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Mn-based materials have been widely applied in the environmental catalysis field for their
excellent redox properties. Here, three kinds of crystallite manganese oxides (pyrolusite,
cryptomelane and todorokite) with different tunnel sizes (MnO(1 × 1), MnO(2 × 2), and
MnO(3 × 3)) were prepared by hydrothermal method, and their catalytic performance in
complete oxidation of diesel vehicle exhaust were tested. The highest catalytic oxidation
activity was achieved onMnO(3 × 3) when compared with that onMnO(1 × 1) andMnO(2 ×
2). Via a series of characterizations, such as transmission electron microscope, scanning
electron microscope, X-ray powder diffraction, N2-sorption experiments, temperature-
programmed reduction by H2/CO, and X-ray photoelectron spectroscopy, etc., it was
found that the catalytic activity was mainly determined by the tunnel structure, specific
surface area, and redox ability.
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INTRODUCTION

Diesel vehicles have been widely used due to its less carbon dioxide emissions, higher fuel efficiency,
better reliability and durability. However, diesel vehicle engines emit many harmful pollutants,
including NOx, CO, and unburned hydrocarbons (CxHy), which are dangerous for both human
health and environment. Due to the lean-burn and oxygen-rich conditions, traditional three-way
catalyst (TWC) cannot meet the requirements of diesel engine exhaust systems for increasingly
stringent government laws and regulations. In decades, many efforts have been devoted to
developing diesel exhaust after-treatment systems.

Diesel oxidation catalyst (DOC) is the core of current technologies for controlling diesel vehicle
exhaust, which is used to oxidize CO and CxHy into non-toxic CO2 and H2O, and oxidize NO into
NO2 to accelerate sequential fast SCR reaction (Tan et al., 2021). At present, the most common active
components of DOC catalysts in industrial applications are platinum-group metals, such as Pt, Pd,
etc., with transition metal oxides such as Al2O3 and CeO2 as supports (Liu et al., 2013; Liu et al., 2015;
Raj et al., 2015; Carrillo et al., 2017; Ren et al., 2018; Leistner et al., 2019). Pt-group metals exhibit the
excellent removal efficiency on CO, CxHy, NO, and other polluting components in diesel vehicle
exhaust at low temperatures (Khosravi et al., 2014). There are still some problems with the usage of
them, such as the rather expensive, limited reserves, and the susceptibility to sinter causing activity
loss at high temperatures. It is significantly demanded to design an efficient noble metal-free DOC
catalyst.
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Among various noble metal-free DOC catalysts,
transition metal oxides have received more and more
attention, and they are considered to be environmental-
friendly catalysts with great potential to replace the
precious metals (Wang F. et al., 2012; Heo et al., 2018).
Manganese oxide (MnOx) is one of the most common
transition metal oxides. The variable valence of Mn and
the superior redox propertie have enabled MnOx as a
promising candidate for efficient DOC catalyst (Kim et al.,
2010; Gao et al., 2016; Xu et al., 2006; Shi et al., 2019; Miao
et al., 2019; Liu F. et al., 2018). Manganese oxides exist in
many crystallines, which can be roughly divided into one-
dimensional tunnel structure, two-dimensional layered
structure and three-dimensional spinel structure (Huang
Z. et al., 2012; Liu P. et al., 2018), manganese oxide with
tunnel structure, also named as manganese oxide octahedral
molecular sieve, has received extensive attention due to its
superior catalytic performance (Makwana et al., 2002; Jarrige
and Vervisch, 2009; Huang et al., 2017; Tang et al., 2010;
Zhou et al., 2017; Liu Y. et al., 2018; Uematsu et al., 2016;
Wang et al., 2017; Tang et al., 2006; Chen et al., 2009). Three
typical manganese oxide square tunnel structures (pyrolusite,
cryptomelane and todorokite) are shown in Figure 1, denoted
as MnO(1 × 1), MnO(2 × 2), and MnO(3 × 3), respectively.
The [MnO6] octahedron forms single, double or triple chains
through edge and/or angle sharing, then the chains form a
square hollow tunnel in an approximately orthogonal
manner (Shiley and Buseck, 1981; Shen et al., 2005). For
pyrolusite, single chains of edge-sharing [MnO6] octahedra
share corners with neighboring chains to form a framework
structure containing tunnels with square cross sections that
are one octahedron by one octahedron (1 × 1) on one side,
forming a framework structure containing approximately
0.23 × 0.23 nm2 tunnels (MnO(1 × 1)) (Ooi et al., 1987).
The microstructure of cryptomelane is constructed of double
chains of edge-sharing [MnO6] octahedra, but they are linked
in such a way as to form tunnels with square cross sections
about 0.46 × 0.46 nm2, measuring two octahedra on a side
(MnO(2 × 2)) (Brock et al., 1998; Qi et al., 1999). The tunnel
in todorokite is composed of [MnO6] octahedrons with three
edges sharing chains, forming a frame structure of about 0.69

× 0.69 nm2 tunnel (MnO(3 × 3)) (Golden et al., 1985; Shen
et al., 1993; Ching and Roark, 1997). Their structural
frameworks are similar to zeolite (Shiley and Buseck, 1981;
Ooi et al., 1987; Qi et al., 1995). Many studies have confirmed
the tunnel structure of manganese oxide is similar to
molecular sieve through different methods. (Fleischer and
Richmond, 1943; Breck, 1974; Kijima et al., 2004; Liu P. et al.,
2018). However, although the unique microstructure of
MnOx tunnels have arose great interests of researchers,
few studies on revealing the impact of tunnel structure
effect over MnOx as DOCs on their catalytic performance
have been reported.

Herein, three different tunnel structure catalysts were
prepared by a hydrothermal method, and the influence of
the tunnel structure over on the catalytic activity of diesel
vehicle exhaust gas (CO, C3H6) oxidation was studied. Via a
series of characterizations, such as X-ray powder diffraction
(XRD), transmission electron microscope (TEM), scanning
electron microscope (SEM), nitrogen adsorption and
desorption experiments (N2-sorption), temperature
programmed reduction by CO (CO-TPR), temperature
programmed reduction by H2 (H2-TPR), and X-ray
photoelectron spectroscopy (XPS), a structure-performance
relationship has been established where the tunnel structure,
as well as the redox properties of manganese oxide,
determined the catalytic oxidation activity. The present
result is expected to give a promising pathway for the
design and preparation of the low-cost efficient DOCs that
are entirely noble metal-free.

EXPERIMENTS

Materials
Analytical grade hydrate MnSO4·H2O, MnCl2.4H2O
(NH4)2S2O8, and NaOH were purchased from Sinopharm
Chemical Reagent, Co., Ltd., China. KMnO4 was purchased
from Nanjing Chemical Reagent, Co., Ltd., China.
MgCl2·6H2O was obtained from Shanghai Macklin
Biochemical Co., Ltd., China. Deionized water was used
throughout the experiment process.

FIGURE 1 | Three typical manganese oxide square tunnel structures.
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Catalysts Preparation
The MnO(1 × 1) and MnO(2 × 2) manganese oxides were
prepared by a redox hydrothermal method according to the
following reaction Eqs. 1, 2, respectively (Wang and Li, 2002):

S2O
2−
8 +Mn2+ + 2H2O→ 2SO2−

4 +MnO2 + 4H+ EΘ � 0.786V

(1)

2MnO−
4 + 3Mn2+ + 2H2O→ 5MnO2 + 4H+ EΘ � 0.455V (2)

A certain amount of manganese sulfate (MnSO4·H2O (2.91 g))
and an equal amount of ammonium persulfate ((NH4)2S2O8

(3.93 g)) were dissolved in distilled water (40 mL) at room
temperature under vigorous magnetic stirring, then the
homogeneous solution was transferred into a Teflon-lined
stainless steel autoclave, sealed, and maintained at 160°C for 24 h.
The obtained black solid product was filtered, washed with distilled
water to remove ions possibly remaining in the final products, and
finally dried at 110°C overnight. The whole process, appropriate for
the preparation of pyrolusite, was conveniently adjusted to prepare
MnO(2 × 2) by simply adding analytical grade KMnO4 (1.66 g)
instead of (NH4)2S2O8 to the reaction system.

The MnO(3 × 3) manganese oxide was prepared through the
precipitation method according to the reported literature (Breck,
1974). Briefly, birnessite was initially synthesized by the
coprecipitation method. Manganese dichloride (MnCl2·4H2O
(3.96 g)) and MgCl2·6H2O (1.63 g) were dissolved in 40mL
deionized water to form a mixed solution, in which the 5.0M
NaOH (50mL) and 0.20M KMnO4 (40mL) solutions were
successively added. The mixture was stirred for 30min and aged
at room temperature for 48 h and then washed with the deionized
water to obtain Na-birnessite. MnO(3 × 3) was prepared by the
addition of the Na-birnessite above into 1 L of 1.0M MgCl2, and
stirred for 12 h at room temperature. The sample was then
centrifuged and washed three times with a large amount of
distilled deionized water, then charged into Teflon-lined
autoclaves at 150°C for 48 h. The resulting solid product was
filtered, washed with the deionized water and dried at 110 °C
overnight. The manganese oxides were obtained by calcining the
dried samples above in air at 300°C for 6 h and denoted as
MnO(1 × 1), MnO(2 × 2), and MnO(3 × 3), respectively,
according to the properties of their tunnels for clarity.

Catalysts Characterizations
Transmission electronmicroscopy (TEM) images were taken on a
JEM-1011 instrument at an acceleration voltage of 200 kV. The
sample was dispersed in A.R. grade ethanol with ultrasonic
treatment and the resulting suspension was allowed to dry on
a carbon film supported on copper grids. The morphologies of
samples were observed via a field-emission scanning electron
microscope (JSM-6701F, JEOL accelerating voltage of 5 kV).

X-ray diffraction patterns were recorded on a Philips X’pert Pro
diffractometer usingNi-filteredCuKα radiation source (λ � 0.15 nm) at
40 kV and 30mA under ambient conditions. The scan angle extended
from 10° to 90° using a step size of 0.02°, and scan speed was 10min−1.

N2 adsorption-desorption isotherms were carried out on a
Micromeritics ASAP 2020 instrument using nitrogen gas as an

adsorbate at 77 K. Before measurement, the samples were
vacuum-pretreated at 200°C for 3 h. The Brunauer-Emmett-Teller
(BET) equation and the Barrett-Joyner-Halenda (BJH) method were
applied for the measurement of the specific surface area and the pore
size distribution, respectively.

X-ray photoelectron spectroscopy (XPS) measurements were
conducted using a PHI 5000 Versa Probe system with a
monochromatic Al Kα radiation (1486.6 eV, 15 kW). All
binding energies were calibrated by the adventitious C 1s
(284.6 eV) to compensate for surface charge effects. This
reference gave BE values with accuracy at ± 0.1 eV. All the
data were analyzed by XPS PEAK software using Shirley type
background.

Inductively coupled plasma atomic emission spectroscopy
(ICP-AES) was used for elemental analysis on a Perkin Elmer
Optima 5300DV instrument with a radiofrequency power of
1300W. The sample was dispersed in a mixture of HNO3 and
H2SO4 (volume ratio 1:3) before the determination of their
chemical compositions and treated by ultrasonic for 1 h to get
the sample completely dissolved in the liquid phase.

Temperature programmed reduction by H2 (H2-TPR)
experiments were carried out in a quartz U-tube reactor
connected to a TCD with a H2/Ar mixture (7% H2 by
volume) as a reductant. 10 mg sample was used for each
measurement. Before introducing the sample to the H2/Ar
stream, the sample was pretreated in a N2 stream (50 mL/min)
at 150°C for 1 h. The H2 consumption profiles were collected from
room temperature to 800°C at a rate of 10°C/min.

CO temperature-programmed reduction (CO-TPR) experiments
were conducted in a quartz tube with 30mg catalyst loaded. The
sample was pretreated in Ar stream (200mL/min) at 120°C for 0.5 h
before reduction and then cooled to room temperature. After that,
CO/He mixture was switched on and the sample was heated from
room temperature to 650°C with a heating rate of 10°C min−1. The
effluent gases including CO and CO2 were continuously analyzed by
an online LC-D series mass spectrometer.

Catalytic Activity Tests
Catalytic activity tests for C3H6 or CO oxidation were carried out on
a fixed-bed continuous flow quartz reactor. The feeding gas contains
1% C3H6 (or CO)/He, 20% O2/He with a total flow rate of 10mL
min−1. In each test, 50mg sample was used and the weight hourly
space velocity (WHSV) was 12,000 mL g−1·h−1. Before switching on
the reactant flow, the sample was pretreated in a flowing He stream
at a rate of 20 mL/min at 150°C for 0.5 h to remove the adsorbed
impurities. After that, the sample was cooled to room temperature
and exposed to reactant gases until reaching saturated adsorption.
The oxidation activity was tested under steady conditions. The outlet
gas composition was measured by an online GC-9860 gas
chromatograph equipped with TCD and FID detectors. C3H6

and CO conversion were calculated by the following equations:

C3H6 coversion (%) � (1 − [C3H6]out
[C3H6]in) × 100%

CO coversion (%) � (1 − [CO]out
[CO]in ) × 100%
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where [C3H6]in and [CO]in represent the initial C3H6 and CO
concentrations, [C3H6]out and [CO]out represent the residual
C3H6 and CO concentrations, respectively.

The light-off experiments of CO and C3H6 simultaneous
oxidation activity performance of various catalysts were
evaluated in a fixed-bed quartz reactor (8 mm internal

FIGURE 2 | TEM and SEM images of MnO(1 × 1) (A,D), MnO(2 × 2) (B,E), and MnO(3 × 3) (C,F).

FIGURE 3 | XRD patterns of MnO(1 × 1), MnO(2 × 2), MnO(3 × 3).
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diameter) operating with a steady state flow. The feed stream was
fixed with 200 ppm CO, 200 ppm C3H6, 10% O2, and the total gas
flow is controlled at 100 mL/min. In each test, 100 mg sample was
used and the weight hourly space velocity (WHSV) was
60,000 mL g−1·h−1. Before the test, it was pretreated in purified
N2 stream at 150°C for 0.5 h to avoid surface impurities. Then the
mixed gases were switched on and the activity data were collected
at every target temperature after stabilizing for 30 min. The
concentration of effluent gases was continuously analyzed on
an MKS MultiGas 6030 FTIR spectrometer equipped with a 2 m
path-length gas cell (2 L volume). The C3H6 and CO conversion
were calculated by the equations shown above.

RESULTS AND DISCUSSION

Structure Characterizations
As shown in Figure 2, MnOx samples synthesized by different
methods exhibited significantly different morphologies.
MnO(1 × 1) and MnO(2 × 2) displayed uniform shapes of
nanowire and nanorod. While the MnO(3 × 3) showed a
uniform petal-like shape. The morphologies of the samples
were consistent with previous reports (Wang and Li, 2002;
Kijima et al., 2004).

To determine the crystalline structure of MnO(1 × 1), MnO(2
× 2), and MnO(3 × 3), the XRD patterns were collected
(Figure 3). The XRD patterns of the MnO(1 × 1) could be
readily indexed to the pure pyrolusite with a tetragonal structure
(β-MnO2, JCPDS 24-0735). While the diffraction peaks of
MnO(2 × 2) were attributed to the crystalline phase of
cryptomelane (α-MnO2, JCPDS 29-1020) with a tetragonal
structure. For MnO(3 × 3) the diffraction peaks were ascribed
to the orthorhombic phase of the todorokite MnO2 (JCPDS 38-
0475).

The specific surface area (SSA) of MnO(1 × 1), MnO(2 × 2)
and MnO(3 × 3) were characterized by N2 adsorption-
desorption isotherms and the result were listed in Table 1.
MnO(3 × 3) (68.3 m2/g) exhibited a higher SSA than MnO(1 ×
1) (15.3 m2/g), and MnO(2 × 2) (33.6 m2/g). Compared to
MnO(1 × 1) (0.05 cm3/g) and MnO(2 × 2) (0.11 cm3/g)
samples, higher total pore volume was also achieved on
MnO(3 × 3) (0.33 cm3/g). When combined with the results
of SEM, the stacking-type pores of petal-like morphology
might account for the higher SSA and larger pore volume of
MnO(3 × 3). Liu et al. found that the tunnels in MnO(1 × 1)
were too small to accommodate other chemical species, and
chemical analysis indicates that the composition of MnO(1 ×
1) only slightly deviated from pure MnO2 (Liu P. et al., 2018).
Wang et al. (Wang and Li, 2002) examined the structure and

pore properties of MnO(2 × 2) by adsorbing different gases
with different molecular diameters. Both H2O and NH3 with
diameters below 0.265 nm could be inserted into the tunnel
structure of MnO(2 × 2), whereas N2, O2, Ar, CO, and CO2

with diameters above 0.33 nm were excluded from the
structure. As reported by Shen et al. (Shen et al., 1993),
MnO(3 × 3) with a tunnel size of 0.69 nm showed
satisfactory adsorptive capacity for C6H12 and CCl4 with
size dimensions of 0.61 and 0.69 nm, respectively. Such a
special structure made MnO(3 × 3) exhibit a superior
oxidation activity for hydrocarbons.

Catalytic Activity of CO and/or C3H6

Oxidation
C3H6 oxidation and CO oxidation reactions were selected to
evaluated the catalytic oxidation activity of MnO(1 × 1), MnO(2
× 2), and MnO(3 × 3). As shown in Figure 4, for the non-catalyst
test, the T20 of CO is about 300°C and the T20 of C3H6 is about
350°C, which should be due to the ordinary thermal oxidation.
The catalytic performances have been significantly improved
after loading the catalyst. MnO(3 × 3) shows extremely high
catalytic activity for the oxidation of C3H6, which achieved a
C3H6 conversion of 50% at ca. 110°C and a completely oxidation
at ca. 170°C. However, the C3H6 conversions over MnO(1 × 1)
and MnO(2 × 2) are only ca. 5% at 110°C. Under the same
conditions, the temperatures required for the complete oxidation
of C3H6 over MnO(1 × 1) and MnO(2 × 2) are 320 and 240°C,
respectively. Interestingly, their CO oxidation activities are
almost the same.

Light-off experiments of CO and C3H6 simultaneous
oxidation at higher WHSV were also carried out to further
estimate the catalytic oxidation activity of MnO(1 × 1),
MnO(2 × 2), and MnO(3 × 3) to approach the practical
instance. As shown in Figure 5, the light-off temperatures of
CO and C3H6 oxidation on these three MnOx catalysts shifted to
the high temperature, which should be due to the different
reaction conditions, especially the increasing of the WSHV
from 12,000 to 60,000 mL g−1·h−1. MnO(3 × 3) catalyst still
showed the best C3H6 oxidation activity. Interesting, in the
presence of C3H6, MnO(3 × 3) exhibited much better CO
oxidation activity than MnO(2 × 2) and MnO(1 × 1), which
was quite different from the results of CO oxidation without C3H6

in the reactant. The catalytic performance of some typical
catalysts for the oxidation of CO and propylene were listed in
Table 2 (Seo et al., 2021; Li et al., 2019; Ma et al., 2018; Li et al.,
2021; Hazlett et al., 2017; Wang et al., 2019; Rida et al., 2006; Tan
et al., 2020; Liu et al., 2020; Březina et al., 2020). It was seen that
noble metal catalysts had outstanding low-temperature activity
below 250°C, while the catalytic activity of transition metal
catalysts was generally lower than that of noble metal
catalysts. Even though MnO(3 × 3) still shown the comparable
catalytic performance. In short, MnO(3 × 3) was a superior
catalyst for CO and C3H6 oxidation, which made it a
promising candidate as a diesel oxidation catalyst. To reveal
the reasons for the higher oxidation activity of MnO(3 × 3), a
series of physiochemical characterizations were carried out.

TABLE 1 | The textural properties of various catalysts.

Sample SSA (m2/g) Pore volume (cm3/g)

MnO(1 × 1) 15.3 0.05
MnO(2 × 2) 33.6 0.11
MnO(3 × 3) 68.3 0.33
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The Redox Property (H2-TPR, CO-TPR)
H2-TPR was used to investigate the redox ability of these
catalysts. The reduction profiles was shown in Figure 6, and

the quantitative results of the H2-consumption peaks in the
process of reduction were listed in Table 3. For all three MnO
catalysts, there were two H2-consumption peaks in each H2-TPR

FIGURE 4 | C3H6 oxidation and CO oxidation tests of three manganese oxides or non-catalyst. Reaction conditions: 5000 ppm C3H6(CO), 10% O2, He balanced,
WSHV of 12,000 ml g−1·h−1.

FIGURE 5 | C3H6 oxidation and CO oxidation tests of three manganese oxides. Reaction conditions: 200 ppm C3H6, 200 ppm CO, 500 ppm NO, 10% O2, N2

balanced, WSHV of 60,000 ml g−1·h−1.
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curves. According to the previous reports, the H2-consumption
peak at relatively lower temperature possibly represented the
reduction of MnO2 or Mn2O3 to Mn3O4, and the high
temperature one be assigned to the further reduction of
Mn3O4 to MnO (Gao et al., 2016). Moreover, it could be
found that the initial reduction temperature of the low-
temperature H2-consumption peak of MnO(3 × 3) began at
187°C and centered at 338°C, which were about 70°C lower than
those of MnO(1 × 1) and MnO (2 × 2), indicating that the redox
recycling of Mn4+/Mn3+ was more easily to occur on MnO(3 ×
3) catalyst. As shown in Table 3, the amount of H2

consumptions decreased from 11.03 to 7.42 mmol g−1 in the

order of MnO(1 × 1) > MnO(2 × 2) > MnO(3 × 3). However,
when the H2 consumptions were normalized by the
corresponding contents of manganese, the relative ratios were
about 0.15 for all three catalysts, indicating the similar reduction
amount of all MnOx catalysts. As reported previously, the
catalytic oxidation of CxHy on manganese oxides was mainly
proceeded by the Mars-van Krevelen mechanism (Shen et al.,
1993; Fleischer and Richmond, 1943), in which the lattice
oxygen species reacted with CxHy, and the reduced
manganese oxides were re-oxidized by gaseous oxygen. As a
result, the CxHy oxidation activity of manganese oxides was
mainly determined by its redox performance. Summarzing the
above results, it seemed reasonably to suggest that the excellent
reducibility of MnO(3 × 3) at low temperatures played the
dominated factor for its best C3H6 oxidation activity. More
importantly, it was not difficult to see that MnO(3 × 3), which
had the best propylene oxidation activity, had a lower initial
reduction temperature than MnO(1 × 1) and MnO(2 × 2).
Accordingly, it could be concluded that the redox properties at
low temperatures were more important for improving catalytic
oxidation performance.

As reported by Ma et al. (Ma et al., 2018), the CO oxidation
performance is extremely related to the interaction between the
CO molecules and the active lattice oxygen of the catalysts.
Therefore, the CO-TPR experiment was conducted onMnO(1 ×
1), MnO(2 × 2), and MnO(3 × 3) to further determine the
reactivity of lattice oxygen species. As shown in Figure 7, two
CO-consumption peaks were observed on these three samples,
suggesting two types of lattice oxygen with different reactivity
(Shen et al., 1993). The peak at lower temperature range was
ascribed to the reduction of MnO2 to Mn3O4 (Shen et al., 1993;
Fleischer and Richmond, 1943), while the peak at higher

TABLE 2 | The catalytic properties of CO and C3H6 oxidation reactions over some typical catalysts.

Catalyst CO conversion
(Temperature)

C3H6 conversion
(Temperature)

Reaction conditions References

Pd/Ag-CeO (2 wt% Pd,
0.3 mol% Ag)

90% (169°C) 90% (174 C) 1% CO, 1000 ppm C3H6, 10% O2, WHSV � 120,000 ml/g h Seo et al. (2021)

CeO2-Co3O4 50% (72°C) 50% (192 C) 0.4% CO, 10% O2, WHSV � 240, 000 ml g−1 h−1 Li et al. (2019)
0.1% C3H6, 10% O2, WHSV � 240, 000 ml g−1 h−1

La2O3-Co3O4 50% (109°C) 50% (226°C) 0.4% CO, 10% O2, WHSV � 240, 000 ml g−1 h−1 Li et al. (2019)
0.1% C3H6, 10% O2, WHSV � 240, 000 ml g−1 h−1

Co3O4-In2O3 100% (90°C) 100% (250°C) 1% CO, 1.5% O2, WHSV � 240, 00 ml g−1 h−1 Ma et al. (2018)
La0.9Sr0.1CoO3 50% (146°C) 50% (258°C) 0.4% CO, 10% O2, WHSV � 240, 000 ml g−1 h−1 Li et al. (2021)

0.1% C3H6, 10 %O2, WHSV � 240, 000 ml·g−1 h−1

Pt-Pd/Al2O3 (1wt%
Pt,0.55wt% Pd)

100% (170°C) 100% (210°C) 3000 ppm CO, 8% O2, 1500 ppm C3H6, 8% O2 Hazlett et al.
(2017)

Pt/La-Al2O3 (0.5wt% Pt) 80% (275°C) 100% (300°C) 5000 ppm CO, 500 ppm HCs, 1.0% O2, 5% H2O,
1,500,000 cm3·gcat−1 h−1

Wang et al.
(2019)

LaSrCrO3 100% (400°C) 100% (367°C) 1% CO, 2% O2, W/F � 9 × 10–2 s gcat mL−1 Rida et al. (2006)
0.1% C3H6, 1.8% O2, W/F � 9 × 10–2 s gcat mL−1

Pt/CeO2/Al2O3 50% (170°C) 100% (250°C) 1.0% CO, 1.0% O2, WHSV � 200,000 ml/(gcat h) Tan et al. (2020)
2000 ppm C3H6, 2% O2, WHSV � 200,000 ml/(gcat h)

LaMnCoO3 — 100% (250°C) 1000 ppm C3H6, 3%O2, 5%H2O, WHSV � 240,000 cm3 g−1 h−1 Liu et al. (2020)
Pt/CeO2/γ-Al2O3 (2.3wt
% Pt)

100% (250°C) 100% (300°C) 1660 ppm CO, 6.584% O2, 860 ppm C3H6, 7% H2O, 7% CO2,
600 ppm NO, GHSV � 50,000 h−1

Březina et al.
(2020)

MnO(3 × 3) 100% (350°C) 80% (350°C) 200 ppm CO, 200 ppm C3H6, 10% O2, WHSV � 60,000 ml
g−1·h−1

In this work

FIGURE 6 | H2-TPR profiles of MnO(1 × 1), MnO(2 × 2), and MnO(3 × 3).
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temperature range was attributed to the reduction of Mn3O4 to
MnO. Similar to the results of H2-TPR, it can be seen clearly that
the initial reduction temperatures of the low-temperature
reduction peak, as well as the peak center on MnO(3 × 3)
was still slightly lower than those on MnO(1 × 1) and MnO(2 ×
2). The excellent low-temperature redox property of MnO(3 ×
3) should be one of the main reasons for the best catalytic
oxidation activity.

The Chemical States of Surface
Species (XPS)
XPS was performed to identify the chemical state of surface
elements. The Mn 2p spectra are shown in Figure 8A. Mn 2p3/2
and Mn 2p1/2 XPS peaks were centered at 642.3 and 654.1 eV,
respectively, with the separation energy of 11.8 eV, close to that
of Mn 2p XPS with an octahedral coordination in MnO2 (Liu P.
et al., 2018). The peaks at 654.7 and 643.5 eV were attributed to
Mn4+, and the peaks at 653.5 and 642.1 eV were attributed to
Mn3+. The mixed valence in catalysts was important for electron
transport because the efficiencies of catalysts were usually
governed by their ability and tendency to cycle between
different valence states of the relevant cationic ions (Sun
et al., 2011; Fang et al., 2017). Thus, the ratio of Mn3+/Mn4+

was calculated as a parameter to compare the catalytic activity of
MnOx samples. As calculated from Figure 8A, MnO(1 × 1)
possessed the lowest Mn3+/Mn4+ ratio of 0.73 (Table 3). When
tunnel size increased from 0.23 to 0.69 nm, the ratio of Mn3+/
Mn4+ increased from 0.71 to 1.54, which indicated that more
Mn3+ formed on MnO(3 × 3). More surface Mn3+ ions were
always related to the formation of more surface oxygen
vacancies on MnO2, which was beneficial to the adsorption,

FIGURE 7 |CO-TPR profiles of MnO(1 × 1), MnO(2 × 2), andMnO(3 × 3).

FIGURE 8 | XPS spectra of Mn 2p (A) and O 1s (B) for MnO(1 × 1),
MnO(2 × 2), and MnO(3 × 3).

TABLE 3 | The redox properties of various catalysts.

Sample Mn contents
(wt%)a

Mn3+/Mn4+b Oads/(Oads +
Olatt)

c
H2 consumptions

(mmol g−1)
H2 consumptions/Mn

contents

MnO(1 × 1) 64.2 0.71 0.21 11.03 0.17
MnO(2 × 2) 63.8 1.31 0.24 9.55 0.15
MnO(3 × 3) 56.9 1.54 0.29 7.42 0.13

aThe Mn contents of as-preapred sampls were determined by ICP.
bCalculated by the fitting results of Mn 2p XPS.
cCalculated by the fitting results of O 1s XPS.
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activation and migration of oxygen species. Such a conclusion
was further proven by the XPS results of O 1s. As shown in
Figure 8B, two peaks centered at 529.5 and 531.4 eV were
observed. The peak at ca. 529.5 eV was corresponded to
surface lattice oxygen (Olatt), while the latter peak at ca.
531.4 eV was attributed to surface adsorbed oxygen (Oads)
(Galakhov et al., 2002; Wang W. et al., 2012). As shown in
Table 3, the ratio of surface adsorbed oxygen species (Oads/(Olatt

+ Oads)) on MnO(1 × 1), MnO(2 × 2), and MnO(3 × 3) were
0.27, 0.31 and 0.41, respectively. MnO(3 × 3) possessed the most
abundant surface adsorbed oxygen species. The formation of
adsorbed oxygen species are most likely resulted from the
presence of surface oxygen vacancies on the different tunnel
size MnO2 catalysts. Surface active oxygen species played an
important role in oxidation reactions (Tang et al., 2008;
Widmann and Behm, 2011). Abundant surface adsorbed
oxygen species were easily stripped at low temperatures and
were favorable for stronger reducibility to enhance the oxidation
performance, well consistent with the results of H2-TPR. In
other words, the abundant surface oxygen vacancies and surface
adsorbed oxygen species dramatically facilitated the redox
properties at low temperature, and then promoted its
catalytic oxidation activity.

Relationship Between Catalytic
Performance and Catalysts Properties
To further reveal the reasons for the most superior catalytic
oxidation activity on MnO(3 × 3), the results of catalytic
performance test, H2-TPR, CO-TPR, XPS, as well as the
structural/textural properties were re-organized in Figure 9.
Here, T20, the temperature at which C3H6/CO conversion
were 20%, was selected to represent the catalytic oxidation
activity of MnO(1 × 1), MnO(2 × 2) and MnO(3 × 3), and
lower T20 meant higher catalytic oxidation activity. As far as
we know, for some important catalytic reactions, the increase

of the specific surface area of support was beneficial to provide
more active sites, which could lead the activity to increase.
Taking into account the previous research about the tunnel
sizes of these three MnO catalysts, N2 can be adsorbed
throughout the tunnel of MnO(3 × 3), partially adsorbed in
the tunnel of MnO(2 × 2), and excluded from the tunnel of
MnO(1 × 1). This indicated that the SSA results from the N2

adsorption-desorption isotherms in our study reflected the
effective adsorption sites of the MnO catalysts, i.e., the
effective catalytic oxidation sites. It could be considered that
MnO(3 × 3) with the largest tunnel size and the biggest SSA
was in favor of the catalytic oxidation performance
(Waterhouse et al., 2003). Other than the optimal tunnel
structures and higher SSA of MnO(3 × 3), it was found that
the enhanced catalytic oxidation activity of MnO(3 × 3) was
more related to its excellent redox property. Lower initial
reduction temperatures in H2/CO-TPR were always related
to better redox properties. In this work, lower initial reduction
temperatures in H2/CO-TPR were achieved on MnO(3 × 3),
meaning that the oxygen species on MnO(3 × 3) were more
reactive. The higher concentration of surface adsorbed oxygen
species on MnO(3 × 3) suggested the formation of more
oxygen vacancies, which could significantly facilitate the
adsorption and activation of oxygen during the reaction. In
short, the optimal tunnel structure, highest SSA, and most
superior redox properties accounted for the best catalytic
oxidation activity of MnO(3 × 3). Through the above-
mentioned comparative studies, a structure-activity
relationship was well established.

CONCLUSION

In this work, three kinds of manganese oxides: MnO(1 × 1),
MnO(2 × 2), and MnO(3 × 3) with different tunnel structures
were prepared by a hydrothermal method. MnO(3 × 3) showed

FIGURE 9 | The relationship between the catalytic oxidation activity and the results of H2-TPR, CO-TPR, XPS, as well as the structural/textural properties.
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much superior catalytic oxidation activity than MnO(1 × 1) and
MnO(2 × 2). Through a series of characterizations, a structure-
activity relationship was established that the unique tunnel
structure, higher specific surface area, and better redox
properties on MnO(3 × 3) accounted for its best catalytic
oxidation activity. This work provides a new strategy for
designing highly efficient catalytic oxidation catalysts through
tuning the tunnel structures of metal oxide catalysts.
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