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Line loss refers to the electrical energy that is dissipated as heat during the
transmission and distribution of electricity through power lines. However,
unusual causes, such as grid topology mismatch and communication failure,
can cause abnormal line loss. Efficient abnormal line loss detection contributes
not only tominimizing energywastage and reducing carbon emissions but also to
maintaining the stability and reliability of the entire distribution network. In actual
situations, the cause of abnormal line loss is not labeled due to the expensive
labor cost. This paper proposes a hierarchical abnormal line loss identification and
category classification model, considering the unlabeled and unbalanced sample
problem. First, an abnormal line loss identification model-based random forest is
established to detect whether the line loss is abnormal. Then, an abnormal line
loss category classification model is developed with semi-supervised learning for
line loss abnormal category classification, considering the unlabeled samples.
The real dataset in China is utilized to validate the performance of the proposed
model. Its reliability implies the potential to be applied to real-world scenarios to
improve the management level and safety of the power grid.
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1 Introduction

The line loss rate is an essential indicator of economy and technology in the low-voltage
distribution network (DN) (Sayed and Takeshita, 2011; Luo et al., 2021; Sun et al., 2022).
With access to distributed generation and flexible load, DN becomes increasingly complex.
Meanwhile, with the increasing electricity demand, a certain quantity of line loss in DN is
generated. However, limited by the metering accuracy of data acquisition devices and the
reliability of transmission systems, line loss identification in DN is usually completed by
labor (Jing et al., 2019). Due to the incomplete installation of metering instruments of low-
voltage substations and customers (Zhu and Lin, 2021; Raghuvamsi et al., 2022), it is
challenging to analyze the causes of line loss.

With the establishment of big data centers and the development of machine learning,
power supply corporations have gradually started to analyze line loss based on data-driven
models to improve the economic benefits. According to the data source, the data-driven line
loss analysis can be divided into user-oriented data analysis and DN substation area data
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analysis. Gunturi and Sarkar (2021) proposed an electricity theft
detection model based on an ensemble machine learning model. The
model applied the statistical method of oversampling to solve the
over-fitting problem during the training process. Based on the
terminal acquisition data, the model could identify the line loss
anomaly in a small-scale DN. Buzau et al. (2020) used a user-side
line loss identification algorithm based on a hybrid depth neural
network to detect non-technical losses. The algorithm integrated a
long short-term memory network and a multi-layer sensing
machine, which were used for processing the original data and
integrating non-time series data. Chen J. D. et al. (2023) established
an electricity theft detection model based on a one-dimensional
convolutional neural network. It analyzed the non-technical line loss
on the user side according to the complete terminal data. The above
three methods (Buzau et al., 2020; Gunturi and Sarkar, 2021; Chen
J. D. et al., 2023) show a significant role in line loss identification on
the user side. However, they are sensitive to the quality of user-side
power consumption data and lack of universality.

Regarding line loss identification in DN, a feeder loss estimation
method based on the boost k-means model was developed (Chen
J. et al., 2023). The analysis index system for line loss was established,
and the multi-information index was calculated according to the
time series data. The established characteristic indexes were
imported into the boost k-means algorithm for clustering
calculation, and the outliers were marked as line loss data. Wu
et al. (2019) introduced an algorithm of non-technical line loss of
DN identification with large samples. Based on the robust neural
network model, the proposed method employed an automatic
denoising encoder to pre-process data. The RNN model classified
the operation data and identified the non-technical line loss value.
Yao et al. (2019) analyzed the topology of a low-voltage DN and used
the GBDT model to predict the abnormal line loss nodes in the
substation area. Based on parameter clustering and deep learning
algorithms, the parameter correlation and time series characteristics
of a DN were fully considered by Liu et al. (2022) and Zhang et al.
(2022). The multi-variate characteristic parameters were utilized to
predict line loss events in a DN. When the topology of the DN is
clear and the operation parameters are complete, identifying and
predicting line loss based on the data-driven algorithm in the
substation area can achieve remarkable results.

In actual operation conditions, it is difficult to accurately
measure the operational parameters in the distribution network
and the accuracy power consumption data (Lin and Abur, 2018;
Jiang and Tang, 2020). Zhou et al. (2022) proposed a non-technical
line loss identification model based on an AP reconstruction neural
network. The model reconstructed and corrected the anomaly data
by the AP neural network based on the simulation dataset, followed
by a deep neural network to classify the data. Huang et al., (2023)
constructed the electrical characteristic index system of theoretical
line loss, and the power torque was proposed to identify line loss in
the case of missing line data in a DN. However, this method is a
supervised learning algorithm, which requires a certain amount of
labeled data to train the model. In recent years, analyzing the causes
of line loss has become a research focus. Power supply corporations
have become interested in the causes of different line loss types.
Liang et al. (2022) proposed a line loss interval calculation method
based on power flow calculation and linear optimization, which was
suitable for datasets with anomalies. This method fully considered

the power flow and dispatching information and analyzed the cause
of area line loss. Some studies (Wang et al., 2019; Sun et al., 2023)
mentioned data-driven algorithms for line loss cause analysis,
locating anomalous nodes in the network topology and analyzing
the abnormal causes according to parameter deviations.

With the increasing complexity of DNs, the accuracy of traditional
line loss identification methods on the overall level of the DN is crucial
to guarantee. All data-driven algorithms and statistical methods greatly
rely on the data quality and data quantity, especially the labeled data.
The unsupervised learning methods, such as the clustering algorithms,
do not need the labeled data to detect the abnormal line loss. However,
its performance is limited and cannot identify the abnormal category.
When the abnormal line loss data occupied the main part of the whole
data, the clustering algorithm would directly regard the abnormal data
as the normal one. The supervised learning algorithms, such as the
neural network and tree models, have a more stable performance than
unsupervised learning algorithms. However, it needs enough data to
support the model training to avoid the overfitting phenomenon. In the
abnormal line loss detection of a DN, the labeled data are limited due to
labor consumption and time cost. Thus, the performance of supervised
learning used to detect abnormal line loss with limited labeled samples
cannot be guaranteed. The semi-supervised learning (Van Engelen
et al., 2022; Du et al., 2024) combines unsupervised learning with
supervised learning. It can utilize a large amount of unlabeled data and
fewer labeled data to improve model performance and achieve a better
performance than supervised learning on limited labeled data.

Considering limited labeled and unbalanced sample distribution
in an actual situation, this paper proposes an abnormal line loss
identification and category classification based on semi-supervised
learning and hierarchical classification. The main contributions of
this paper are listed as follows: (1) a hierarchical framework of
abnormal line loss identification and category classification is
proposed, considering the unlabeled and unbalance sample
problem. (2) An abnormal line loss identification model based
random forest is established to identify whether substation line
loss is abnormal. (3) An abnormal line loss category classification
model is developed with semi-supervised learning for line loss
abnormal causal reasoning, considering the unlabeled samples.

The structure of this paper is as follows: Section 1 provides an
introduction and the relevant literature. Section 2 introduces the
framework of the proposed hierarchical abnormal line loss
identification and category classification model. Section 3 describes
the details of data pre-processing and feature engineering. Sections 4
and 5 present the details of the abnormal line loss identificationmodel
and the abnormal line loss category classification model, respectively.
Section 6 displays the detailed experiment results based on the real
dataset. Finally, section 7 gives the conclusion.

2 The framework of the
proposed model

This paper proposes an abnormal line loss identification and
category classification model of a DN based on semi-supervised
learning and hierarchical classification under unbalanced samples.
The model is used to identify abnormal line loss in a DN and the
corresponding abnormal reasons. In practical situations, there are
enough labeled data for DN line loss abnormalities but few labeled
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data for the specific abnormal reasons. Therefore, a two-stage
hierarchical classification model for identifying and reasoning
abnormal line loss in a DN is proposed. In the first stage, a
random forest-based abnormality identification model is
established to identify whether abnormal line loss exists in the

substation. In the second stage, considering less labeled data for
the specific abnormal reasons, a semi-supervised learning-based
XGBoost abnormal line loss category classification model is
proposed to analyze the reasons of the abnormal line loss. The
overall method framework is shown in Figure 1.

FIGURE 1
Framework of the proposed model.
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(1) Data pre-processing: the data on the distribution network
substation area include static document data and dynamic
operation data. In the actual data collection process, some
data are missing. The k-nearest neighbor method is adopted
to select the k samples that are most similar from the sample
alternative set of the same substation area, and the average value
of k-samples is taken to fill in the missing values.

(2) Feature engineering: in the substation dynamic operation
data, some features are directly related to the operation
state of line loss, such as the daily line loss rate, daily

maximum load rate, and daily power factor. Thus, new
features are generated by the statistics of these features.

(3) Abnormal line loss identification: the correlation analysis is
carried out on all the features generated by feature
engineering. The features with a high correlation
coefficient are selected as the input of the abnormal line
loss identification model. The dataset is divided into the
training and test datasets, and the abnormal line loss
identification model based on the random forest algorithm
is established to identify whether the line loss is abnormal.

TABLE 1 Examples of dynamic operation data.

Datetime No. of
substation

Power
supply
quantity

Power sales
quantity

Line loss
power

Line
loss
rate

Power
factor

Max.
Load
rate

Three-phase
unbalance rate

2022/3/1 063488510003175 2951.370 2815.640 135.73 4.599 0.993 24.19 0.546

2022/3/2 063488510003175 2845.620 2719.380 126.24 4.436 0.994 25.76 0.546

2022/3/3 063488510003175 2961.070 2832.830 128.24 4.331 0.991 25.09 0.504

2022/3/4 063488510003175 2935.850 2803.190 132.66 4.519 0.991 22.60 0.625

2022/3/5 063488510003175 3056.390 2917.960 138.43 4.529 0.983 25.80 0.500

2022/3/6 063488510003175 2993.900 2868.100 125.8 4.202 0.984 22.50 0.458

2022/3/7 063488510003175 2919.360 2789.380 129.98 4.452 0.990 23.50 0.540

2022/3/8 063488510003175 2913.810 2807.600 106.21 3.645 0.989 22.24 0.424

2022/3/9 063488510003175 2941.260 2816.150 125.11 4.254 0.991 22.08 0.417

2022/3/10 063488510003175 2814.540 2720.210 94.33 3.352 0.987 22.80 0.549

. . . . . . . . . . . . . . . . . . . . . . . . . . .

FIGURE 2
Data pre-processing and feature engineering.

Frontiers in Energy Research frontiersin.org04

Li et al. 10.3389/fenrg.2024.1378722

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1378722


(4) Abnormal line loss category classification: category
classification is performed for the identified abnormal line
losses. The common abnormal line loss causes are classified
into four categories, line infrastructure problems, basic
document files problem, meter problem, and theft of
electricity. Considering a few data to be labeled by the
abnormal category in the actual situation, a semi-
supervised learning-based XGBoost abnormal line loss

TABLE 2 Character data encoding of substation load distribution.

Substation load distribution Ld

Uniform distribution 1

Heavy tail and light head 2

Heavy middle and light tail and head 3

FIGURE 3
Illusion of random forest.

FIGURE 4
Diagram of abnormal line loss cause distribution.

TABLE 3 Parameter settings.

Model Parameter Value

Random forest in abnormal line loss detection Maximum depth of decision tree 10

Number of decision trees 144

Minimum number of samples in each split node 10

XGBoost in abnormal line loss category classification Maximum depth 5

Learning rate 0.08

Booster DART

Subsample 0.75
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category classification model is proposed to achieve the causal
reasoning analysis of the abnormal line loss.

3 Data pre-processing and feature
engineering

In the process of abnormal line loss identification in a DN, the
data pre-processing and feature engineering of substation operation

data are essential. By processing and extracting features from
substation operation data, accurate and comprehensive features
can be obtained, effectively improving the accuracy and reliability
of abnormal line loss identification in a DN.

Substation data in distribution networks can be divided into two
categories. One is static document data, including DN topology data,
customer relationship data, the number of users, load type, transformer
type, and substation load distribution. The other is dynamic operation
data, including the daily input and output electricity, daily line loss rate,

FIGURE 5
Correlation analysis of the statistical features.

TABLE 4 Results of abnormal line loss detection and category classification.

Abnormal line loss detection Abnormal line loss category classification

Acc 0.9768 0.8446

P 0.9948 0.7617

R 0.9979 0.8124

F1 0.9963 0.7862
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daily power factor, daily maximum load rate, daily voltage compliance
rate, and daily three-phase imbalance degree, which is shown in Table 1.
For dynamic document data, not only data pre-processing, such as data
cleaning and completion, need to be carried out but also relevant
features need to be extracted. For example, statistical measures of line
loss rate, such as the average value, maximum, minimum, and variance,
are significantly related to the state of line loss. The overall data
processing and feature engineering processes are shown in Figure 2.

3.1 Data pre-processing

Data pre-processing mainly includes filling in missing values
and encoding character data.

(1) Character data encoding

Character data encoding is carried out for the load distribution Ld
and abnormal line loss categories in the substation area. Table 2 shows
character data encoding for the load distribution in the substation area.

(2) Missing data filling

Upon the analysis of existing data, there were some missing data
such as the daily power factor and daily three-phase unbalance in
some substations. To solve this problem, the candidate set is
generated by the substation. Then, the k-nearest neighbor
method is adopted to select the k-samples which are the most
similar from the candidate set and fill in the missing values by
taking the average value of k-samples.

3.2 Feature engineering

According to the substation operation data, feature extraction is
carried out on the daily power supply quantity, daily power sales
quantity, daily line loss rate, daily power factor, and other data. The
statistical features such as the average value, maximum value,
minimum value, and variance in monthly are generated.

(1) Monthly average value

For the loss rate, lr; power factor, μ; maximum load rate, MaxL;
and the three-phase voltage unbalance rate, U, the average value is
calculated with the month as the statistical length, as shown in
Equation 1:

xi,avg � 1
Ni

∑
j�1

xij, (1)

where xij indicates the measured value of the j-th day of the i-th
month; x = lr, μ, MaxL or U; xi,avg indicates the average value of the
indicator in the i-th month; and Ni indicates the total number of
days in the i-th month.

(2) Monthly maximum/minimum value

For the daily line loss rate lr and daily maximum load rateMaxL,
the maximum and minimum values are calculated with the monthly
statistical length, which is defined by Equation 2.

xi,max � max xi1, xi2, ..., xiNi( )
xi,min � min xi1, xi2, ..., xiNi( ) , (2)

FIGURE 6
Diagram of the decision boundary of one decision tree of the random forest.
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where xij represents the measured value of the corresponding index
on the j-th day of the i-th month.

(3) Monthly fluctuation rate of daily line loss

The fluctuation of the monthly line loss rate can also reflect the
abnormality of the line loss to a certain extent. Considering the
difference of the average line loss rate in months, the fluctuation rate
of the monthly line loss is defined as in Equation 3 in order to

FIGURE 7
Confusion matrix of abnormal line loss category classification with XGBoost and semi-supervised learning. Label “Document” denotes the basic
document files problem. Label “Theft” denotes theft of electricity. Label “Infrastructure” denotes the line infrastructure problem. Label “meter” denotes
the meter problem.

FIGURE 8
Results of abnormal line loss detection with different algorithms.
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remove the impact of the average level of the line loss rate on the
statistical results.

lri,dev � 1
lri,avg

������������������
1
Ni

∑Ni

j�1 lrij − lri,avg( )2√
, (3)

where lri,avg represents the average value of the line loss rate in the i-
th month.

(4) Monthly abnormal rate of daily line loss

FIGURE 9
Results of abnormal line loss category classification with different algorithms.

TABLE 5 Results of supervised learning and semis-supervised learning with
XGBoost.

Supervised learning Semi-supervised learning

Acc 0.7331 0.8446

P 0.5986 0.7617

R 0.6334 0.8124

F1 0.6155 0.7862

FIGURE 10
Confusion matrix of abnormal line loss category classification with XGBoost and supervised learning. Label “Document” denotes the basic
document files problem. Label “Theft” denotes theft of electricity. Label “Infrastructure” denotes the line infrastructure problem. Label “meter” denotes
the meter problem.
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If the daily line loss rate is 0, negative, or too high, to some
extent, it implies that the line loss rate may also be abnormal.
Therefore, in order to reduce the influence of the accidental
occurrence of the abnormal daily line loss rate, this paper
defines the abnormal rate of monthly line loss, γlr,i, as shown in
Equation 4. In this paper, the threshold of the excessive line loss
rate is set as 7%.

γlr,i �
1
Ni

∑Ni

j�1
1lrij ≤ 0‖lrij > 7% lrij( ). (4)

4 Abnormal line loss recognition based
on random forest

Random forest is an inheritance algorithm based on several
decision tree classifiers. The bootstrap resampling technology is used
to repeatedly randomly extract parts of the samples from the original
training set to form a new training set to train multiple decision
trees. The final abnormal line loss identification results are obtained
by combining the results of multiple independent decision trees.
Compared with the single decision tree, it has higher accuracy and
stability, as shown in Figure 3.

The features obtained by feature engineering are taken as the
input of the random forest classifier, and the line loss abnormal is the
output of the random forest classifier. Thus, the abnormal line loss
identification of a DN is converted into a binary classification
problem. The process is as follows:

Step 1. Dataset partitioning. The initial training set and the
number of features are set. Based on the bootstrap resampling
method, the samples from the original training set are repeatedly
and randomly selected to form the training set D1, . . . , DK to build
the single decision tree. The samples that have never been sampled
are used to build validation datasets to estimate the performance of
the model.

Step 2. Construction of a single decision tree. When constructing a
single decision tree, each node is split through the principle of the
minimum Gini index. When the Gini index is 0, all samples in the
node belong to the same category. The Gini index is calculated as in
Equation 5.

Gini D( ) � 1 −∑P

p�1 Dp

∣∣∣∣ ∣∣∣∣/ D| |( )2, (5)

where |D| is the number of samples in the dataset, |Dp| is the number
of samples belonging to class p in the set D, and P is the number of
categories.

Step 3. Decision tree integration. In K decision trees, the
Boyer–Moore majority vote algorithm is used to obtain the final
classification result.

In the process of training the random forest, the depth of the
decision treeMt, the number of decision trees Nt, and the minimum
number of samples in each split node St need to be determined. This
paper uses grid search and cross-validation to determine the optimal
hyperparameter combination.

5 Abnormal line loss category
classification based on XGBoost and
semi-supervised learning

To deal with the unlabeled sample problem, semi-supervised
learning is employed. An initial model is first trained with labeled
data and then used to predict the unlabeled samples. The labeled
samples with high confidence are added to the labeled dataset and
used to retrain the model to improve the classification accuracy.

5.1 XGBoost

XGBoost adopts the idea of boosting. The basic idea is to stack
the base classifiers layer by layer. Each layer gives a higher weight to
the misclassified samples of the previous layer when training. The
XGBoost tree is constructed by extending a node into two branches,
and the layers of the nodes continue to split until the entire tree is
formed. Starting from the depth of the tree equal to 0, each node
traverses all the features and sorts them according to the value of the
feature gain function, as shown in Equation 6. In this way, all the
features are sorted according to the contribution of the features to
the objective function. Then, the feature is linearly scanned to
determine the best segmentation point.

Gain � 1
2

G2
L

HL + λ
+ G2

R

HR + λ
− GR + GL( )2
HL +HR + λ

[ ] − δ, (6)

where GL represents the cumulative sum of the first-order partial
derivation of the objective function by the samples contained in the
left subtree after the current node splitting. GR represents the
cumulative sum of the first-order partial derivation of the
objective function by the samples contained in the right subtree
after the current node splitting.HL represents the cumulative sum of
the second-order partial derivation of the objective function by the
samples contained in the left subtree after the current node splitting.
HR represents the cumulative sum of the second-order derivation of
the objective function of the samples contained in the right subtree
after the current node splitting. λ is the regularization parameter,
and δ is the threshold to control the minimum gain of the split.

5.2 Abnormal line loss type classification
based on XGBoost and semi-
supervised learning

Since there are less labeled data for abnormal line loss types,
most abnormal line losses only mark whether there is an anomaly
but do not mark the specific reason of the anomaly. Therefore, this
paper adopts the self-training semi-supervised learning method to
model the abnormal line loss category classification. It trains an
initial model with labeled data and then uses the model to predict the
unlabeled data. The data with high confidence are added to the
labeled dataset and used to retrain the model. The final model is
obtained by iterating the process until the converge condition
is satisfied.

According to whether the abnormal line loss type is labeled, the
dataset is divided into the labeled sample dataset DL = {(x1, y1), (x2,
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y2), . . ., (xn, yn)}and unlabeled sample dataset DU. The number of
sample label categories is Nc. In self-training semi-supervised
learning, the pseudo-label sample selection strategy is the core
part of the model performance. The purpose of the pseudo-
labeled sample selection strategy is to select the samples that are
more likely to be correctly labeled from the unlabeled samples and
add them to the labeled samples to form a new training set so as to
further improve the accuracy and generalization performance of the
model. If pseudo-label samples, which are falsely labeled, are added
to the training set, the performance of the model may be degraded.
In this paper, pseudo-label sample selection based on the
Mahalanobis distance is adopted, and the process is as follows:

In the labeled sample dataset DL, the samples are divided
according to the sample category. The sample set of class m is
denoted asDL,m = {(xi, yi)| yi =m},m = 1, . . . , Nc. The average value
of its feature vector is calculated based on Equation 7.

�xm � 1

DL,m

∣∣∣∣ ∣∣∣∣ ∑
xi ,yi( )∈DL,m

xi. (7)

In the unlabeled sample dataset DU, the corresponding pseudo-
labeled sample setDP is obtained after labeling. yp, j is denoted as the
pseudo-label of sample xj, xj ϵ DU. Suppose yp, j = m, the
Mahalanobis distance between the pseudo-label sample (xj, yp, j)
and �xm is calculated by Equation 8.

d xj, �xm( ) � �������������������
xj − �xm( )C−1

m xj − �xm( )T√
, (8)

where Cm is the covariance matrix of DL,m, which is shown in
Equation 9.

Cm � 1

DL,m

∣∣∣∣ ∣∣∣∣ − 1
∑

xi ,yi( )∈DL,m

xi − �xm( ) ∑
xi ,yi( )∈DL,m

xi − �xm⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠. (9)

The detailed processing of abnormal line loss category
classification based on semi-supervised learning and XGBoost is
shown as follows:

Step 1: the XGB model, M, is built based on the dataset DL = {(x1,
y1), (x2, y2), . . ., (xn, yn)}.

Step 2: the unlabeled sample setDU is used as the input of modelM.
The corresponding pseudo-label is obtained to generate the pseudo-
label sample set DP.

Step 3: the distance d(xj, �xm) based on Equation. 8 is calculated for
each pseudo-label sample (xj, yp, j) ϵ Dp.

Step 4: If d(xj, �xm) <θ, which is the threshold, it means that the
pseudo-label is acceptable. The pseudo-label sample (xj, yp, j) is
removed fromDP and added toDL. If d(xj, �xm) ≥θ, it means that the
pseudo-label is unreliable, and xj is still retained in the unlabeled
sample set DU.

Step 5: DL and DU are updated.

Step 6: Steps 1–5 are repeated until the converge condition is
satisfied. The final model is used to classify the category of
abnormal line loss.

6 Experiment and results

6.1 Data source and experiment settings

In this paper, the operation data on three power supply stations
in Lvliang, Shanxi Province, China, spanning half a year are used for
comparison experiments. The three power stations contain
1,175 10-kV substations, which mainly include residential load,
industrial load, public lighting, and commercial load. The
substation operation data contain the daily active power supply,
reactive power supply, line loss rate, input power, output power,
power factor, maximum load rate, three-phase unbalance rate, and
other data on substations spanning from May 2022 to
November 2022.

In the experiment, the abnormality of the substation line loss is
labeled by the month. There are a total of 7,050 samples in the
dataset, including 1,503 abnormal line loss samples and
5,547 normal line loss samples. Due to the limited labor, only
the abnormal causes in the part of the substation are verified,
which includes 988 samples, accounting for 65.73% of the whole
abnormal line loss samples. The distribution of abnormal line loss
causes is shown in Figure 4. The main cause of abnormal line loss is
the meter problem, including data acquisition exception and meter
device fault. The electricity theft accounted for the smallest
proportion. A part of the reason is that the electricity theft by
users is difficult to confirm in reality due to user privacy. The
detailed causes of different abnormal line loss categories are shown
as follows:

• Line infrastructure problem: too long supply wire or too small
wire radius and aging of the line equipment.

• Basic document files problem: distributed network topology
mismatch and user-zone ownership error.

• Meter problem: data collected not at the same time, meter
deviation, meter device failure, and communication failure.

• Theft of electricity: illegal use of electricity.

In the abnormal line loss recognition model, the dataset is
divided as 7:3, where 70% of the data comprises the training set
and 30% of the data comprises the test set. The hyperparameters of
the random forest and XGBoost model used in this paper are shown
in Table 3.

In this paper, the abnormal line loss detection and category
classification is a two-stage classification problem. Thus, the confuse
matrix is used to display the result. In stage 1, the abnormal line loss
identification is a binary classification problem.

In stage 2, the abnormal line loss category classification is a
multi-classification task, and the evaluation metrics include
accuracy, precision, recall, and the F1-score. Considering the
unbalanced sample problem, this paper utilizes the macro
average value, as shown in Equations 10–13. The TP is the
number of the positive samples detected as positive. The TN is
the number of negative samples detected as negative. The FP is the
number of negative samples detected as positive. The FN is the
number of positive samples detected as negative.

Acc � 1
Nc

∑Nc

i�1

TPi + TNi

TPi + FPi + FNi + TNi
, (10)
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P � 1
Nc

∑Nc

i�1

TPi

TPi + FPi
, (11)

R � 1
Nc

∑Nc

i�1

TPi

TPi + FNi
, (12)

F1 � 2 × P × R

P + R
. (13)

6.2 Results of abnormal line loss
identification and category classification

To further analyze the performance of feature engineering, the
Spearman correlation analysis is first employed to quantify the
relationship between the statistical features and abnormal line loss.
The result is displayed in Figure 5. It is clear that the monthly
abnormal rate of daily line loss, γlr,i, is the most important feature
in abnormal line loss identification. The maximum value of line loss,
the minimum value of line loss, and the average value of line loss also
have a certain correlation with abnormal line loss. The three-phase
unbalance rate is the least related to abnormal line loss and is not
regarded as the input of the identification model.

The result of our proposed abnormal line loss identification and
category classification model is shown in Table 4. It shows that a
good performance is achieved in abnormal line loss identification.
All the evaluation metrics obtain good results. Figure 6 displays the
decision boundary of one decision tree of the random forest. It is
clear that all the samples with negative line loss are recognized as
abnormal. The sample with a high monthly abnormal rate and high
minimal line loss rate is also identified as abnormal.

In abnormal line loss category, the classification result is not better
than that of abnormal line loss identification. The small sample size
and unbalanced sample distribution significantly impact the precision
and recall values. The confusion matrix of the XGBoost model is
presented in Figure 7. The classification result of electricity theft is the
worst. The meter problem classification is the best. It is because the
number of electricity theft incidents is too small and impacts the
model learning. All the categories are easily misidentified as meter
problems, especially electricity theft. In reality, the meter problem is
the most common cause of abnormal line loss, including different
abnormal line loss scenarios, such as data error, communication
problem, and data collection terminal fault. Thus, other causes are
easily misidentified as meter problems.

6.3 Comparison experiment

In this section, the comparison experiments are conducted from
different aspects, including abnormal line loss identification with
different algorithms, abnormal line loss category classification with
different algorithms, and comparison of supervised learning and
semi-supervised learning.

1) Comparison of abnormal line loss identification with different
algorithms

In abnormal line loss identification, the decision tree (DT),
XGBoost, BP, and support vector machine (SVM) are utilized as

the comparison algorithms. In DT, the max depth of tree is set as 12.
In XGBoost, the learning rate is 0.1 and the number of estimators is set
as 100. In BP, the number of hidden layers is set as 2, with 100 neurons
in each hidden layer. The kernel function of SVM is the radial basis
kernel function, and the regularization parameter is 1.

The identification results of different algorithms are shown
in Figure 8. Since the abnormal line loss identification problem is
a relatively simple binary classification problem, all the
algorithms can achieve a good performance. From the aspect
of accuracy, BP achieves the best performance. The accuracy
values of RF, DT, XGBoost, and SVM are close. From the aspect
of all metrics, the RF performs the best. The precision, recall, and
F1-score of the RF are the highest. The precision result of BP
implies that the model easily launches false alarms than RF. The
performance of DT and SVM is the worst. Further analyzing
the result with data, it is found that the monthly line loss with
the negative daily line loss rate is easily recognized as abnormal.
The abnormal monthly line loss with a small and positive line
loss is the most difficult to detect compared to other abnormal
line loss scenarios.

2) Comparison of abnormal line loss category classification with
different algorithms

In abnormal line loss category classification, random forest, DT,
and BP are used as the comparison algorithms. In random forest, the
number of decision trees is set as 105, and themaximum depth of the
decision tree is set as 10. In DT, the maximum depth of the tree is set
as 15. In BP, the number of hidden layers is set as 3, with 85 neurons
in each hidden layer. All the algorithms are conducted with the
semi-supervised learning.

The result of the abnormal line loss category classification is
displayed in Figure 9. It is obvious that the performance of XGBoost
is the best and that of DT is the worst. Due to limited samples, the
accuracy of abnormal line loss category classification is not higher
than that of abnormal line loss identification. In another aspect, the
input feature is generated based on monthly line loss, which cannot
reflect the fluctuation of the intra-day line loss rate. In particular, the
theft of electricity is closely related to the intra-day line loss rate,
which cannot be well-detected.

3) Supervised learning vs. semi-supervised learning

In this section, the performance of supervised learning and semi-
supervised learning is compared with XGBoost in the abnormal line
loss category classification task. The supervised learning directly
uses 70% of the labeled samples to train XGBoost, and the rest 30%
was used for the test. The evaluation metric results are displayed in
Table 5. From Table 5, it is obvious that the classification results are
significantly improved by semi-supervised learning, especially recall.
It is implied that the phenomenon of leaking alarm is relieved. The
category of theft of electricity is the most difficult to detect. It is
because of the limited electricity theft samples and because
electricity theft is mostly impacted by the intra-day line loss rate.
The confusion matrix of supervised learning is presented in
Figure 10. Compared to Figure 7, the classification accuracy of all
the categories is enhanced. For the semi-supervised learning, the
unlabeled samples are used, which can help the model learn to
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increase the classification accuracy. However, the current data
cannot reflect the situation of intra-day line loss, and the
category classification performance is limited. To further improve
the abnormal line category classification, detailed line loss data
are needed.

7 Conclusion

Abnormal line loss identification is crucial in distribution
networks to guarantee the timely and safe power supply in grid.
In actual situations, the cause of abnormal line loss is not
completely labeled due to the expensive labor cost. Considering
the actual limited and unbalanced samples, this paper proposed a
hierarchical classification framework to identify the causal reason
of the abnormal line loss. An abnormal line loss identification
model-based random forest was first established to identify
whether substation line loss was abnormal. Based on the results
of detected abnormal line loss, an abnormal line loss category
classification model was developed with semi-supervised learning
and XGBoost, considering the unlabeled samples. With the help of
self-training semi-supervised learning, the unlabeled samples were
utilized to train the classification model to relieve the over-fitting
performance. Numerous experiments were conducted on the real
dataset from China. The accuracy of abnormal line loss
identification was more than 97%. The accuracy of abnormal
line loss category classification was around 84% under semi-
supervised learning. The results highlight the good performance
of the proposed hierarchical learning structure to relieve the
impact of the unbalance samples, which is very helpful for
future application.

In the future, more detailed abnormal line loss causes can be
considered. In addition, the sampling techniques to relieve
the sample unbalance can be further utilized when
considering the detailed abnormal line loss causes. In
summary, this research highlights the application of machine
learning in abnormal line loss identification and category
classification, with implications for improving the management
and operation of power grids.
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