
degree of automation is low.

MSPD Extraction, filtration, and purification can be
completed in one step without the need for
tissue homogenization, precipitation,
centrifugation, pH adjustment, and sample
transfer, thus avoiding the loss of samples.

Simple usage; cost effectiveness; compatible
with all liquid, semisolid, and solid samples.

High backpressure or blocking the
cartridge; inability to reuse the sorbent.

SPME Sampling and enrichment are carried out
simultaneously; combined with GC,
sampling, enrichment, and injection can be
achieved in one step to reduce sample loss;
matrix consumption can be ignored; suitable
for field sampling and analysis.

Compatible with liquid, gaseous, and solid
samples; solvent-free technique; clean
extraction; ease of automation.

High cost; lack of robustness; bending the
needle; breaking the fiber; flawed
extraction.

SBSE Sample is analyzed by thermal desorption or
solvent desorption technology; no external
agitator is needed, competitive adsorption
can be avoided, and extraction enrichment
can be realized while stirring itself.

Simplicity; high preconcentration capacity. Time-consuming and error-prone manual
extraction steps; high solvent consumption.

PT-
SPE

By filling the pipette head with an adsorbent,
the eluted solution can be directly used for LC
or MS analysis without vacuum
concentration. The pipetting nozzle
simultaneously completes sampling,
quantification, purification, and enrichment,
which makes up for the technical defects of
traditional pretreatment methods such as
complicated operation, large amount of
organic solvent, and easy loss of target
material.

Low consumption of sample, sorbent, and
organic solvents; cheapness; accessible tools;
simplicity of handing; fast automation.

Blocking pipe-tip; leakage of sorbent;
incompatible with solid samples.
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for detecting antibiotic residues (Ji et al., 2018; Liu et al., 2018;
Negarian et al., 2019; Qin et al., 2019; Zhu et al., 2019a).

Nanoimprinting
Nanoimprinting technology is the technique of preparing
nanosized MIPs. Nanomaterials have a large surface area and
more binding sites, which can effectively improve the binding
capacity of MIPs. To a certain extent, the problems of fewer target
sites and low mass transfer rate of large-size MIPs are solved.
Moreover, the nanostructured MIPs can be directly used without
grinding, simplifying the experimental operation. The commonly
used methods to synthesize nano-MIPs microspheres include
precipitation polymerization (Liu et al., 2018), sol-gel (Li G. et al.,
2018; Diaz-Alvarez et al., 2019), and core-shell polymerization
(Qin et al., 2019). Nanoimprinting technology can be divided into
zero-dimensional, one-dimensional, and two-dimensional types
(Li and Wang, 2020).

LCRP
LCRP overcomes the disadvantage that the growth rate of the
traditional radical polymerization chain is not easy to control and
causes the particle size distribution of the polymer to be in a
narrow range. Among them, atom transfer radical polymerization
(ATRP) and reversible addition-fragmentation chain transfer
(RAFT) polymerization are the most commonly used ones.

LCRP technology has been increasingly used for the
determination of antibiotic residues (Liang Y. et al., 2018;
Zhao et al., 2018; Cai et al., 2019; Li et al., 2020b; Cai et al.,
2021) and other environmental contaminants (Azizi et al., 2020).

Multitemplate Imprinting
Multitemplate imprinting strategy means that two or more
targeted analytes are as templates to prepare MIPs and thereby
there are multiple recognition sites of template molecules in one
imprinted polymer material (Wang et al., 2019). Due to the
expansion of binding sites and recognition ability of MIPs,
simultaneous recognition, enrichment, and separation of
multiple targets can be realized, which greatly saves time and
improves the utilization efficiency of MIPs. It has great potential
in multiresidue and high-throughput analysis of complex samples
(Wei et al., 2016; Xu et al., 2018; Lu et al., 2019; Dil et al., 2021).

Multifunctional Monomer Imprinting
The multifunctional monomer imprinting strategy is to take
advantage of two or more functional monomers to interact
with template molecules; by giving full play the synergistic
effects of multiple functional monomers, MIPs selectivity is
significantly enhanced and thereby enrichment ability. The
strategy has been increasingly applied in antibiotics
determination (Li G. et al., 2018; Li Z. et al., 2018; Cai et al., 2021).

FIGURE 2 | Schematic diagram of the emerging typical techniques for MIPs preparation.
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Dummy Template Imprinting
Dummy template imprinting strategy is also called
pseudotemplate imprinting strategy, which uses similar
compounds to the target compounds as a template in the
shape, size, structure, and functionality. It is a high
requirement and especially suitable for the target compounds
that are costly, flammable, explosive, easy to degrade, and having
too low solubility. The strategy can effectively avoid template
leakage pollution or inaccurate results. The most common
method is the computer-aided design of dummy template
toward MIPs (Song et al., 2017). MISPE prepared by dummy
template imprinting strategy is widely used in the detection of
antibiotic residues (Song et al., 2019; Zhang Z. et al., 2020; Gao
et al., 2021).

APPLICATIONS OF MISPE TO ANALYSIS
OF ANTIBIOTICS RESIDUES

The wide applications of MISPE to the analysis of antibiotics
residues are summarized, including SAs, QNs, TCs, and other
antibiotics. Some typical examples are listed in Table 2.

SAs
SAs residues are closely related to food and environmental safety
levels. The pollution sources of SAs antibiotics mainly include
medical sources (patients feces and urine, antibiotics remaining
on medical supplies, losses in the production of antibiotics by
pharmaceutical enterprises, etc.), animal sources (animal
excrement and urine, leakage of sewage from farms, etc.), and
aquaculture (overuse of antibiotics in the process of farming, etc.)
(Zhang Y. et al., 2020). The key to detection is to develop fast,
efficient, and highly selective pretreatment methods. Common
SPE materials for SAs include HLB, C18, and Oasis MCX which
are relatively general and commercially available, but they lack
selectivity for SAs. MISPE can identify, extract, and enrich the
target substances with high selectivity and specificity and has high
adsorption capacity and stability. At the same time, various SPE
devices have become smaller and are easier to operate. MISPE has
been widely used coupled with chromatographic determination
toward SAs in complex samples (Wang J. et al., 2018; Fonte et al.,
2018; Huang et al., 2018; Kechagia et al., 2018; Xu et al., 2018;
Zhao et al., 2018; Zhu et al., 2019a; Zhu et al., 2019c; Gao et al.,
2021; Zhao et al., 2021).

In order to improve the selective adsorption performance of
MIPs in strong polar solvents, Zhu et al. (2019a) synthesized
sulfamethoxazole (SMZ) imprinted polymers in methanol by
using a new ionic liquid (IL) functional monomer, namely, 1-
butyl-3-vinylbromidazole (BVIM-Br). The MIPs exhibited
highly specific recognition properties toward the three
commonly found SAs (SMZ, sulfamonomethoxine (SMM),
and sulfadiazine (SDZ)) in methanol, while low adsorption
ability was displayed for the interferents. Then, a MISPE
methodology was developed and successfully applied to
effective enrichment of trace SMZ in soil and sediment
samples, followed by HPLC analysis. The limits of detection
(LODs) were all as low as 5 μg/L. The present research can offer

an important reference for influential MIPs preparation in
aqueous media. Furthermore, Zhu et al. (2019c) prepared
SMM surface imprinted polymers in the strong polar solvent
of methanol with 1-allyl-3-vinylimidazolium chloride (AVIM-
Cl) IL as a functional monomer. The developed MISPE coupled
with HPLC was established for the selective extraction and
sensitive determination of trace SMM in soil and sediment
samples. The recoveries were high to 95.0–105.0% and the
LOD was low to 1.0 μg/L. Such MIPs materials have a broad
application prospect in the pretreatment of various complex
samples.

Zhao et al. (2021) synthesized hydrophilic magnetic MIPs
(HMMIPs) on the surface of silanated Fe3O4 via surface
imprinting technique and using SDZ as a template molecule and
employed them as DSPE adsorbents for the enrichment and
purification of 10 SAs prior to HPLC-UV detection in chicken,
cow milk, and goat milk samples. Under the optimal experimental
conditions, good linearity in the range of 5 μg/L to 10mg/L was
exhibited, low LODs ranged from 0.57 to 1.50 μg/L, and high spiked
recoveries were between 85.09 and 110.93%. The HMMIPs-DSPE
method can provide a potentially applicable way for the sensitive,
reliable, simple, and rapid detection of various drug residues. In the
previous work (Zhao et al., 2018), water-compatible MIPs were also
prepared by combining RAFT with reflux precipitation
polymerization (RPP), and the resulting MISPE coupled with
HPLC-MS/MS succeeded in the enrichment and determination
of six SAs in animal-derived foods and water samples.

Gao et al. (2021) fabricated magnetic carbon nanotube
dummy MIP (MCNTMIP) nanocomposite by surface
imprinting technique and used it as MSPE adsorbent to realize
the simultaneous separation and enrichment of 13 SAs (SDZ,
sulfathiazole (ST), sulfamerazine (SM1), sulfamethazine (SM2),
sulfamethizole (SMZO), SMM, sulfachloropyridazine (SCP),
sulfadoxine (SO), SMZ, sulfisoxazole (SFZ), and
sulfaquinoxaline (SOX), sulfadimethoxine (SDM), and
avermectin B1a) in fish and shrimp samples. Figure 3
illustrates the process of MIPs preparation and MSPE
application. The MCNTMIP displayed a simple magnetic
separation, specific molecular recognition, and high adsorption
capacity. Coupled with ultra-high-performance liquid
chromatography-tandem mass spectrometry (UPLC-MS/MS)
determination of all the SAs, the LODs were all as low as
0.1 μg/kg, and the recoveries were in a range of 90.2–99.9%.
Moreover, the precision values ranged from 0.5 to 9.1%.
Consequently, the developed MCNTMIP-MSPE method can
be routinely utilized for the trace analysis of SAs to ensure
food quality and consumer safety.

QNs
QNs are a class of antibacterial drugs with 1,4-dihydro-4-
oxyquinoline-3-carboxylic acid structure. They are widely used
in clinical diagnosis and treatment, animal disease prevention,
and growth promotion because of their advantages such as wide
antibacterial spectrum, good efficacy, small toxic and side effects,
simple synthesis, and low cost. The residual concentration of QNs
is low, mostly ng/L or ng/kg. Excessive or improper use of QNs in
animal-derived food has potential carcinogenic, teratogenic, and
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TABLE 2 | Applications of MIPs for SPE of antibiotics coupled with chromatographic determination.

SPE mode Analyte Template MIPs preparation technique Functional

monomer

Cross-linker Real sample Detection

technique

LOD Ref.

(Conventional)

SPE

SAR SAR ATRP 4-VP-co-MAA EGDMA Egg UPLC/MS-MS 1.27 ng/g Cai et al. (2021)

Dual-functional monomer

SMZ SMZ Surface imprinting BVIM-Br EDMA Cultivated soil, vegetable soil,

and sediment

HPLC 0.005 mg/L Zhu et al. (2019b)

OFX, GAT, NOR, CIP, DIF, PEF, SAR, ENX, floxacin,

ENR, and LOM

– – – – Wastewater and sludge UPLC/MS-MS 6–150 ng/L Yu et al., 2020a

NFX NFX Noncovalent surface imprinting MAA EGDMA Seawater HPLC-DAD 2 μg/L Qin et al. (2020)

Marine and sediments 5 μg/kg

TC, CTC, and DC TC, CTC, and DC In situ polymerization MMA EDMA Egg HPLC -FLD 3.0–5.5 μg/kg Huang L. et al. (2019)

CIP and LEV CIP and LEV Bulk polymerization [C2min] [Br] EDMA Human urine HPLC 0.06 and

0.27 μg/ml

Ma and Row (2019)

Dual-template imprinting

DSPE NOR and ENR NOR and ENR Precipitation polymerization MAA EGDMA Lake water HPLC 0.22 and

0.36 μg/L

Lu et al. (2019)

Dual-template imprinting Seawater

Tap water

AZI, TYL, TUL Precipitation polymerization MAA EGDMA Pork LC-MS/MS 0.2–0.5 μg/kg Song et al. (2018)

SPM, TIL, ERY, CLA, and ROX

DSPE SDZ, STZ, SMR, SM2, SMT, SMP, SCP, SMM, SIA,

and SDX

SM2 Surface imprinting MAA HEMA Chicken HPLC 0.57–1.50 μg/L Zhao et al. (2021)

Cow milk

Goat milk

AZI, SPM, TIL, TYL, CLA, ROX, and JOS SPM Surface imprinting MAA EDMA Honey HPLC-MS/MS 3–17 ng/kg Ji et al. (2018)

TC, OT, CTC, and DC TC Precipitation polymerization(a) MAA EGDMA Milk LVSS-CE – Aguilar et al., 2020

OFX, PEF, NOR, ENR, and GAT OFL RAFT MAA EGDMA Milk HPLC-UV 1.02–3.15 Li et al. (2020b)

River water 0.93–2.87 μg/L

MSPE SDZ, STZ, SMR, SM2, SMM, SCP, SO, SMZ, SFZ,

SOX, SDM, and avermectin B1a

Sulfabenzamide Surface imprinting MAA EGDMA Fish and shrimp UPLC-MS/MS 0.1 μg/kg Gao et al. (2021)

Dummy template

CAP CAP Microwave-heating induced

polymerization(b)
4-VP TRIM Chicken feed UPLC-MS/MS 0.12 mg/kg Kunsa-Ngiem et al.

(2018)

Surface imprinting

CAP CAP Suspension polymerization MAA EGDMA Pork and honey HPLC-UV 10 μg/L Li Z. et al. (2018)

Dual-functional monomer

imprinting

and/or AM

CAP CAP Surface imprinting MAA EGDMA Marine sediments HPLC-DAD 0.1 μg/L Qin et al. (2019)

TC and OT TC Pickering emulsion

polymerization

MAA DVB Fish, chicken, and

tap water

HPLC 1.42 and 1.58 μg/L Ma et al. (2020)

PZQ enantiomers PZQ Surface imprinting Py – Sheep milk HPLC-DAD 0.01 μg/ml Nascimento et al.

(2020)

Nanoimprinting

TC, OT, and CTC TC Surface imprinting(c) APBA APBA Milk powder UPLC-MS/MS 0.278, 0.318, and

0.217 ng/g

Wang S. et al. (2018)

SPME DAN, NOR, ENR, and CIP ENR – MAA EGDMA Surface water, groundwater,

and urine

HPLC-MS/MS 0.1–10 μg/L Barahona et al.

(2019)

ERY, CLA, AZI, LEU, and ROX ROX Surface imprinting MAA EGDMA Drinking water, honey, and milk ESI-MS 0.003–0.05 Liu et al. (2019)

1.1–5.1

1.9–15.8 ng/g

SBSE SDZ, SMD, SMM, and SDM SMM Emulsion polymerization MAA EGDMA Regular chicken feed, HPLC-MS/MS 1.5–3.4 μg/L Cui et al. (2021)

and pig feed

Suckling pig feed

Two types of laying-hen feeds

PT-SPE CIP and ENR ENR Thermal radical polymerization(d) MAA EGDMA Human urine HPLC-DAD 18 ng/ml de Oliveira et al.

(2016)MARBO and NOR

ABA and EPR ABA – 1-VI TRIM Mineral water grape juice HPLC-UV – Teixeira et al. (2018)

MOX

CIP CIP In situ polymerization MAA EGDMA Seawater and human blood

plasma tablet

Spectrophotometry 1.50 μg/L Hashemi et al., 2019

AM, acrylamide; APBA, 3-aminophenylboronic acid; AZI, azithromycin; CLA, clarithromycin; (C2min)(Br): 1-vinyl-3-ethylimidazolium bromide; DAN, danofloxacin; DIF, difloxacin; DVB, divinylbenzene; EDMA, ethylene dimethacrylate; EGDMA,
ethylene glycol dimethacrylate; ERY, erythromycin; LEU, leucomycin; LEV, levofloxacin; HEMA, hydroxyethyl methylacrylate; IVM, ivermectin; Py, pyrrole; ROX, roxithromycin; SDX, sulfameter; SIA, sulfisoxazole; SMP, sulfamethoxypyridazine;
SMD, sulfameter; SMT, sulfamethoxydiazine; MAA, methacrylic acid; MMA, methyl methacrylate; SPM, spiramycin; TIL, tilmicosin; TYL, tylosin; 4-VP, 4-vinyl pyridine.
(a) Persulfate; (b) 1,1-azobis(cyclohexanecarbonitrile) (ABCN); (c) 0.1mol/LNa2S2O8 (6.5 ml) aqueous solution; (d) 4,4’-azobis(4-cyanovaleric acid), four different initiators; the other initiators were AIBN.
aMIP-SPE cartridges (SupelMIP) were obtained from Sigma-Aldrich (Shanghai, China).
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mutagenic effects, thus threatening human health. Almost all
countries have formulated the maximum residual limit standard
(MRLS) for quinolone antibiotics. MISPE is widely used in the
determination of QNs in complex substrates (Li G. et al., 2018;
Wang J. et al., 2018; Hu et al., 2018; Rodriguez-Gomez et al., 2018;
Barahona et al., 2019; Zhu et al., 2019b; Ma and Row, 2019; Li
et al., 2020b; Tian et al., 2020; Yu et al., 2020; Cai et al., 2021;
Soares et al., 2021).

Our group (Lu et al., 2019) prepared novel double-templateMIPs
(dt-MIPs) via a simple and facile precipitation polymerization
method with norfloxacin (NOR) and enrofloxacin (ENR) as
templates and used them in DSPE combined with HPLC-DAD
for the simultaneous selective enrichment and determination of two
fluoroquinolones (FQs) in environmental water samples. Figure 4
schematically shows the dt-MIPs preparation and DSPE process.
The well-prepared dt-MIPs exhibited good adsorption capacity and
selectivity forNOR and ENR, with high enrichment factors of 71 and
61, respectively. Good linearity was obtained in the range of
1–200 µg/L. The LOD and limit of quantification (LOQ) values
for NORwere 0.22 and 0.67 µg/L, respectively, and 0.36 and 0.98 µg/
L for ENR. Satisfactory recoveries of the two FQs were attained of
80.9–101.0% with relative standard deviations (RSDs) of 0.9–6.9%
from spiked lake, sea, and tap water samples. This study not only
offered a goodmethod choice for FQs detection but also enriched the
research connotation of multitemplate imprinting.

Yu et al. (2020) developed a MISPE method for the
simultaneous enrichment of 11 FQs [ofloxacin (OFX),
gatifloxacin (GAT), NOR, ciprofloxacin (CIP), difloxacin,
pefloxacin (PEF), sarafloxacin (SAR), enoxacin (ENX),
floxacin, ENR, and lomefloxacin (LOM)] in water by UPLC/
MS-MS determination. The attained LODs of FQs were within
6–150 ng/L. The recoveries of all the targeted FQs in sample
matrices were higher than 75%, and RSDs were below 15%. The
developed MISPE-UPLC/MS-MS proved to be effective for the
determination of FQs in wastewater and sludge samples.

Li et al. (2020b) successfully prepared restricted-access media-
imprinted nanomaterials (RAM-MIPs) on the surface of the

metal-organic framework (MOF) by RAFT. Figure 5 shows the
synthesized route of the RAM-MIPs. Then, they were applied for
the DSPE of five FQs (OFX, PEF, NOR, ENR, and GAT) in milk
and river water samples prior to HPLC-UV detection. The method
attained low LODs, namely, 1.02–3.15 μg/L for milk samples and
0.93–2.87 μg/L for river water samples, respectively, as well as
satisfactory recoveries, namely, 80.7–103.5% and 85.1–105.9%,
respectively. In comparison with other materials, the RAM-MIP
materials are significantly advantageous owing to their simple
preparation conditions, uniform and controllable imprinting
layer thickness, fast adsorption rate, and so on. The present
study demonstrates that RAM-MIP (prepared with MOF as a
matrix)-based SPE has broad prospects toward efficient extraction
of trace FQs in complex samples.

Cai et al. (2021), using surface-initiated ATRP and
sarafloxacin (SAR) as a template, constructed monodisperse
RAM-MIPs, and three methods were adopted, as illustrated in
Figure 6. The optimum synthesis method was to combine 4-
vinylpyridine (VP) and methacrylic acid (MAA) (1:3) as
monomers and to select an 8:1:32:8 ratio of a template
molecule, cross-linker, and restricted-access functional
monomer. The RAM-MIPs showed a high IF (6.05) and the
selectivity coefficients were 1.86–2.64 between SAR and other
FQs. The RAM-MIP-packed SPE showed higher enrichment
ability toward SAR in a complex protein-containing solution
than that of traditional MIP-packed one. As a result, the
MISPE coupled with the HPLC-UV method achieved a low
LOQ for SAR at 4.23 ng/g and the high mean recoveries within
94.0–101.3%. The present study indicated a great application
potential of the RAM-MIPs based SPE for trace analysis in
complex samples. Furthermore, the proposed functional
monomer ratio and rebinding method opened a new way
for devising and synthesizing various MIPs.

de Oliveira et al. (2016) used ENRO as the template molecule
to synthesize MIP1, adopted a multitemplate imprinting strategy
(four studied FQs as the template molecules) to synthesize MIP2,
and utilized it for the simultaneous PT-SPE of the four FQs (CIP,
ENR, marbofloxacin (MARBO), and NOR) in human urine
samples. By comparison, MIP1 proved a better adsorbent, and
high extraction efficiency was obtained to ENRO (96.0%).
Figure 7 schematically shows the apparatus employed for PT-
MIP-μ-SPE. It was possible to extract CIPRO (∼40%), NOR
(∼40%), and MARBO (∼80%) due to the similarity of the
molecular structures. The method attained good linearity from
39 to 1,260 ng/ml for individual FQ, and the LOQ for individual
FQ was as low as 39 ng/ml. Finally, the validated PT-MIP-μ-SPE
method was proved to be practically applicable, through the
preliminary cumulative urinary excretion study after
administrating CIPRO to a healthy volunteer.

TCs
TCs, as a kind of broad-spectrum antibiotics produced by
Streptomyces, have caused serious harm to the ecological
environment and human health because of their wide use and
hence residues. Huang L. et al. (2019) used TC, chlortetracycline
(CTC), and doxycycline (DC) as the templates and magnetic
graphene oxide (Fe3O4/GO) as the supporting material to prepare

FIGURE 3 | Illustration of the preparation and application of MCNTMI.
Reproduced with permission (Gao et al., 2021) ©2020 Wiley-VCH GmbH.
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magnetic multi-MIPs. Then chip-based magnetic multi-MIPs
monolithic capillary array columns were constructed for
simultaneous MSPE and determination of the TCs in eggs

samples. High affinity and specificity to TC, CTC, and DC
were shown and the IFs reached 86–104-fold. The LOD values
ranged from 3.0 to 5.5 μg/kg. Therefore, the MISPE columns

FIGURE 4 | Schematic for the procedures of dt-MIPs preparation by precipitation polymerization (A) and dt-MIPs-DSPE (B). Reproducedwith permission (Lu et al.,
2019) ©The Royal Society of Chemistry 2019.

FIGURE 5 | The synthesized route of RAM-MIPs. Reproduced with permission (Li et al., 2020b) ©2020 Elsevier B.V.
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afforded hopeful perspectives for the facile extraction of
antibiotics from complicated samples.

Aguilar et al. (2020) synthesized the MIPs by precipitation
polymerization using TC as template molecule and applied them

for dispersive SPME (DSPME) and removal of TC residues in
milk samples. The molecular recognition properties and
selectivity of MIPs against four TCs (TC, oxytetracycline (OT),
CTC and DC) were evaluated, and then high selectivity was
demonstrated for the four TCs. The MIP-based DSPME process
provided a high removal ratio between 81.83 and 96.44% with
RSD<5% in all cases. Compared to classical removal methods, the
present method was faster and required lower solvent
consumption and minimum sample manipulation. Therefore,
a promising prospect can be expected for facilely synthesizing
efficient and selective adsorbents and utilizing MISPE for the
simultaneous removal of multiple contaminants residues.

Ma et al. (2020) prepared magnetic molecularly imprinted
biochar microspheres with specific adsorption of TCs (TC; OT)
by Pickering emulsion polymerization. The obtained materials
were employed as adsorbents for extraction and purification of
TCs in actual samples (fish, chicken, and tap water). This method
was simple in preparation process and cost-effective; the
synthesized polymer was a regular spherical structure with
magnetic response characteristics, which can simplify the
extraction and purification of sample pretreatment. It offers a
new idea for the application of MIPs based biochar in
contaminant detection in food samples.

Other Antibiotics
CAP is a kind of broad-spectrum antibiotics isolated from
Streptomyces venezuelae. Because its long-term and high dose
use easily caused granulocytosis, aplastic anemia, and other
diseases, China has banned its use in feed-animals (especially
laying hens and dairy cows) and required CAPs residues to be
mandatory test items in all aquatic products, livestock, and poultry
products (Zhang et al., 2021). BLAs are a broad class of antibiotics,

FIGURE 6 | Three methods for preparing MIP microspheres. Reproduced with permission (Cai et al., 2021) ©2021 Elsevier B.V.

FIGURE 7 | Apparatus employed for PT-MIP-μ-SPE. (A)Components of
the apparatus and (B) apparatus mounted. Reproduced with permission (de
Oliveira et al., 2016) ©2016 Elsevier B.V.
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and their residues mainly come from agricultural and veterinary
drugs, medical drugs, and wastewater treatment discharges from
sewage plants. They pose potential threats to the human body and
ecology. For example, a few patients will have allergic reactions to
BLAs, and the residual antibiotics in the soil will affect the growth
of plant roots and seed germination, etc. In addition, the pollution
of Antibiotic-Resistant Bacteria (ARB) and Antibiotics Resistance
Gene (ARG) caused by the abuse of BLAs and other antibiotics is
threatening human health and ecological safety (Li et al., 2020a).
MALs are widely used in clinical and veterinary medicine fields,
with a broad spectrum of antimicrobial effects, especially for
animal husbandry and aquaculture (Liang and Zhang, 2021). At
present, more and more efforts have been devoted to the
monitoring of MALs residues.

Using MISPE technology with excellent performance, the
trace detection of various antibiotics in diverse complex
substrates has been realized (Li Z. et al., 2018; Lian and Wang,
2018; Xie et al., 2018; Negarian et al., 2019; Qin et al., 2019; Garza
Montelongo et al., 2020; Tan et al., 2020). For example, Qin et al.
(2019) developed a straightforward method for selective
separation of CAP from marine sediment samples. CAP-
MMIPs were synthesized via surface imprinting and
nanoimprinting technologies. The material has a perfect core-
shell structure, excellent thermal stability, and high selectivity
toward CAP. The CAP-MMIPs were employed for fast and
selective SPE of CAP followed by HPLC-DAD. An excellent
linearity was attained from 0.1 to 20 mg/L (R2 � 0.999, n � 3),
and the LOD was 0.1 μg/L. The spiked recoveries were between
77.9 and 102.5% with low RSDs (< 6.3%). Good reusability was
achieved (at least 5 times) by the regeneration and there was
hardly any loss of selectivity and adsorption capability. Such
MMIPs-SPE method can provide a vital alternate to traditional
extraction ones for preparing environmental samples.

Teixeira et al. (2018) prepared 1-vinylimidazole-co-
trimethylolpropane trimethacrylate- (1-VI-co-TRIM-) based
MIPs adsorbent for PT-SPE of abamectin (ABA),
eprinomectin (EPR), and moxidectin (MOX), coupled to
HPLC-UV determination. The performance criteria for
linearity, sensitivity, precision, accuracy, recovery, robustness,
and stability were systematically assessed and were within the
recommended guidelines. The validated PT-MIP-SPE proved to
be economical, simple, easy-to-perform, and potentially
applicable for the extraction of MALs in complicated samples.

Nascimento et al. (2020) firstly synthesized a new selective
adsorbent based on magnetic molecularly imprinted polypyrrole-
conducting polymer (MMIPPy) and applied it to the MSPE of
praziquantel (PZQ) enantiomers [(R)-(−)-PZQ and (S)-
(+)-PZQ] combined with HPLC-DAD determination. Under
optimal conditions, excellent linearity was attained in a range
of 0.01–10 µg/ml, with correlation coefficients higher than 0.98
and RSDs less than 15%. The LOQ was 0.01 µg/ml for both
enantiomers, and RSDs and relative errors were below 20%. The
method was applied satisfactorily for the determination of PZQ
enantiomers from sheep milk samples with the possibility to
other analytes in different complex matrices. The economical,
simple, and easy-to-perform MMIPPy-MSPE method suggested
great application potential for antibiotics residues determination.

CONCLUSIONS AND PROSPECTS

To summarize, we review recent advances on both the
classification of MISPE and new imprinting techniques for
antibiotics coupled with chromatographic analysis, with
emphasis on typical examples of MISPE in SAs, QNs, TCs,
and other antibiotics. The use of emerging typical imprinting
techniques has greatly improved the performance of MISPE and
further broadened its application scope. The advancement of
new imprinting techniques, especially the combination of
multiple techniques, can effectively solve some problems in
the practical application of traditional MIPs, such as low
binding capacity, template leakage, and difficulties in aqueous
phase identification, and provide a better performance, easier
separation, and intelligently controlled release of MIPs as solid-
phase sorbents. This can provide an effective means to eliminate
matrix interference and enrich trace antibiotics with high
selectivity. Moreover, the sample pretreatment will definitely
develop in the direction of economical, efficient,
environmentally friendly, and easy to operate related aspects.
In order to further improve the extraction efficiency of MISPE
by using ideal MIPs with greater adsorption capacity, higher
selectivity, better hydrophilicity, and easier separation, it is
necessary to introduce more and advanced preparation
techniques, especially to explore the rational synergistic
combination of multiple imprinting techniques. Furthermore,
the large-scale production and commercialization of the well-
prepared MIPs and well-established MISPE should be given
more attention, in order to push forward their greater advance
and wider applications.
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