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Energy consumption in buildings is gradually increasing and accounts for around
forty percent of the total energy consumption. Forecasting the heating and
cooling loads of a building during the initial phase of the design process in
order to identify optimal solutions among various designs is of utmost
importance. This is also true during the operation phase of the structure after
it has been completed in order to ensure that energy efficiency is maintained. The
aim of this paper is to create and develop a Multilayer Perceptron Regressor
(MLPRegressor) model for the purpose of forecasting the heating and cooling
loads of a building. The proposed model is based on automated hyperparameter
optimization using Waterwheel Plant Algorithm The model was based on a
dataset that described the energy performance of the structure. There are a
number of important characteristics that are considered to be input variables.
These include relative compactness, roof area, overall height, surface area,
glazing area, wall area, glazing area distribution of a structure, and orientation.
On the other hand, the variables that are considered to be output variables are the
heating and cooling loads of the building. A total of 768 residential buildings were
included in the dataset that was utilized for training purposes. Following the
training and regression of the model, the most significant parameters that
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influence heating load and cooling load have been identified, and the WWPA-
MLPRegressor performed well in terms of different metrices variables
and fitted time.

KEYWORDS

energy efficiency, machine learning, hyperparameter tunning, grey wolf optimization,
waterwheel plant algorithm, cooling/ heating loads, multilayer perceptron

1 Introduction

Climate change has severe effects on all living organisms on
Earth. Global warming is a phenomenon within climate change that
involves an increase in the average temperature of the Earth’s surface
(Rodríguez et al., 2020). Higher electricity usage is a significant
contributor to the release of greenhouse gases, leading to global
warming (Mastrucci et al., 2021). Carbon dioxide (CO2) is the
primary greenhouse gas that significantly contributes to global
warming, and its emissions have been steadily rising over the
years (Yoro and Daramola, 2020). In 2019, worldwide CO2

emissions were 45% greater than the emissions between 1980 and
1990 and doubling the amount of CO2 would result in a 3.8°C
increase in global temperatures (Al-Ghussain, 2019). The energy
usage of the building sector is one of the major ones among the three
sectors: transportation, industry, and construction (Prasetiyo et al.,
2019). As per the International Energy Agency (IEA), buildings
consume 40% of the total energy and 24% of the global
CO2 emission (Zhang et al., 2023). Building, industry, and
transportation represent 41%, 30%, and 29%, respectively, of the
energy demand in the USA (Chou and Bui, 2014). Thus, the
reduction of building energy consumption is crucial.

The US Department of Energy reported that 40% of greenhouse
gas emissions coming from residential and commercial buildings
would be cut by 2010 (Ahmad and Zhang, 2020). Commercial
buildings utilized more than 60 percent of electricity in 2016
(Lokhandwala and Nateghi, 2018). Commercial building cooling
energy usage influences factors that need to be comprehended for
sustainability and environmental impact reduction. Among those
are heating, ventilation, and air conditioning (HVAC), population
growth, dwell duration, and climate (Invidiata et al., 2018). Other
variables that influence building energy use cover weather
conditions, dry bulb temperature, material properties and floor
count (Araújo et al., 2023). Besides, building characteristics have
a marked influence on energy consumption, and effective design
practices can reduce energy demand (Tsanas and Xifara, 2012). It is
also important to know how building architecture influences energy
efficiency; bad design and structure would cause about 40% more
CO2 emissions from energy usage (Xu et al., 2012). It is advisable to
analyze building energy implementation in heating load (HL) and
cooling load (CL). Building energy use is affected by climate location
(Renuka et al., 2022). Various climates are hot, cold, moist and arid
conditions (Phan and Lin, 2014). As a result, building energy
requirements change with local climatic conditions. Machine
learning for analysis is a quick and easy approach since it uses
algorithms to both predict and classify a given training dataset (Xie
et al., 2022). Models of machine learning are known for their
aptitude to recognize trends and patterns. It can analyze large
and complex data and detect patterns that humans find hard to

process manually. Further, ML can work with multi-dimensional
data in dynamic situations (Dahiya et al., 2022). They applied ML to
find energy-related data patterns, which made it popular in many
fields, including healthcare. Supervised machine learning uses a
labeled dataset for predictions (Wang et al., 2021). Test conditions
for the models include train-test split and k-fold cross validation.
K-fold cross validation is a reliable method that involves partitioning
data into k subsets or folds, with each fold serving as test data and
others as training data (Chou and Bui, 2014).

This paper proposes an automated hyperparameter
optimization technique using WWPA and MLPRegressor to
forecast the cooling/heating loads in a building. Through an
analysis of factors influencing heating and cooling energy usage,
this paper aims to enhance the energy efficiency of residential and
commercial buildings.

The following is an outline of the structure of this article: In the
second section, a detailed overview of the available literature on the
application of machine learning algorithms in energy efficiency in
buildings is presented. In the third section, the model that was
proposed in this study is presented. Section 4 provides a
comprehensive review of the performance of the machine
learning methods and materials that were utilized. The paper is
concluded in Section 5, which also provides some suggestions for
potential future research.

2 Literature review

The rise in the average surface temperature, sometimes known
as global warming, is a huge problem all around the globe that
humans are making worse (Al-Ghussain, 2019). The problem is not
limited to humans; it impacts all forms of life. The main source of
global warming is the emission of greenhouse gases, which include
water vapour, methane, carbon dioxide, and nitrous oxide. Carbon
dioxide accounts for 76% of all emissions of greenhouse gases,
making it the most important of these gases. According to (Chou
and Bui, 2014), about 41% of the United States’ energy consumption
is attributable to buildings, both residential and commercial. Design
characteristics, population density, and urbanization are some of the
elements that influence buildings’ energy usage (Aqlan et al., 2014).

The recent rise in building energy consumption is a result of
factors including climate change, demand for building services,
population, and building characteristics (Kim and Suh, 2021;
Zhang et al., 2023) point out the necessity of the design of
architectural parameters as a route to minimizing energy use in
buildings. This can be achieved by adjustment and improvement of
these design aspects. One of the major components that influences
energy consumption is building design (Chung and Rhee, 2014).
Location is another aspect that affects the energy use of a structure
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due to the weather and temperature conditions of its location. One
of the approaches to increasing the energy efficiency of a building is
to adapt its design to the individual location (Ascione et al., 2019).
Recognizing which factors are most critical in defining a building’s
energy consumption is vital. To focus their works and investments
on energy efficiency, architects need to find the most significant
features or components affecting the building’s energy consumption
(Medal et al., 2021).

The basic factors that characterize the environment include the
heating and cooling loads, which are the amount of energy that
needs to be added within the building or removed from it per unit of
time (Shanthi and Srihari, 2018). Determining the HL and CL of a
building is crucial in understanding how much equipment is
required to maintain the temperature inside at an optimal level,
which is beneficial in terms of cost and environmental factors
(Abediniangerabi et al., 2022). Researchers have used the UCI
energy efficiency dataset to look at how much energy a building
uses by looking at eight design variables: the height of the building,
orientation, surface area, wall area, roof area, and the Distribution of
its glazing area. The output variables in the UCI dataset include heat
load and cool load. Most of these input factors have been employed
in a number of studies for the prediction of heating and cooling
loads (Aqlan et al., 2014). discovered that the main parameters
influencing HL and CL are RC, wall area, surface area, roof area, total
height and glazing area. They found that, in general, the height of a
building has a major influence on the energy it uses for heating and
cooling. The research carried out by (Tsanas and Xifara’s, 2012) on
the HL and CL factors found that the effect of these coefficients on
energy loads was greater for RC, Wall area and Roof area than for
any other variables. The research done by (Irfan and Ramlie, 2021)
investigated the effect of input factors on two output variables, HL
and CL. According to their findings, orientation does not have much
impact on the change of HL and CL.

(Lops, C., et al., 2023; Caroprese, L., et al., 2024) use deep
learning framework (DLF) to enhance precision of fifth-Generation
Mesoscale Model (MM5) weather variable predictions through
sophisticated architecture through around gated recurrent unit
neural networks. The DLF improves the accuracy of
MM5 forecasts, leading to enhanced precision in predictions. The
effectiveness of the model is evaluated using statistical metrics such
as mean absolute error which provide insights into its performance.

The fundamental factors that define the environment are
heating and cooling loads, which indicate how much energy
needs to be added or removed from the building per unit of time
(Shanthi and Srihari, 2018). Determination of the HL and CL of a
building helps to determine the kind of equipment that is required to
maintain the temperature within the building, which is also cost-
effective and environmentally friendly (Abediniangerabi et al.,
2022). Researchers have used the UCI energy efficiency dataset to
look at how much energy a building uses by looking at eight design
variables: the total height of the building, the orientation, the surface
area, the wall area, the roof area, and the glazing area distribution of
it. Heat and cool loads are the two outputs in the UCI dataset.
Several studies have employed these input factors to forecast the
heating and cooling loads. The most crucial factors determining HL
and CL, according to Aqlan et al. (2014), were RC, wall area, surface
area, roof area, total height and glazing area. They concluded that the
overall height of the building has a significant impact on the amount

of energy that it requires for heating and cooling. The research of
Tsanas and Xifara (2012) on the factors of HL and CL determined
that RC, wall area, and roof area have the greatest impact on energy
loads as compared to other variables. Orientations did not show a
significant effect on the changes of both HL and CL, as demonstrated
by the research of (Irfan and Ramlie, 2021). The general height, wall
area, and surface area do, however, have a big effect on both energy
loads. That study by (Nazir et al., 2020) found that RC, total height,
wall area, glazing area, surface area, and roof area are the most
important things that affect predicting heating and cooling loads.
The study did not look into whether independent factors had
positive or negative effects or whether there were linear
relationships between them and dependent variables.

A key component of artificial intelligence is the ability to teach
computers to mimic human intelligence and do tasks once
performed only by humans, such as learning, reasoning, and
decision-making (Eid M., et al., 2022; Khafaga, 2022; Samee,
et al., 2022). Image processing and intelligent robots are just two
of the many uses for artificial intelligence (van der Velden et al.,
2022). XAI is a technique that is used to make machine learning
models more explainable. XAI (Machlev et al., 2022) aims to
improve the understanding of ML outputs. The use of XAI
methods is applied to comprehend better how input variables
influence output (Tsoka et al., 2022). XAI also provides clarity
about the way AI models make decisions, which increases trust
in those models (Ersoz et al., 2022). XAI offers a high-performance
and precise method for researchers to study the performance of the
MLmodels (Machlev et al., 2022). Previous studies have used XAI to
give accurate predictions with better understanding. Zhang et al.,
2023 utilized explainable artificial intelligence with light gradient
boosting to predict the influence of different variables on building
energy consumption (Tsoka et al., 2022). researched to establish if a
building can acquire an energy performance certificate using the
artificial neural network classification model. They used explainable
artificial intelligence techniques such as a local interpretable model
agnostic explanation for the categorization procedure. The results of
explainable artificial intelligence show that irrelevant input features
can be removed, and there is no significant loss of ANN classification
model accuracy.

(Yu et al., 2023) classified machine learning as supervised,
unsupervised, and semi-supervised approaches. The category is
defined by the existence of both labeled and unlabeled training
data, noted by (Guo and Li, 2023). As per (Karatzas and Katsifarakis,
2018), in supervised learning, a labeled dataset is used. Using
supervised learning, future predictions and classifications can be
made. Supervised machine learning involves algorithms such as
neural networks, support vector machines, regression, and random
forests (Pruneski et al., 2022). There are two models in supervised
learning: classification and prediction. With a pre-built training
dataset, regression predicts a continuous value. Regression
techniques include support vector regression, linear regression,
and Bayesian ridge regression (Liapikos et al., 2022). Matheus
claims that classification algorithms usually generate a discrete or
binary output. The machine learning classifiers comprise random
forest, logistic regression, and support vector machines (Hassan
et al., 2022). In unsupervised learning, patterns and associations are
inferred from input data that does not have known labels. Clustering
algorithms help in pattern prediction as per (Hernandez-Matheus
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et al., 2022). The semi-supervised learning data analysis techniques
include clustering and dimensionality reduction, which aim to work
with high-dimensional data (Guo and Li, 2023). The efficiency and
use of building energy have attracted some attention in the context
of machine learning (Mokeev, 2019) for these reasons. There are two
ways of splitting the data for the purpose of developing data for
machine learning predictions—test-train split and fold cross-
validation. During training on a labeled dataset, the ML model
learns about variables (Mishra et al., 2022). After the model is fitted
to the data, it is validated by testing it on test data. Proportionately,
random test-train split divides the data into two sets (Boudjella,
2021a). This correspondence holds the standard that 75% is for
training and 25% for testing (Boudjella, 2021b). But k-fold cross-
validation splits the data set by k-fold. K-fold cross-validation is a
more reliable data-splitting technique compared to the train-test
split (Abediniangerabi et al., 2022).

Many methods of machine learning have been used in the
investigations of forecasting the construction of HL and CL
employing the UCI data set. (Aqlan et al., 2014) used the
K-means clustering method in combination with artificial neural
networks in analyzing UCI HL and CL data. The findings indicated
that both HL and CL can be effectively predicted by means of a
combination of ANN and cluster analysis (Goliatt et al., 2018). Used
four regression models: support vector regression, Gaussian process,
Multi-Layer Perceptron, Neural Networks, and RF in building
energy efficiency forecasting. The performance was assessed using
five metrics: MAE, R-squared, RMSE, MAPE, and Synthetic Index.
Results indicate that the Gaussian process is a valid approach for the
prediction of building heating and cooling demand. The
performance of artificial neural networks for HL and CL
prediction was enhanced by (Moayedi et al., 2021) using genetic
algorithms and imperialist competition algorithms. Results
indicated that the optimization approach significantly improved
the performance of the model, with the imperialist competition
algorithms showing better results than GA in this case. (Chou and
Bui, 2014) created forecasts for heating load and cooling load using
five individual models: ANN, SVM, classification and regression
tree, chi-square automatic interaction detector, general linear
regression, and ensemble models. Projection of heating and
cooling loads through the application of artificial neural networks
was undertaken by the Nazir et al., 2020 study, providing a
comparison of the performance of the models where the support
vector regression model had the highest accuracy in predicting HL,
while the support vector regression + ANN ensemble model had the
highest accuracy in predicting CL. Based on the results, the major
elements that affect the amount of both heating and cooling loads
are the overall height, surface area, relative compactness, wall area,
roof area, and glass area.

(Pierantozzi, M. and Hosseini, S., 2024) developed ANN
algorithm for density and viscosity of liquid adipates (Esfe, et al.,
2022). reviewed research efforts in estimating the thermophysical
properties of nanofluids through the application of artificial neural
network techniques (Selvalakshmi, et al., 2022). forecasted the
thermal characteristics of biofluids by employing artificial neural
network modeling techniques.

Digital twin framework was proposed by (Piras, et al., 2024) for
resilient built environment management, focusing on post-disaster
reconstruction optimization and reactive security management to

enhance smart city resilience. More efforts by (Victor, et al., 2024) to
review the use of digital twin for thermal comfort and energy
consumption in buildings.

2.2 Proposed Framework

The methodology of the proposed model is presented in
Figure 1, which describes the following sequence of the steps.
These steps are.

1- Initially, the dataset, prepared by Angeliki Xifara, was analyzed
by Athanasios Tsanas, who works for the Oxford Centre for
Industrial and Applied Mathematics, University of Oxford, in
the United Kingdom.

2- The dataset is then subjected to the stage of preprocessing. This
stage uses min-max normalization technique for the data
range standardization and label encoding for data
transformation, especially in handling categorical variables.

3- The dataset is divided into two parts: one for learning, and the
other one for testing. This disjunction is essential for creation
and testing of machine learning models.

4- Different machine learning algorithms are then utilized in
order to train on the training part of the dataset.

5- Once the training phase is over, the performance of these
machine learning models is evaluated through varying sets of
metrics. This assessment is useful for determining how well
the algorithms have been able to detect context-specific data.

6- The classier hyperparameter is optimized and analysis is done
for the best classification model.

3 Materials and methods

This part gives an overview of the used methods and resources
used in the research project in order to put the proposed solutions
into practice. The combination of data preparation process and
meta-heuristic optimization strategies makes it achievable to get to
the best possible results.

3.1 Datasets

This dataset, which is addressed here, is the result of a thorough
research work carried out by Angeliki Xifara (GitHub, 2019). The
dataset was tweaked by Athanasios Tsanas, who is a member of the
Oxford Centre for Industrial and Applied Mathematics at the
University of Oxford, United Kingdom, as well. The direction of
the research was high energy efficiency in building constructions.
The Ecotect software was used in this study for the energy
simulation of twelve different building forms. The basic
difference between these building shapes was in terms of glazing
area, glazing area distribution, glazing orientation, and other
characteristics. They are making this dataset comprised of seven
hundred and sixty-eight building configurations. The data sets are
organized by using eight special features (X1 through X8) so that two
continuous labels (y1 and y2) of heating and cooling load can be
predicted easily.
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These characteristics include the relative compactness (X1), the
surface area (X2), the wall area (X3), the roof area (X4), the overall
height (X5), the orientation (X6), the glazing area (X7), and the
glazing area distribution (X8). A large dataset, it allows predicting
energy loads with high precision, depending on the status of the
response variables as continuous or discretized into nearest integers,
and serves as a versatile resource for regression analysis and multi-
class classification problems. This is true even if response variables
are treated as continuous or discretized. These attributes are used to
aid precise forecasts of heating and cooling requirements in
buildings, which result in valuable inputs into the design of
energy-effective structures by way of the application of
computational modeling and optimization techniques.

3.2 Data preprocessing

The preprocessing of data is a crucial step that must be taken in
order to improve the quality of the data and the performance of
machine learning functions. At this level, the primary focus is on the
application of techniques for normalization and data
transformation. In the context of datasets pertaining to building
energy efficiency, where the data ranges might be rather vast and
may have a tendency to tilt towards larger values, discrepancies of
this kind can have a negative impact on the performance of the
model. Moreover, to overcome the problem, the research applies
min-max normalization, which scales the data in a uniform method,
thus making categorization algorithms more effective. Moreover, as
numerical inputs are required for machine learning models, the
preparation stage implies data encoding. This process of encoding
turns categorical data into numbers, and this operation guarantees
compatibility of this data with machine learning approaches. In this

case, the dataset is then split into the training and test sets, the
machine learning algorithms are trained on the training set, and
their performance is measured on the test set. This study consists of
70% of the dataset for training purposes and the remaining 30% for
testing and validation. Given the small size of the dataset, the study
applies several machine learning algorithms for categorization. This
reduces our dependence on deep learning strategies only. Methods
that are used include Multilayer Perceptron (MLP), Extreme
Gradient Boosting (XG Boost), Gradient Boosting (GB), Random
Forest (RF), CatBoost (CB), Decision Tree (DT), and K
Neighbors (KNN).

3.3 Basic classification models

A classification model aims to put data points into
predefined categories accurately, and this is the engine behind
such a model. These categories could be either binary categories
with two classes or multi-class categories with three classes or even
more. This is achieved through the use of different classification
approaches.

3.3.1 K-nearest neighbor (KNN)
K-nearest neighbors algorithm is employed to classify a new data

point in the feature space (El-Kenawy et al., 2022a). This method
selects k neighbors, which are the closest to the end, and then assigns
the label that is most represented among those neighbors to the end.
The user chooses an integer k to use, and the user makes this choice.
Although there are some other ways to measure the distance
between the data points, the Euclidean distance is used most of
the time. The Euclidean distance between two points in a
multidimensional space is calculated using Eq. 1.

FIGURE 1
Proposed framework.
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d p, q( ) � q1 − p1( )2 + q2 − p2( )2 +/ + qn − pn( )2 (1)

where p and q are two points in the n-dimensional space, and
p1, p2, . . . , pn and q1, q2, . . . , qn are their respective coordinates.
are their respective coordinates (Zhao et al., 2021).

3.3.2 Gradient boosting (GB)
Gradient Boosting Machines (GBM) is a powerful model that is

capable of solving regression and classification questions. Constant
tuning of hyperparameters is essential for the GMBmodel because it
allows control of the balance between underfit and overfit, which
influences the model’s performance in the end. The key
hyperparameters here are the number of trees, their depth,
learning rate, and the minimum samples per leaf. The precise
setting of the determining variables can drastically improve the
accuracy of the model, thus resulting in a strategic methodology for
assessing how those variables affect the model’s performance. This
work proposes an understandable instruction that guides the user
through the procedure of establishing and testing the mentioned
parameters in Python in order to increase the accuracy of GBM
models. This part of the response speaks of mechanical nets,
especially the parameters, and also discusses the simple but
effective tuning of the hyperparameter. A practitioner who wants
to make the most of GBM for their job will find themselves at the
right place with this guide on hand, which is just the thing for data
scientists and machine learning lovers. The goal of cost function
refinement aims to pick a weak learner that operates in the direction
where the negative gradient of function is situated inside
function space.

Boosting is an iterative approach in the ensemble learning
context, which is designed to enhance prediction accuracy, taking
advantage of a lot of weak learners. The output of the model at step t
is updated according to the performance at the previous step t-1.
Ignorance is bliss for the accurate predictions while the wrong
predictions are punished. This approach is consistently used for
classification problems with a similar method for regression cases.
The boosting improves the learning process as it focuses on the

difficult parts of the training data, which leads to the gradual
improvement of the predictive accuracy of the model. Figure 2
demonstrates the idea of boosting. In boosting algorithms such as
GBM or random forests, the parameters of an ensemble model are
crucial in defining the model’s performance and behavior. These
parameters can be classified into three main groups
(Abediniangerabi et al., 2022).

1. Parameters specific to trees: These settings directly influence
the organization and characteristics of individual trees in the
ensemble. Important parameters for tree models are:
Maximum depth: ensures the maximum level of trees. -
Minimum samples split: the threshold number of splitting
an internal node. - Minimum samples leaf: the minimum leaf
node count. - Maximum number of features: the critical
number to be sought when finding the best split (El-
Kenawy et al., 2022b).

2. Boosting Parameters are crucial in the boosting process as they
influence the construction and combination of the ensemble of
trees. Key boosting parameters are the learning rate, which
influences the impact of each tree on the final result and
manages the pace of adjustment at each stage, the number
of estimators representing the total trees in the model, and the
subsample indicating the portion of samples for training each
base learner. A subsample less than 1.0 introduces randomness
to the model, aiding in avoiding overfitting.

3. Miscellaneous Parameters: These parameters cover other
aspects of the model’s operation that are not directly related
to tree construction or the boosting procedure. This may
involve specifying the loss function to be optimized, setting
the random state for the pseudo-random number generator
used for random sampling to ensure reproducibility, and
adjusting the verbosity level for the messages output during
model training.

The WWPA is designed to be a repeatable process.
Repositioning all waterwheels is the last step in adopting WWPA

FIGURE 2
Comparative analysis of results regressor performance algorithms.
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once the initial two stages are completed. The ideal solution
candidate is enhanced after comparing target function values.
The waterwheels’ positions are modified in each subsequent
iteration until the algorithm reaches its final iteration.

3.3.3 Waterwheel plant algorithm (WWPA)
Specifically, it is a novel method of random optimization that is

based on how natural systems work, as explained by (Abdelaziz
et al., 2022). The WWPA is based on the idea that we should try to
model how the waterwheel plant would act in its natural
environment while it is hunting. This idea has been built on. The
main idea behindWWPA came from the way that waterwheel plants
find their insect prey, catch it, and then move it to a better spot to
eat (Hussein Alkattan, S. K. Towfek, and M. Y. Shams, 2023). In
the next part, we’ll talk about the ideas that led to the creation of
the algorithm and the mathematical model that supports
its methods.

3.3.3.1 Inspiration of the WWPA
Small transparent flytrap-like structures cover the broad petiole

of the Waterwheel plant or Aldrovanda vesiculosa. Bristle-like hairs
protect these 1/12-inch traps from damage or unintentional
activation. The trap’s outside edges have hook-shaped teeth that
interlock as it closes around its prey, like a flytrap. About forty
elongated trigger hairs, like those in Venus’s flytraps, close the
trap. To facilitate digestion, predators have acid-secreting glands.
Interlocking teeth and a mucus sealant catch the victim and guide it
to the trap’s base near the hinge. The trap digests the leftover water,
absorbing most of the prey’s nutrition. Like flytraps, Aldrovanda
traps can eat two to four meals before becoming dormant.

3.3.3.2 Mathematical model of WWPA
The WWPA is an iterative population-based approach that

draws on the search capacity of its members throughout the
Universe of possible solutions to identify an appropriate solution.
According to their location in the search space, the WWPA
population waterwheels’ problem variables have values.
Therefore, every waterwheel stands for a solution that is built on
vectors. The waterwheel population in the WWPA is shown by a
matrix 2). Using (Eq. 2 and Eq. 3), WWPA randomly assigns water
wheel sites to the search space at the outset.

P �
p1, 1p1, 2 . . . p1, j . . . p1, m
p2, 1p2, 2 . . . p2, j . . . p2, m
pi, 1pi, 2 . . . pi, j . . . pi,m
pN, 1pN, 2 ...pN, j ...pN,m

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2)

pi,j � lbj + ri,j ubj − lbj( ), i � 1: N, j � 1: m (3)

N is the number of waterwheels andm is the number of variables
in this context. The jth variable in the issue has two limits, lbj and
ubj, and the value of ri,j is a random number between 0 and 1. The
waterwheel locations are stored in the population matrix, which is
denoted by P. In the matrix, each row Pi stands for a potential
solution, and pi,j represents the value of the jth variable for the ith
waterwheel.

Every single waterwheel is taken into consideration as a potential
solution to the issue, and as a result, the goal function can be
evaluated for each and every one of them. It has been established in a

previous study that a vector can be utilized to effectively express the
values that constitute the objective function of the problem using
Eq. 4.

F �

F1

.

.
Fi

.
FN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

F X1( )
. . . .
F Xi( )
. . . .

F XN( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4)

The objective function values are contained in a vector F, with Fi

representing the estimated value for the ith waterwheel. Assessments
of objective functions ascertain the optimal solutions. Therefore, the
best candidate solution is represented by the highest value of the
objective function, and the worst member is represented by the
lowest value. Since the waterwheels traverse the search space at
different speeds, the optimal solution evolves across iterations.

➢ Exploration

Waterwheels have a keen predatory instinct because of their
advanced olfactory senses, allowing them to efficiently hunt and find
pests. When an insect approaches the waterwheel, it immediately
attacks and follows the victim by precisely determining its location.
The WWPA utilizes a simulation of hunting behavior to represent
the first stage of its population update mechanism. The WWPA
improves its capacity to explore the optimal zone and prevent being
stuck in local optima by integrating the waterwheel’s attack on the
insect. Therefore, substantial changes in location happen inside the
search area due to this modeling. An equation is used along with a
simulation of the waterwheel’s movement towards the insect to find
the new location of the waterwheel. If moving the waterwheel to this
new position results in a higher value of the objective function, the
old location is discarded in favor of the new one, a expressed by Eq. 5
and Eq. 6.

W
�→� r1

�→ P
→

t( ) + 2K( ) (5)
�Pt+1 � �P t( ) + W

�→
2K + r2

�→( ) (6)

If the solution fails to improve for three consecutive iterations,
the position of the waterwheel can be altered using the following
equation using Eq. 7.

�Pt+1 � Gaussian μP, σ( ) + r1
�→ �P t( ) + 2K

W
�→ (7)

In this context, the variables r1
�→ and r2

�→ represent random
variables with values ranging from 0 to 2 and 0 to 1, respectively.
Furthermore, K is an exponential variable with values between 0 and
1. The vector W

�→
denotes the diameter of the circle within which the

waterwheel plant will explore for potential promising areas.

➢ Exploitation

WWPA’s second population update stage simulates waterwheels
collecting and transferring insects to a feeding tube. During local
search, WWPA exploits this simulated behavior to converge to
appropriate solutions that are close to formerly found ones. The
waterwheel’s search space position is somewhat altered by modeling
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the insect’s transit to the tube. WWPA designers initialize each
waterwheel in the population with a random “good position for
consuming insects,” mimicking waterwheels’ natural activity.
Following the following equations, the waterwheel is relocated to
the new location if the objective function value is higher, replacing
the old location, as expressed by Eq. 8 and Eq. 9.

W
�→ � r3

�→* KPbest
���→

t( ) + r3 �P t( )( ) (8)
�P t + 1( ) � P

→
t( ) +KW

�→
(9)

In this scenario, r3
�→ signifies a random variable with values

alternating from 0 to 2. �P(t) signifies the current solution at iteration
t, while Pbest

���→
represents the best solution attained thus far. Like

exploration phase mentioned earlier, if the solution fails to advance
for three repeated iterations, the following mutation is applied to
ensure prevention of local minima as presented in Eq. 10.

�P t + 1( ) � r1
→+K( ) sin

FC

θ
( ) (10)

where F and C are independent random variables with values among
[-5,5]. Additionally, the next equation can be used to show the
exponential decay of K, as expressed by Eq. 11.

K � 1 + 2t2

Tmax
3 + F( ) (11)

The WWPA is provided as a method that can be carried out
again and time again. The third and final stage of the WWPA
implementation process involves adjusting the placements of all
waterwheels. This phase comes after the first two stages have been
completed. Following the comparison of the values of the target

function, the candidate for the optimal solution is improved.
Adjustments are made to the positions of the waterwheels for the
subsequent iteration, and thus the process continues until the
algorithm reaches its final iteration.

4 Simulation results

An exhaustive testing procedure is carried out in order to offer
evidence that the suggested WWPA algorithm is both effective and
superior. The experiments make use of Windows 10 and Python 3.9,
both of which are executed at a frequency of three gigahertz on a
processor that is an Intel Core i5 CPU. Experiments were conducted
within the framework of a case study, and the findings entailed a
comparison of the output of the ANN-WWPA approach to that of
baseline models’ output on a dataset consisting of information on
different buildings. The configuration settings of the WWPA as well
as the settings of other optimization methodologies are presented
in Table 1.

Regression models used to forecast energy efficiency in buildings
incorporate additional metrics to assess their success (Almetwally
and Amine, 2022; Alotaibi, et al., 2024). Among these measures are
the following: RMSE, MAE, MBE, r, R2, RRMSE, NSE, WI, and
Pearson’s correlation coefficient. In this context, “N" stands for the
overall count of observations in the dataset, (V̂n) refers to the
estimated and observed values for the nth bandwidth, and (Vn)
stands for the arithmetic means of the estimated and observed
values, respectively. The criteria used to evaluate predictions are
summarized in Table 2.

Table 3 shows that the XG Boost and MLP regressors
outperformed other models on most metrics, including the MSE,
RMSE, MAE, correlation R), and goodness-of-fit (R2). MLP has a
flexible structure and can graph deep dependencies of the data set
very likely so that it has the highest pattern-learning capabilities. The
fact that it uses gradient boosting algorithms and an ensemble of
decision trees makes XG Boost capable of handling both linear and
non-linear interactions. This slow step in the fitting phase of the

TABLE 1 Configuration parameters of the WWPA and competing
optimization algorithms.

Algorithm Parameter Values

WWPA r1 [0,2]

r2 [0,1]

r3 [0,2]

K (exponential variable) [0,1]

F [-5,5]

C [-5,5]

K Decreases Exponentially

GA Cross over 0.9

Mutation ratio 0.1

Selection mechanism Roulette wheel

Iterations 80

Agents 10

GWO a 2 to 0

Iterations 80

Wolves 10

TABLE 2 Prediction evaluation criteria (Abdelaziz A., et al., 2023).

Metric Formula

RMSE
���������������
1
N∑N

n�1 (V̂n − Vn)2
√

RRMSE RMSE∑N

n�1 V̂n

× 100

MAE 1
N∑N

n�1 |V̂n − Vn|

MBE 1
N∑N

n�1 (V̂n − Vn)

NSE
1 − ∑N

n�1 (Vn−V̂n )2∑N

n�1 (Vn− �Vn )2

WI
1 − ∑N

n�1 |V̂n−Vn |∑N

n�1 |V̂n− �Vn |+|Vn− �Vn |

R2

1 − ∑N

n�1 (Vn−V̂n)2∑N

n�1 (∑N

n�1 Vn−Vn)2

r ∑N

n�1 (V̂n−V̂n )(Vn− �Vn )�����������������������
(∑N

n�1 (V̂n−V̂n)2(∑N

n�1 (Vn− �Vn)2)
√
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XGBoost is due to its ensemble nature, increasing the computational
complexity that is achieved by the step of adding trees to the model.

When compared to MLP and XG Boost, Random Forest, Cat
Boost, and Gradient Boosting all do decent work, but they cannot
match MLP and XG Boost when it comes to efficiency and accuracy
of predictions. These models use XG Boost-style ensemble learning
approaches, which combine numerous weak learners into a strong
model and typically produce robust performance. On the other
hand, additional trees added to the ensemble may cause training
times to slow down and overfitting to occur due to
diminishing returns.

Although they are computationally efficient and use decision
trees and K-Nearest Neighbors (KNN) models, ensemble
approaches perform better. Decision Trees have a tendency to
generate models that are too complicated and might not be able
to apply them effectively to new data, which can result in increased
error metrics. Although it is easy to see how KNN may work in
theory, in practice it has problems with datasets that have a lot of
characteristics or that have noisy data, which makes it less accurate
at making predictions.

Table 4 discusses the results of applying different
hyperparameter optimization techniques to MLP algorithm. The
performance of several optimization techniques linked with the
Multilayer Perceptron (MLP) regressor is highlighted by the
findings obtained from the WWPA-MLP Regressor, the GWO-
MLP Regressor, the GA-MLP Regressor, and the WOA-MLP
Regressor. It is important to note that all of the models have
incredibly low error measures, such as MSE, RMSE, and MAE,
which indicates that they have a high level of prediction accuracy.
The strong correlation R) and goodness-of-fit (R2) values, which
approach or exceed 0.999 across all models, are a clear indication of
the superior performance that has been achieved. It appears from
this that the models are able to effectively capture the underlying
relationships in the data, which ultimately results in exceptionally
high prediction skills.

In addition, the models have low relative errors to the magnitude
of the forecasted magnitude, thus confirming their accuracy. It is
shown by the rather low values of RRMSE, which is the abbreviation
for relative root mean squared error. The values that were observed
and the ones that were simulated were quite in agreement, as

TABLE 3 Comparison of the performance metrics for different models.

MLP XG boost GB RF CB DT KNN

MSE 0.029680023 0.054627933 0.111187157 0.171118028 0.209822891 0.730461 0.883795

RMSE 0.172278909 0.233726192 0.333447383 0.413664149 0.458064287 0.854670174 0.940103891

MAE 0.108377187 0.166691935 0.218314868 0.221015781 0.357687772 0.531877699 0.604938

MBE 0.019388437 −0.02595896 0.018008819 0.043741406 0.053478359 0.043380332 −0.08746

R 0.989997 0.989775 0.9896651 0.988778804 0.979729311 0.969047343 0.958857

R2 0.9912355 0.993456 0.994467 0.989557656 0.989458694 0.978095593 0.967716

RRMSE 0.654826 0.75698123 0.8136478 0.855698998 0.947544409 1.767956962 1.944684

NSE 0.0989456 0.9877961 0.98664258 0.979552314 0.969451053 0.968088939 0.967688

WI 0.9888745 0.9866321 0.9853648 0.983776022 0.981783411 0.985008 0.982949

Fitted Time 0.818385048 17.94107604 0.899974734 1.062599897 9.484654427 0.972922277 1.324907

TABLE 4 Comparison of the performance metrics for different hyperparameter models.

WWPA-MLP regressor GWO-MLP regressor GA-MLP regressor WOA-MLP regressor

MSE 0.003143891 0.005879652 0.007324569 0.009987456

RMSE 0.003497456 0.00536987 0.006879321 0.008874562

MAE 0.003401004 0.004987563 0.005987413 0.00763549

MBE 0.000798851 0.00098745 0.001012365 0.00321468

R 0.999962158 0.99997683 0.999929444 0.99985525

R2 0.999924317 0.99995366 0.999858893 0.99971052

RRMSE 0.356373378 0.417497745 0.483482238 0.589763889

NSE 0.99992235 0.999893429 0.99985708 0.999709108

WI 0.996945166 0.995055598 0.995301445 0.993846346

Fitted Time 0.023675695 0.045789134 0.066578124 0.08367149
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reflected by the Nash-Sutcliffe Efficiency (NSE) values, which are
approaching 1. Furthermore, the high WI values tell us that the
models are capable of correctly portraying the variability of the
observed data.

It is gratifying to discover that, as predicted, there is an accuracy/
computation efficiency trade-off. This is shown by the fact that the
fitting time grows for all of the models. When compared to the
WOA-MLP Regressor, which has the longest fitting time of 0.0837 s,
the WWPA-MLP Regressor has the shortest fitting time of 0.0237 s.
In light of this, it appears that although all models provide
excellent prediction accuracy, the selection of one over
another may be contingent on the particular requirements of the
application, hence requiring a reasonable balance between
precision and processing resources. In general, these findings
provide evidence that demonstrates the effectiveness of
employing a variety of optimization methods in conjunction with
MLP regression in order to accomplish high-performance predictive
modeling jobs.

The statistics that are presented in Table 5 for the WWPA-MLP
Regressor, the GWO-MLP Regressor, the GA-MLP Regressor, and
the WOA-MLP Regressor provide valuable insights into the
distribution and features of the values that are anticipated. In
each and every model, the number of values remains unchanged
at 10, which is indicative of the fact that the size of the dataset is
consistent. Values for the lowest, maximum, and range demonstrate
the diversity in the forecasts. The WWPA-MLP Regressor has the
smallest range, while the WOA-MLP Regressor exhibits the biggest

range, indicating that there are disparities in the spread of the
predictions.

All models display a level of confidence of 97.85%, as suggested
by the confidence intervals, which provide information about the
precision of the predictions. The mean and the standard deviation
are two measures of central tendency and dispersion, respectively.
These statistics indicate the mean value that was anticipated and the
extent to which that value differed from the mean. It should be
emphasized that the coefficient of variation represents the ratio of
the variation in the predictions and that the WOA-MLP Regressor
has the highest variation among the models.

The skewness and kurtosis information what the distribution
looks like. The negative skewness value shows the left-skewed
distribution. However, larger kurtosis values may suggest heavier
tails and, therefore, more outliers within the distribution. The
general aim of this data is to give a complete perspective on the
predictability of each MLP regressor model, which involves the
properties of their variability, accuracy, and distribution. This data is
quite likely to be helpful when assessing the reliability and suitability
of each of the models for individual forecasting tasks.

In most cases, the analysis of variance (ANOVA) provides an
organized approach for determining the importance of treatment effects
in experimental or observational research (Hiba and Almetwally, 2024).
Using this model, investigators can derive actionable conclusions about
the impact of different treatments or situations.

Table 6 enlightens on the amount of variation that exists within a
dataset both between and across groups within the dataset. The

TABLE 5 Comparison of the performance metrics for different hyperparameter models.

WWPA-MLP regressor GWO-MLP regressor GA-MLP regressor WOA-MLP regressor

Actual confidence level 97.85% 97.85% 97.85% 97.85%

Lower confidence limit 0.003497 0.00537 0.006879 0.007388

Upper confidence limit 0.003497 0.00537 0.006879 0.008975

Mean 0.003477 0.005367 0.006841 0.008588

Std. Deviation 0.0001476 0.0002436 0.0003397 0.0007929

Std. Error of Mean 0.00004667 0.00007703 0.0001074 0.0002507

Lower 95% CI of mean 0.003371 0.005192 0.006598 0.00802

Upper 95% CI of mean 0.003583 0.005541 0.007084 0.009155

Coefficient of variation 4.244% 4.539% 4.965% 9.234%

Geometric mean 0.003474 0.005362 0.006833 0.008551

Geometric SD factor 1.045 1.047 1.053 1.104

Lower 95% CI of geo. mean 0.003366 0.005189 0.006586 0.007966

Upper 95% CI of geo. mean 0.003585 0.00554 0.007089 0.009179

Harmonic mean 0.003471 0.005357 0.006824 0.008512

Lower 95% CI of harm. mean 0.003361 0.005185 0.006573 0.007912

Upper 95% CI of harm. mean 0.003588 0.00554 0.007096 0.009211

Quadratic mean 0.00348 0.005372 0.006848 0.00862

Lower 95% CI of quad. mean 0.003376 0.005195 0.006609 0.008073

Upper 95% CI of quad. mean 0.00358 0.005543 0.00708 0.009135
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“treatment” row (lying between columns) of this particular table
gives the variance attributed to the different treatments or
conditions being compared. In contrast, the “residual” row (lying
between columns) shows the variation that cannot be explained
within each treatment group. Sums of squares (SS) is used to
measure the total variation, where Treatment SS expresses the
variation that exists between treatment groups and Residual SS
expresses the variation that exists within each treatment group by
the treatment group. Treatment df is the number of treatment
groups minus one, and residual df is the total number of
observations minus the total number of treatment groups. The
degree of freedom (DF) is an abstraction of the number of
independent bits of information that are employed to infer a
parameter or statistic. MS provides an estimate of the population
variance. They are calculated by dividing the sum of squares by the
degrees of freedom that are associated with the squares. The F
statistic, which is obtained by dividing the Treatment MS by the
Residual MS, gives the measure of the relative ratio of variability
between treatment groups to variability within treatment groups.

This statistic is used to determine the mean of the treatment
groups. The presence of a high F value indicates that the differences
between treatment means are statistically significant in comparison
to the variability that exists within treatment groups.

According to the null hypothesis, which states that there are no
significant differences between treatment means, the p-value that is
connected with the F statistic reflects the chance of receiving a F
value that is as extreme as the one that was seen. In this particular
instance, the p-value for the Treatment (between columns) is less
than 0.0001, which indicates that there is substantial evidence
against the null hypothesis and suggests that the variations
between treatment means are statistically significant. Thus, we
conclude that there are substantial differences between the

treatment groups and reject the null hypothesis, which states that
there are no differences.

A comparison of the medians of paired data samples is
performed using the Wilcoxon Signed Rank Test as shown in
Table 7 in order to ascertain whether or not there is a significant
difference between the samples. In this scenario, the theoretical
median, also known as the predicted value, is equal to zero for all
models, however the actual median, also known as the observed
value, differs from model to model.

One of the things that the test does is calculate the sum of signed
ranks W) for each model. Positive ranks are allocated to differences
in which the actual median is higher than the theoretical median,
and negative ranks are assigned to differences in which the actual
median is lower than the supposed median. The ideal situation
would be for the sum of positive and negative ranks to be equal,
which would indicate that there is no systematic bias in the
differences.

The sum of signed ranks, denoted by the letter W, is equal to
55 for all models, along with the sum of both positive and negative
ranks being equal to 55. This leads one to believe that there is no
systemic bias in the discrepancies that exist between the theoretical
medians and the actual medians for any different model.

At the two-tailed level, the p-value for eachmodel is 0.002, which
indicates that there is a significant difference between the medians
that were predicted and those that were actually observed.
Consequently, this indicates that the median values that were
observed are significantly different from the median that was
anticipated to be 0.

For the WWPA-MLP Regressor, the difference between the
theoretical and real medians is 0.003497, for the GWO-MLP
Regressor it is 0.00537, for the GA-MLP Regressor it is 0.006879,
and for the WOA-MLP Regressor it is 0.008875. For each model, these
discrepancies are a representation of the extent of the discrepancy
between the median values that were expected and those that were
actually observed. In general, the results of the Wilcoxon Signed Rank
Test suggest that there are statistically significant variations between the
theoretical and actualmedians for all models. The values of the observed
median are consistently higher than the theoretical median, which is 0.

A radar plot as shown in Figure 3 shows performance data for
four MLP regressor models optimized by distinct algorithms: GWO,
GA, WOA, and WWPA. Performance indicators including
accuracy, precision, recall, F1 score, and mean squared error are
shown on axes radiating from the plot center.

TABLE 6 ANOVA of the proposed feature selection method based on SG
dataset.

SS DF MS F
(DFn, DFd)

p-Value

Treatment 0.0001415 3 0.00004717 F (3, 36) =
228.6

p < 0.0001

Residual 0.000007427 36 2.063E-07

Total 0.0001489 39

TABLE 7 Wilcoxon of the proposed feature selection method based on the EV population dataset.

WWPA-MLP regressor GWO-MLP regressor GA-MLP regressor WOA-MLP regressor

Sum of signed ranks (W) 55 55 55 55

Sum of positive ranks 55 55 55 55

Sum of negative ranks 0 0 0 0

p-value (two tailed) 0.002 0.002 0.002 0.002

Exact or estimate? Exact Exact Exact Exact

Significant (alpha = 0.05)? Yes Yes Yes Yes

Discrepancy 0.003497 0.00537 0.006879 0.008875
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Various algorithms have been developed multilayer perceptron
regression models, and this radar chart gives a visual comparison of
them. It is possible to quickly evaluate the merits and shortcomings
of each model because each point on the polygon represents a
different performance statistic. The orange line, which may
represent the WOA-MLP Regressor, stands out from the rest of
the models in terms of how well they handle various criteria. This
suggests that this model is the most comprehensive of the bunch.
The green line represents the GA-MLP Regressor, and the blue line
represents the WWO-MLP Regressor. These lines demonstrate
variability across multiple measures, showing where the two
models perform better or worse than each other. The red line,
which stands for the WWPA-MLP Regressor, shows lower values in
multiple measures. This could mean that the optimization strategy
used to create this model is not optimal for the dataset.

Figure 4 provide a full diagnostic picture of the performance of
the regression model. By displaying the residuals on the Y-axis as a
function of the projected Y-values, the Residual plot, which can be
found in the top left of the graph, reveals a random dispersion of
data points. This indicates that the prediction is unbiased and that
there are no apparent patterns, which is suggestive of a model that is
well-fitted. Similarly, the Homoscedasticity plot is used to determine
whether or not the residuals have the same amount of variance
across all of the predicted values. If there is no visible trend or funnel
shape in the scatter of dots, this indicates that the variance is
consistent, which is a fundamental assumption of regression
analysis. In the QQ plot, which is located below the Residual
plot, the distribution of residuals is compared to a normal
distribution. The data points closely align with the reference line,

particularly in the central region, which indicates that the residuals
are approximately normally distributed. This is a condition that, if it
is not met, can significantly impact the validity of model inference.
As a final point of discussion, the Heat Map on the right compares
and contrasts various regression models (WWPA-MLP Regressor,
GWO-MLP Regressor, GA-MLP Regressor, and WOA-MLP
Regressor) by employing a color-coded system to represent a
metric. This metric may be the magnitude of regression
coefficients, or it may be model performance indicators such as
error rates. Different models and parameters have different levels of
intensity for the colors, which provides a visual depiction of the
differences and similarities that might be used to guide the selection
of the most appropriate regression method. It is essential to evaluate
the performance and appropriateness of regression models for
predictive analysis, and these diagnostics, when taken as a whole,
are essential in verifying that the underlying assumptions are
accurate for the data that is being considered.

Figure 5 displays a comparison of various machine learning
methods using the RMSE metric, a common way to assess the
precision of a regression model. The RMSE or some other objective
function shows how far off the model was from the real data, and it is
plotted on the Y-axis. The four algorithms listed on the X-axis are
WWPA-MLP Regressor, GWO-MLP Regressor, GA-MLP
Regressor, and WOA-MLP Regressor. The RMSE from each
iteration of the model’s training phase or a different fold of
cross-validation is represented by a point in the scatter plot that
shows each algorithm’s performance.

It would appear that the WWPA-MLP Regressor has the best
spread and median RMSE, suggesting that its predictions are

FIGURE 3
Comparative analysis of MLP Regressor performance optimized by evolutionary algorithms radar plot.
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consistent and reliable across trials. A wider range of root-mean-
squared errors (RMSEs) is seen in GA-MLP Regressor and the
GWO-MLP Regressor, which may indicate less stability or greater
sensitivity to the training data, respectively. The purple WOA-MLP

Regressor has the largest spread and greatest median RMSE of the
models, which may indicate that it is not as good at forecasting the
target variable as the others.

Various MLP Regressors, each optimized using a different
algorithm, are shown in the histogram shown in Figure 6.

The WWP-MLP Regressor appears to successfully obtain low
RMSE values on a consistent basis, which suggests that it may have a
possibly superior predictive performance in comparison to the other
models. Both the GWO-MLP Regressor and the GA-MLP Regressor
have a greater range of RMSE values, which indicates that their
performance is more variable.

RMSE can be relatively low or not, giving us an idea of the
fluctuation amount and the model predictions’ accuracy. The try
with the fact that the WWPA has a higher proportion of smaller
RMSE values might be because the WWF is better in optimizing the
MLP Regressor under the conditions that could be tested. In order to
conduct a more comprehensive analysis of these findings, not only
the proportion of low-value RMSE but also the stability and the
computation effectiveness of all approaches should be considered.

5 Conclusion

In this work, we have demonstrated a novel methodology that
harnesses the complementary strengths of ANNs and the WWPA
for hyperparameter optimization, significantly enhancing the energy
efficiency predictions in various buildings. This approach not only
improves prediction accuracy across a diversity of building types

FIGURE 4
Visualizing the performance of the proposed feature selection method applied to SG dataset.

FIGURE 5
Comparative performance analysis of regression models
using RMSE.
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and locations but also addresses the critical challenge of manual or
generic hyperparameter selection in ANNs, marking a step forward
towards achieving sustainability in the building industry. Our
findings underscore the method’s practical relevance for property
managers and construction professionals, offering a robust tool for
advancing global sustainability goals through more precise energy
efficiency forecasts and the facilitation of effective energy-saving
initiatives.

Despite the model’s promising results, we acknowledge its
dependence on high-quality input data and its initial limitation
to specific building types and datasets. Looking ahead, we
envision the integration of this methodology with digital twin
technology, opening new avenues for real-time data analysis and
further optimization of building energy efficiency. Such
advancements could significantly broaden the model’s
applicability and predictive accuracy across varied climatic
conditions and architectural designs. Future research will aim
to explore these possibilities, focusing on expanding the model’s
versatility by incorporating additional predictive variables and
employing cutting-edge optimization techniques. Our
continued efforts will seek to refine and adapt this innovative
approach, striving for a more inclusive and comprehensive tool
that caters to the evolving needs of sustainable
building practices.
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