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Delay and cost-balanced
communication resource
management for IoT-empowered
distribution grid energy dispatch

Zhan Shi*

Guangdong Power Grid Co., Ltd., Power Dispatching Control Center, Communication Management
Department, Guangdong, China

The combination of internet of things (IoT), 5G, and power line communication
(PLC) provides real-time and low-cost data transmission services to meet
the quality of service (QoS) requirements for distribution grid energy
dispatch. However, the IoT-empowered communication resource management
system faces challenges in optimizing delay and traffic cost for distribution
grid energy dispatch. There is a contradiction between the long-term
performance guarantee and short-term optimization objectives, compounded
by competition for communication resources. In this paper, we construct the
minimization problem of the weighted sum of data transmission delay and
traffic cost. Utilizing Lyapunov optimization, we aim to decouple the long-term
constraint of average queuing delay with the short-term optimization objective.
Then, a delay and cost-balanced communication resource management
algorithm based on two-layer iterative matching is proposed. It optimizes
the communication mode selection by I-to-2 bidding matching in a large
timescale and subchannel allocation by many-to-many deferred acceptance
matching in a small timescale. The simulation data present that the proposed
algorithm excels in reducing data transmission delay, minimizing traffic cost, and
decreasing queuing delay.

KEYWORDS

IoT, distribution grid energy dispatch, two-layer iterative matching, multi-timescale
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1 Introduction

The internet of things (IoT) has a broad development prospect in the field of distribution
grid energy dispatch. By connecting distribution grid operators with energy users and
electric equipment (Tariq et al., 2020; Liao et al., 2023a; Fizza et al., 2023; Liu et al., 2023;
Safdar Malik et al., 2023; Zhu et al., 2024), IoT provides dynamic data acquisition and real-
time state perception of key electric equipment. Then, these collected data can be uploaded
to the edge server or cloud server for deep state analysis and intelligent energy dispatch
(Wang et al., 2023; Yao et al., 2023). Among various communication technologies, fiber
optic technology cannot adapt to the wide coverage requirement of IoT due to the high
deployment cost (Chagnon, 2019; Liao et al., 2023b; Lin et al., 2023).Wireless fidelity (WiFi)
relying on the industrial, scientific, andmedical (ISM) band is susceptible to interference and
privacy issues (Schwung et al., 2023). In comparison, 5G and power line communication
(PLC) emerge as feasible candidates (López et al., 2019; Pal et al., 2021; Zhou et al., 2022).
Coverage by using a dedicated frequency band, but it causes extra traffic costs for

Frontiers in Energy Research 01 frontiersin.org

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2024.1378320
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2024.1378320&domain=pdf&date_stamp=2024-03-29
mailto:w_1234567892021@163.com
mailto:w_1234567892021@163.com
https://doi.org/10.3389/fenrg.2024.1378320
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1378320/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1378320/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1378320/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1378320/full
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Shi 10.3389/fenrg.2024.1378320

grid operators (Qian et al., 2022; Zhou et al., 2024; Zhou et al.,
2023a). On the other hand, PLC has the advantages of low cost
and flexible development, but it suffers from lower communication
capacity. How to combine 5G and PLC to support the real-time
energy dispatch of the distribution grid fromadelay and cost balance
perspective remains an open issue (Xu et al., 2021; Zhang et al.,
2023; Ruby et al., 2023).

Communication resource management refers to the effective
and reasonable configuration, monitoring, scheduling, and
optimization of various resources of communication systems
to meet the quality of service (QoS) requirements (Guo et al.,
2021; Ding et al., 2022; Gu et al., 2022; Wang et al., 2023).
When combining 5G and PLC with IoT, communication mode
selection and subchannel allocation are two important research
topics of communication resource management. Particularly,
communication mode selection should be optimized in a large
timescale because the frequently switching communication mode
results in large overheads. On the other hand, subchannel allocation
should be optimized in a small timescale, considering the temporal-
varying characteristics of the channel state (Xiang et al., 2022;
Bigdeli et al., 2023). Despite the great research efforts initiated
by previous studies, how to realize scalable, reliable, stable, and
adaptable communication resource management still faces several
technical challenges.

First, the optimization of data transmission delay and traffic
cost is contradictory to each other. Although 5G has lower
latency, it significantly increases the total traffic cost, particularly
under the scenario of second-level data collection (Gu et al.,
2021). The switching between 5G and PLC should be dynamically
adjusted in accordance with various parameters including delay,
traffic cost, and channel quality. Second, severe competition for
communication resources is inevitable when the number of IoT
devices is overwhelming.The small-timescale subchannel allocation
optimization of a device is not only affected by the large-
timescale mode selection results but also related to decisions
of other competing devices. This incurs further difficulty in the
multi-timescale resource management problem (Leng et al., 2023).
Finally, short-term optimization based on information lacking
foresight leads to long-term performance deterioration. The long-
term queuing delay requirement imposed by real-time energy
dispatch is considered an example. The optimum policy to balance
delay and cost may come at the expense of larger cumulative
queue backlog, which deteriorates the long-term queuing delay
performance (Huang et al., 2023).

There exist several studies on subchannel allocation in IoT.
Zhou et al. (2020) launched an algorithm based on online learning,
utilizing the context-aware multi-armed bandit framework to
dynamically distribute channels in a 5G network, which has
shown exceptional performance, particularly in large-scale network
scenarios. Ning et al. (2019) proposed a blended framework for
computational task offloading, designed to enhance real-time traffic
handlingwithin 5Gnetwork infrastructures.The goal is tomaximize
the sum offloading rate. Do and Lehnert (2011) proposed a PLC
channel allocation protocol that considers the individual channel
quality of each user, enabling precise calculations for the required
transmission resources. Han et al. (2023) investigated an advanced
channel allocation strategy involving dynamic two-step random
access optimization to enhance the access success probability.

Wang et al. (2018) proposed an innovative algorithm for joint
power and channel allocation, with the objective of maximizing
the sum rate for cellular users. However, these works overlook
severe competition for communication resources caused by massive
IoT devices. Dewa et al. (2021) proposed a distributed channel
assignment algorithm that efficiently finds the optimal channel
configuration using the concept of belief propagation. Li et al. (2023)
proposed a multi-agent device-to-device (D2D) communication
resource allocation algorithm based on the advantage actor critic
(A2C) to dynamically and adaptively output the resource allocation
scheme of D2D users. However, these works overlook severe
competition for communication resources caused by massive
IoT devices. The developed optimization approaches have the
disadvantages of high complexity, slow convergence, and instability
under resource competition.

Matching theory provides a feasible tool to address
combinatorial optimization problems involving large-number
participants. Meshgi et al. (2017) studied the channel allocation
problem of multi-user multi-channel cellular networks and
proposed a channel allocation scheme based on stable matching
to effectively improve the system capacity. Islam et al. (2016)
proposed a channel allocation method based on stable matching
to effectively reduce delay and improve system throughput for
D2D communications underlying cellular networks. Csercsik
and Jorswieck (2023) proposed a novel preallocation-based
combinatorial auction approach to optimize the efficient allocation
of channels for ultra-reliable low-latency communication
(URLLC) services. Zhou et al. (2021) considered priority-aware
resource coordination in a multi-unmanned aerial vehicle (UAV)
communication system and jointly optimized a channel assignment
and power allocation strategy under stringent resource availability
constraints. These works simply assume all the resources are
optimized in the same timescale and cannot be applicable to
our scenario involving large-timescale communication mode
selection and small-timescale subchannel allocation. Huang et al.
(2015) proposed a multi-timescale matching model to enhance
the matching degree between the available wind supply and the
increasing EV charging demand within the microgrid. Huang et al.
(2015) and Yu et al. proposed an innovative algorithm aimed at
addressing challenges in resource allocation and task divisionwithin
non-orthogonal multiple access edge computing-based power IoT.
Wang et al. (2021) proposed a low-complexity algorithm to solve
the formulated subchannel allocation problem using the matching
theory, where the joint optimization of the task assignment and
power allocation is performed at each iteration. Huang et al. (2022)
proposed a beacon synchronization-based multi-channel dynamic
time slot assignment method. The channel is allocated based
on interference minimization from adjacent channels. However,
these studies ignore the coupling between the long-term queuing
delay guarantee with the short-term optimization of delay and
cost balance.

Thus, we design a delay and cost-balanced communication
resource management framework for IoT-empowered distribution
grid energy dispatch. First, we present models of delay and traffic
cost and formulate a delay and traffic cost optimization problem.
The optimization objective is to minimize the weighted sum of
transmission delay and traffic cost under the constraints of the
subchannel allocation number, subchannel allocation quota, data
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transmission reliability, and long-term average queuing delay.Then,
we decompose the formulated problem into two main subproblems,
i.e., a large-timescale subproblem involving device communication
mode selection and a small-timescale subproblem focusing on
subchannel allocation, and solve them alternatively by the proposed
delay and cost-balanced communication resource management
algorithm based on two-layer iterative matching. The specific
contributions include the following.

• Communication resource management with delay and traffic
cost balancing:The proposed algorithmdynamically adjusts the
optimization policy to trade off data transmission delay with
traffic cost, which is an oversight in related works.
• Communication resource competition solution and complexity
reduction: At each epoch, the large-timescale mode selection
problem is addressed through the utilization of I-to-2 bidding
matching. The small-timescale subchannel allocation problem
is solved based on many-to-many deferred acceptance
matching at each slot. This multi-timescale matching improves
the convergence speed and complexity performances and the
overheads caused by frequent switching in related works.
• Guarantee of long-term queuing delay: Based on Lyapunov
optimization, we transform the long-term queuing delay
constraint into a virtual queue. Then, the product of the
virtual queue backlog and the queuing delay is added into the
optimization objective. Particularly, devices with large queue
backlog and queuing delay are given priority in matching so as
to realize long-term queuing delay guarantee, which is a lack of
consideration in related works.

The remainder of this paper is structured in the subsequent
manner: An exposition of the system model and the formulation
of the problem are explained in Section 2. The algorithm proposed,
which relies on a two-tiered iterative matching process, is elucidated
in Section 3. Section 4 is dedicated to demonstrating the outcomes
derived from simulations. The conclusion of this study is presented
in Section 5. The notations used in this paper are summarized in
Table 1.

2 System model

Figure 1 introduces the proposed delay and cost-balanced
communication resource management framework for IoT-
empowered distribution energy dispatch, which includes the device
layer, transmission layer, and edge layer. In the device layer, I
IoT devices which support both PLC and 5G communication
modes are deployed on electrical equipment including distributed
photovoltaic, energy storage unit, power distribution equipment,
and electrical vehicle charging pile to collect various types of data
such as active power, reactive power, and temperature (Adnan et al.,
2019; Ali et al., 2021). Define the set of IoT devices as M =
{m1,…,mi,…,mI}. The transmission layer contains a PLC gateway
and a 5G base station for data transmission, which support dual
communication modes, i.e., PLC and 5G. An orthogonal frequency
division multiplexing (OFDM)-based data transmission scheme is
adopted. There exist J orthogonal subchannels, including J1 PLC
subchannels and J2 5G subchannels. Define the set of subchannels

asN = {n1,…,nj,…,nJ}, where nj, j = 1,…, J1 are PLC subchannels,
and nj, j = J1 + 1,…, J are 5G subchannels. The data collected by IoT
devices are uploaded to the edge layer via a selected communication
mode and allocated subchannels, i.e., either PLC subchannels
or 5G subchannels. The edge layer contains an edge server that
processes the data uploaded from the device layer. The edge server
also optimizes communication resource management in terms of
communication mode selection and subchannel allocation.

Device communication mode selection and subchannel
allocation are optimized in different timescales. Particularly, to
avoid frequent switching of the communication mode and reduce
overheads, in a large timescale, i.e., epoch, mode selection is
optimized, while in a small timescale, i.e., time slot, subchannel
allocation is optimized (Sezer and Gezici, 2016; Yu et al., 2021;
Li et al., 2023; Zhou et al., 2023b). We consider a duration which
contains T slots. Each slot lasts a duration τ. Define the slot’s set as
T = {1,…, t,…,T} and the epoch’s set as V = {1,…,v,…,V}. Each
epoch contains consecutive T0 slots. The relationship between V
and T satisfies T = T0V. The slot’s set in the v-th epoch is denoted as
T (v) = {(v− 1)T0 + 1, (v− 1)T0 + 2,…,vT0}.

Define xi(v) = {x
PLC
i (v),x

5G
i (v)} as the set of optimization

variables of large timescale device communication mode selection,
where xPLCi (v) and x5Gi (v) are the indicator variables of the 5G
communication mode and PLC mode, respectively. xPLCi (v) =
1 indicates that device mi selects the PLC mode to upload
data to the edge server in the v-th epoch; otherwise, xPLCi (v) =
0. Similarly, x5Gi (v) = 1 indicates that device mi selects the 5G
communication mode, and otherwise x5Gi (v) = 0. Define yi,j(t) as
the optimization variable of small-timescale subchannel allocation.
yi,j(t) = 1 indicates that in the t-th slot, the edge server allocates
subchannel nj to device mi, and otherwise, yi,j(t) = 0. Denote qm
as the quota of subchannel allocation, i.e., at most qm subchannels
can be allocated for each device per slot. Meanwhile, due to the
limited number of subchannels in each communication mode,
PLC subchannels can be allocated to at most J1 devices, and 5G
subchannels can be allocated to at most J2 devices.

2.1 Data transmission model

In the t-th slot, the data transmission rate for device mi on
subchannel nj is calculated as

Ri,j (t) = Nsmin(Rmax
j ,⌊log2(1+

Pi,j (t)gi,j (t)

Γi
)⌋), (1)

where ⌊⋅⌋ represents that the number is rounded down to the nearest
integer. Ns is the OFDM symbol rate. Rmax

j (bits/symbol) is the
maximum transmitted bits per symbol for subchannel nj, which is
determined based on the modulation method, signal-to-noise ratio,
frequency selective fading, computational complexity, and other
factors to guarantee signal quality. Γi is the signal-to-interference-
plus-noise ratio (SINR) gap coefficient, and gi,j(t) is the subchannel
gain, which are calculated as

Γi ≈
[Q−1 (Pe/4)]

2

3
, (2)

gi,j (t) =
|Hi,j (t) |2

NEMI
j (t) +N0

, (3)
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TABLE 1 Summary of notations.

Notation Definition Notation Definition

I Number of IoT devices M Set of IoT devices

J Number of orthogonal subchannels J1 Number of PLC subchannels

J2 Number of 5G subchannels N Set of subchannels

T Number of slots τ Slot duration

T Set of slot V Epoch

V Set of epoch xi(v) Set of communication mode selection optimization variables

xPLCi (v) PLC mode variable x5Gi (v) 5G communication mode variable

yi,j(t) Subchannel allocation variable q+m Quota of subchannel allocation

Ri,j(t) Data transmission rate Ns OFDM symbol rate

Rmax
j Maximum transmitted bits per symbol for the subchannel Γi SINR gap coefficient

gi,j(t) Subchannel gain Pe Target bit error rate

Hi,j(t) Frequency response of devicemion the subchannel nj N0 Gaussian noise

NEMI
j (t) Electromagnetic interference lgf(x) Electromagnetic interference characteristic function

ν Characteristic index η Skewed parameter

μ Positional parameter θ Scale parameter

SINRi,j(t) SINR of devicemion subchannel nj SINRmin Lower bound of SINR

Li(t) Backlog of the device-side data queue Ai(t) mi’s collected data amount

Di(t) mi’s throughput τi(t) Data transmission delay frommito the edge server

Ci(t) Extra traffic cost e5G(v) Unit cost of transmitting single-bit data through the 5G
subchannel

τquei (t) Queuing delay of data transmission Âi(t) Average data arrival rate ofmi

τquei,max Average queuing delay threshold α Weight of traffic cost

Oi(t) Virtual queue of the constraint of long-term average queuing
delay

γPLCi (v),
γ5Gi (v)

Preference values of devicemifor selecting PLC and 5G
communication mode

pPLCi (v),
p5Gi (v)

Bidding prices for devicemito select PLC and 5G
communication mode

Π Set of devices queuing for matching

ΛPLC, Λ5G Set of devices that issue requests to PLC and 5G communication
mode

ρ Predefined constant

βPLC, β5G Bidding price coefficients for the PLC and 5G communication
modes

Θi(t) Set of PLC subchannels that are currently matched withmi

|Θi(t)| Size of Θi(t) ωi,j(t) Reciprocal of the data transmission delay

λi,j(t) Product of the virtual queue backlog and queuing delay Ni(t) Set of available 5G subchannels formi

FD
i Partial preference list of 5G subchannels FC

j Partial preference list of the subchannel nj

where Pe is the target bit error rate. Q−1(⋅) is the inverse function of
Q(x) = 1

2π
∫∞x et

2/2dt.Hi,j(t) is the frequency response of devicemi on
subchannel nj. N0 is Gaussian noise. NEMI

j (t) is the electromagnetic

interference generated by the operation of the electrical equipment.
We use the alpha steady-state function to describe electromagnetic
interference (Zhou et al., 2016), and its characteristic function is
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FIGURE 1
Delay and cost-balanced communication resource management framework for IoT-empowered distribution energy dispatch.

given by

lg f (x) =
{{
{{
{

−θν|x|ν [1− jηsign (x) tanπν
2
] + jμx ,ν ≠ 1

−θ|x|[1− jηsign (x) 2
π
lg|x|] + jμx ,ν = 1

, (4)

where ν ∈ (0,2) is the characteristic index. η ∈ [−1,1] is a skewed
parameter that determines the slope. θ > 0 is a scale parameter used
to measure the dispersion. μ ∈ R is a positional parameter. When
ν ∈ (1,2], μ represents the average value; when ν ∈ (0,1], μ represents
the median. sign(⋅) is the sign function.

Define the SINR of devicemi on subchannel nj as

SINRi,j (t) =
Pi,j (t)gi,j (t)

Γi
. (5)

To ensure reliable data transmission, the SINR constraint is
given by

SINRi,j (t) ≥ SINRmin, (6)

where SINRmin represents the lower bound of SINR.

2.2 Transmission delay and the traffic cost
model

The data stored atmi is modeled as a device-side data queue, the
backlog of which evolves as

Li (t+ 1) = Li (t) +Ai (t) −Di (t) , (7)

where Ai(t) is mi’s collected data amount in the t-th slot. Di(t)
is mi’s throughput, i.e., the amount of data leaving Li(t), which is
calculated as

Di (t) =min{Li (t) +Ai (t) ,τ
J

∑
j=1

yi,j (t)Ri,j (t)}. (8)

Therefore, in the t-th slot, the data transmission delay from mi
to the edge server is given by

τi (t) =min
{{
{{
{

τ,
Li (t) +Ai (t)

∑J
j=1

Ri,j (t)

}}
}}
}

. (9)
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Since the PLC network belongs to the power grid
assets, there is no additional traffic cost when using PLC
for data transmission. On the other hand, although 5G
provides a higher transmission rate, it belongs to the assets
of the telecommunication operator. Extra traffic cost is
required when using 5G for data transmission, which is
given by

Ci (t) = x
5G
i (v)e

5G (v)Di (t) , (10)

where e5G(v) represents the unit cost of transmitting
single bit data through the 5G subchannel at the
v-th epoch.

2.3 Queuing delay model

For the data queue, we normally expect the mean rate of data
queue to be stable. Li(t) is mean rate stable if

lim
T→∞

𝔼{|Li (t) |}
T
= 0. (11)

Queuing delay is defined as the ratio obtained by dividing the
average quantity of data backlogged in the queue by the mean rate
at which data arrive.Then, the queuing delay of data transmission at
devicemi is given by

τquei (t) =
Li (t)
Âi (t)
, (12)

where Âi(t) is the average data arrival rate of mi, which is
calculated as

Âi (t) =
1

t− 1

t−1

∑
s=1

Ai (s) . (13)

To avoid a large queue backlog and meet the low-delay
requirement of energy dispatch, a constraint of the long-term
average queuing delay over T slots is given by

lim
T→∞

1
T

T

∑
t=1

τquei (t) ≤ τ
que
i,max, (14)

where τquei,max represents the average queuing delay threshold.

2.4 Problem formulation

The optimization problem is a joint minimization problem
that aims to jointly minimize data transmission delay and
traffic cost through the large-timescale optimization of device
communication mode selection and the small-timescale
optimization of subchannel allocation. The constraints of the
subchannel allocation number, subchannel allocation quota,
data transmission reliability, and long-term average queuing
delay are taken into account. The data transmission delay
and traffic cost joint minimization problem is formulated

as

P1: min
{xi(v),yi,j(t)}

lim
T→∞

1
T

T

∑
t=1

I

∑
i=1
[τi (t) + αCi (t)]

s.t. C1: x
PLC
i (v) ,x

5G
i (v) ∈ {0,1} ,∀mi ∈M,∀v ∈ V ,

C2: x
PLC
i (v) + x

5G
i (v) = 1,∀mi ∈M,∀v ∈ V ,

C3: 0 ≤
I

∑
i=1

xPLCi (v) ≤ J1,∀v ∈ V ,

C4: 0 ≤
I

∑
i=1

x5Gi (v) ≤ J2,∀v ∈ V ,

C5: 0 ≤
J

∑
j=1
[xPLCi (v)yi,j (t) + x

5G
i (v)yi,j (t)]

≤ qm,∀mi ∈M,∀t ∈ T ,∀v ∈ V

C6:
I

∑
i=1
[xPLCi (v)yi,j (t) + x

5G
i (v)yi,j (t)]

≤ 1,∀nj ∈N ,∀t ∈ T ,∀v ∈ V
C7: SINRi,j (t) ≥ SINRmin,∀mi ∈M,∀nj ∈N ,∀t ∈ T ,

C8: limT→∞

1
T

T

∑
t=1

τquei (t) ≤ τ
que
i,max, (15)

where α represents the weight of traffic cost. C1 is the
constraint of the large-timescale device communication mode
selection variable. C2 indicates that the device can only
choose one of the communication modes in an epoch. C3
indicates that PLC channels can be allocated to at most J1
devices. C4 indicates that 5G subchannels can be allocated
to at most J2 devices. C5 is the constraint on the number
of subchannels allocated to one device in each slot. C6
indicates that each subchannel can be allocated to at most
one device. C7 is the constraint of the data transmission
reliability requirement. C8 is the constraint of long-term average
queuing delay.

2.5 Problem transformation

The formulated joint optimization problem is a stochastic
problem with a long-term perspective, which cannot be solved
in polynomial time because the long-term constraint of average
queuing delay is coupled with the short-term tradeoff between
queuing delay and traffic cost per slot.Therefore, we utilize Lyapunov
optimization to provide a tractable solution by transforming the
problem based on the virtual queue concept. Specifically, virtual
queue Oi(t) corresponding to C8 evolves as

Oi (t+ 1) =max{Oi (t) + τ
que
i (t) − τ

que
i,max,0} . (16)

If Oi(t) is mean rate stable, C8 holds automatically. Based on
Oi(t), P1 is rewritten as

P2: min
{xi(v),yi,j(t)}

I

∑
i=1
[τi (t) + αCi (t) +Oi (t)τ

que
i (t)]

s.t. C1 ∼ C7. (17)
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FIGURE 2
Schematic diagram of the delay and cost-balanced communication resource management algorithm based on two-layer iterative matching.

3 Delay and cost-balanced
communication resource
management algorithm based on
two-layer iterative matching

The optimization problem formulated in (17) involves both
large and small timescales. To address it, we propose a delay
and cost balanced communication resource management algorithm
based on two-layer iterative matching, which is shown in Figure 2.
First, the initial optimization problem has been broken down into
a communication mode selection subproblem in large-timescale
epoch and a subchannel allocation subproblem in a small-
timescale slot. Next, we propose a large-timescale communication
mode selection algorithm based on I-to-2 bidding matching to
select the communication mode at each epoch. Here, I-to-2
indicates that the matching is implemented in a bidding fashion
between I devices and two communication modes. On this
basis, based on the many-to-many deferred acceptance matching
algorithm, a small-timescale subchannel allocation algorithm is
proposed to match devices with subchannels based on bilateral
preferences.

3.1 Large-timescale communication mode
selection based on I-to-2 bidding matching

In this subsection, the proposed large-timescale communication
mode selection algorithm based on I-to-2 bidding matching is
introduced. It establishes a stable matching between I devices
and two communication modes through iterative bidding. As the
communication mode selected by a device in a large-timescale
epoch influences the data transmission delay and traffic cost
of multiple slots in that epoch, the large-timescale decision-
making is coupled with future performance of small-timescale
optimization. To address the issue of the lack of a priori knowledge
of future performance, historical data transmission delay and
historical traffic cost are used to construct the preference value

of device toward the communication mode. Then, a device
selects its most preferred communication mode based on the
preference values.

However, due to the constraint of the subchannel number,
matching competition among devices occurs if the device number
selecting the PLC mode exceeds J1, or the device number selecting
the 5G communication mode exceeds J2. Bidding matching can
effectively solve the competition between devices, improve the
convergence speed, and reduce the complexity by lowering the
preference value so as to enforce devices giving up competing
for the same communication mode. The proposed algorithm
adopts iterative bidding to resolve competition among devices
toward communication mode selection. Specifically, a bidding
price is introduced to reduce the preference value of a device
toward the competing communication mode at each iteration,
thereby forcing some devices to choose the other communication
mode and quit competition. Moreover, the bidding price can be
dynamically adjusted according to the virtual queue backlog and
queuing delay to provide higher priority for devices with a larger
queue backlog and queuing delay. The specific implementation
procedures are summarized in Algorithm 1, which are
introduced below.

3.1.1 Initialization
Define the preference values of device mi for selecting

the PLC mode and 5G communication mode as γPLCi (v)
and γ5Gi (v), respectively. The bidding prices for device mi to
select the PLC mode or 5G communication mode are defined
as pPLCi (v) and p5Gi (v).

Represent the set of devices queuing for matching as
Π, the set of devices that issue requests to PLC mode
as ΛPLC, and the set of devices that issue requests to 5G
communication mode as Λ5G. Initialize Π =M, ΛPLC = ∅,
Λ5G = ∅, γPLCi (0) = ρ, and γ5Gi (0) = ρ, ∀mi ∈M, where ρ is a
predefined constant.

Frontiers in Energy Research 07 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1378320
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Shi 10.3389/fenrg.2024.1378320

1: For v = 1,2,…,V, do

2:   Phase 1: Initialization

3:   Initialize Π =M, ΛPLC = ∅, Λ5G = ∅,
γPLC
i
(0) = ρ, and γ5G

i
(0) = ρ.

4:   Phase 2: 5G and PLC preference

value calculation

5:  Calculate γPLC
i
(v) and γ5G

i
(v) based on (18) and

(19).

6:  while Π ≠ ∅, do
7:    Phase 3: 5G and PLC preference

list construction

8:    Construct Pi based on γPLC
i
(v) and γ5G

i
(v).

9:    Phase 4: I-to-2 matching

10:    mi ∈M sends matching request to its

most preferred communication mode based on γPLC
i
(v)

and γ5G
i
(v).

11:    if |ΛPLC| ≤ J1, then

12:      mi ∈ ΛPLC selects the PLC mode and sets the

corresponding xPLC
i
(v) = 1.

13:      Update Π = Π ΛPLC

14:    end if

15:    if |Λ5G| ≤ J2, then

16:      mi ∈ Λ5G selects the 5G communication mode

and sets the corresponding x5G
i
(v) = 1.

17:      Update Π = Π Λ5G

18:    end if

19:    Phase 5: bidding matching and preference

value update

20:    if |ΛPLC| > J1, then

21:    mi ∈ ΛPLC starts bidding and updates γPLC
i
(v)

based on Eq. (20) and (22).

22:    if ∃mi ∈ ΛPLC,γ
PLC
i
(v) < γ5G

i
(v), then

23:      mi sends matching request to the 5G

communication mode and updates ΛPLC = ΛPLC mi.

24:     end if

25:   end if

26:   if |Λ5G| > J2, then

27:    mi ∈ Λ5G starts bidding and updates γ5G
i
(v)

based on Eq. (21) and (23).

28:    if ∃mi ∈ Λ5G,γ
5G
i
(v) < γPLC

i
(v), then

29:      mi sends matching request to the PLC mode

and updates Λ5G = Λ5G mi.

30:    end if

31:   end if

32:   Repeat the above steps until Π = ∅.
33:  end while

34:end for

Algorithm 1. Large-timescale communication mode selection based on I-
to-2 bidding matching.

3.1.2 5G and PLC preference value calculation
The preference values γPLCi (v) and γ5Gi (v) are calculated by the

edge server. We utilize the historical performance to calculate the
preference values γPLCi (v) and γ5Gi (v), which are represented as Eq.
18, Eq. 19, respectively. Here, Eq. 18 is considered an example.
The first term of the numerator, i.e., γPLCi (v− 1)(∑

v−1
z=1x

PLC
i (z) + 1),

represents the accumulative preference value of mi for PLC until
the (v− 1)-th epoch, while the second term of the numerator,

i.e., xPLCi (v)
∑vT0t=(v−1)T0

τi(t)

T0
, represents the average transmission delay of

mi within the v-th epoch. The denominator, i.e., ∑vz=1x
PLC
i (z) + 1,

represents the total number of selecting PLC mode of mi until the
v-th epoch. Eq. 19 is defined similarly.

γPLCi (v) =
γPLCi (v− 1)(∑

v−1
z=1x

PLC
i (z) + 1) − x

PLC
i (v)

∑vT0t=(v−1)T0
τi(t)

T0

∑vz=1x
PLC
i (z) + 1

,

(18)

γ5Gi (v) =
γ5Gi (v− 1)(∑

v−1
z=1x

5G
i (z) + 1) − x

5G
i (v)

∑vT0t=(v−1)T0
(τi(t)+αCi(t))

T0

∑vz=1x
5G
i (z) + 1

.

(19)

3.1.3 5G and PLC preference list construction
Denote the 5G and PLC preference list of device mi as

Pi. Each device constructs the preference list by arranging
its preference values γPLCi (v) and γ5Gi (v) in a descending
order. The communication mode with the largest preference
value is prioritized to be selected, which ranks top in the
preference list.

3.1.4 I-to-2 matching
Each device mi ∈Π issues a matching request to its most

preferred communication mode based on its preference list. Denote
the number of devices selecting the PLC mode as |ΛPLC|, which
is the number of elements in the set ΛPLC. Similarly, the number
of devices selecting the 5G communication mode is |Λ5G|. When
|ΛPLC| ≤ J1, devices selecting the PLC mode, i.e., mi ∈ ΛPLC, are
matched successfully with the PLC mode, i.e., xPLCi (v) = 1. Then,
the devices which are successfully matched with the PLC mode
are removed from the set of unmatched devices, i.e., Π =Π\ΛPLC.
Similarly, when |Λ5G| ≤ J2, devices selecting the 5G mode, i.e.,
mi ∈ Λ5G, are matched successfully with the 5G communication
mode, i.e., x5Gi (v) = 1. Then, the devices which are successfully
matched with the 5G mode are removed from the set of unmatched
devices, i.e.,Π =Π\Λ5G.
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3.1.5 Bidding matching and preference value
update

When |ΛPLC| ≥ J1 or |Λ5G| ≥ J2, competition of communication
mode selection occurs, and C3 or C4 cannot be satisfied. To address
the competition issues, bidding matching is proposed to iteratively
reduce the preference value based on the bidding price. Moreover,
the bidding price can be dynamically adjusted to enable larger
preference for devices with a large queuing delay and virtual
queue backlog.

To enable higher priority for devices with a larger virtual
queue backlog and queuing delay, the bidding price is negatively
proportional to an historical virtual queue backlog and queuing
delay. The bidding prices of device mi toward PLC and 5G modes
are given by

pPLCi (v) =
βPLCγPLCi (v)

∑vT0
t=(v−1)T0

Oi (t)τ
que
i (t)
, (20)

p5Gi (v) =
β5Gγ5Gi (v)

∑vT0
t=(v−1)T0

Oi (t)τ
que
i (t)
, (21)

where βPLC and β5G denote the bidding price coefficients for the
PLC and 5G communication modes, respectively. Taking (20) as
an example, the numerator represents the bidding step size, and
the denominator represents the historical virtual queue backlog and
queuing delay.

The device mi reduces its preference values for the PLC and 5G
communication modes by subtracting the bidding prices, which are
given by

γPLCi (v) = γ
PLC
i (v) − p

PLC
i (v) , (22)

γ5Gi (v) = γ
5G
i (v) − p

5G
i (v) . (23)

Since the bidding price is negatively related to the virtual
queue backlog and queuing delay, devices with worse historical
performances will have a larger preference value and higher priority
to be matched.

Then, repeat 3), 4), and 5) untilΠ = ∅.
In 3), i.e., the procedure of 5G and PLC preference list

construction, devices reconstruct the preference list based on the
updated preference values. The subtraction of bidding price lowers
the preference value and changes the ranking of communication
modes in the preference list. For example, device mi which used
to select PLC in the previous iteration may select 5G in the
current iteration because the preference value toward PLC is
reduced, and the PLC mode becomes less attractive than 5G.
In this way, bidding price enforces some devices to withdraw
matching, thereby resolving communication mode selection
competition.

3.2 Small-timescale subchannel allocation
based on many-to-many deferred
acceptance matching

Based on the large-timescale optimization results of
communication mode selection, the small-timescale subchannel
allocation problem is decomposed into a PLC subchannel allocation

subproblem and a 5G subchannel allocation subproblem, which
can be solved simultaneously by the proposed many-to-many
deferred acceptance matching. The objective is to minimize the
weighted sum of data transmission delay and traffic cost by
establishing a bilateral matching relationship between devices and
subchannels. Some definitions of the algorithm put forward are
described below.

Definition 1 (Bilateral preference relation): For the matching
between devices and subchannels, the complete, reflective, and
transitive bilateral relation between devices and subchannels, i.e.,“
≻,” is expressed” through the bilateral preference relation, which
indicates the extent ofmutual preference. It is introduced to compare
the preferences as

mi≻njnj′⇔ ωi,j (t) > ωi,j′ (t) , (24a)

nj≻mi
mi′ ⇔ λi,j (t) > λi′,j (t) , (24b)

where ⇔ means equivalence. mi≻njn
′
j means that

the device mi prefers the subchannel nj more than the
subchannel nj′ because ωi,j′(t) is smaller than the preference
value ωi,j(t). nj≻mi

mi′ means that the subchannel nj prefers the
device mi more than the device mi’ because λi′,j(t) is smaller than
the preference value λi,j(t).

Definition 2 (bilateral matching): The small-timescale
subchannel allocation is a bilateral matching ϕ with constraints
of device quota and transmission reliability, i.e.,

ϕ(mi) ⊆N and |ϕ(mi) | ≤ qm,∀nj ∈N , (25a)

ϕ(nj) ⊆M and |ϕ(nj) | ≤ 1,∀mi ∈M, (25b)

ϕ(mi) ⊆N and SINRi,j (t) ≥ SINRmin,∀mi ∈M, (25c)

nj ∈ ϕ(mi) ⇔mi ∈ ϕ(nj) , (25d)

where (25a) ensures that at most qm subchannels can be allocated to
mi. (25b) indicates that each subchannel can be allocated to at most
one device. (25c) indicates that the SINR of the subchannel allocated
tomi needs tomeet the requirement of transmission reliability. (25d)
means that the subchannel nj is matched to the device mi if mi is
matched to nj.

Definition 3 (stable matching): If the matching ϕ satisfies
individual rationality criteria and is not disrupted by any pair, it is
deemed to be stable.

Based on the above definitions, we propose the small-
timescale subchannel allocation algorithm based on many-to-
many deferred acceptance matching. Algorithm 2 encapsulates the
detailed procedural steps for implementation.

3.2.1 Grouping and initialization
According to the large-timescale optimization results of

communicationmode selection, devices are divided into two groups.
Among them, the devices that select the PLC mode belong to the
setMPLC, and the devices that select the 5G communication mode
belong to the set M5G. Define Θi(t) as the set of PLC subchannels
that are currentlymatchedwithmi. Denote |Θi(t)| as the size ofΘi(t),
i.e., the number of subchannels allocated to mi. Initialize yi,j(t) = 0
and Θi(t) = ∅.

3.2.2 Bilateral preference value calculation
According to the grouping results, ∀mi ∈MPLC, the preference

values ofmi toward the PLC subchannel nj are calculated by the edge
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1:for t = (v−1)T0 +1, (v−1)T0 +2,…,vT0 do

2:   Phase 1: Grouping and initialization

3:   Initialize Θi(t) = ∅ and yi,j = 0.

4:   Phase 2: Bilateral preference value

calculation

5:   ∀mi ∈M calculates its preference value toward

nj based on (26) and (28).

6:   ∀nj ∈N calculates its preference value toward

mi based on (27) and (29).

7:   Phase 3: Bilateral partial preference list

construction

8:   mi and nj construct FD
i
and FC

j
based on C7 and

large-timescale optimization results.

9:   Phase 4: Device and 5G subchannel bilateral

deferred acceptance matching

10:   ∀mi ∈M5G sends matching proposals to its

most preferred (qm − |Θi(t)|) 5G subchannel in FD
i
.

11:   for nj,j = J1 +1,…,J do

12:    if C6 is satisfied then

13:     Derive stable matching between devices and

5G subchannels.

14:    end if

15:    if C6 is not satisfied then

16:     if yi,j = 0 then

17:      nj selects the device mi with the largest

preference rejects the other devices and sets

yi,j(t) = 1.

18:     else

19:        nj compares mi’ with mi and selects the

device with the largest preference value.

20:        nj rejects the other devices and renews

the tentative matching relationship.

21:     end if

22:    end if

23:    Remove the devices which are temporarily

matched with 5G subchannels from FC
j
. Remove the 5G

subchannels which have rejected

mi from FD
i
.

24:    Repeat the above steps until no 5G

subchannel remains.

25:   end for

26:   Phase 5: Device and PLC subchannel bilateral

deferred acceptance matching

27:   Perform the bilateral deferred acceptance

matching between devices and PLC subchannel

similarly.

28: end for

Algorithm 2. Small-timescale subchannel allocation based on many-to-
many deferred acceptance matching.

server, which is defined as the reciprocal of the data transmission
delay, i.e.,

ωi,j (t) =
xPLCi (v)
τi (t)
, j = 1,…, J1. (26)

Considering higher priority for devices with a large virtual
queue backlog and queuing delay, the preference value of
the PLC subchannel nj toward mi is defined as the product
of the virtual queue backlog and queuing delay, which is
given by

λi,j (t) = x
PLC
i (v)Oi (t)τ

que
i (t) , j = 1,…, J1. (27)

Similarly, ∀mi ∈M5G, combined with the extra traffic cost
of using 5G subchannels, the preference value of mi toward 5G
subchannel nj is defined as

ωi,j (t) =
x5Gi (v)

τi (t) + αCi (t)
, j = J1,…, J. (28)

The preference value of the 5G subchannel nj toward mi is
given by

λi,j (t) = x
5G
i (v)Oi (t)τ

que
i (t) , j = J1,…, J. (29)

3.2.3 Bilateral partial preference list construction
Unlike the large-timescale matching in communication mode

selection, the preference list of subchannel allocation is partial
because subchannels which cannot meet the minimum SINR
requirement are removed from the preference list. Assuming
that device mi selects the 5G communication mode, the set
of available 5G subchannels for mi is defined as Ni(t) =
{nj|nj ∈N ,SINRi,j(t) ≥ SINRmin, j = J1 + 1,…, J}.

Then,mi constructs the partial preference list of 5G subchannels,
i.e., FD

i , by sorting the preference values of 5G subchannels of set
Ni(t) in descending order. Next, each 5G subchannel constructs
the preference list of devices based on (29). The partial preference
list of the subchannel nj is defined as FC

j . The bilateral preference
lists between devices and PLC subchannels are constructed
similarly.

3.2.4 Device and 5G subchannel bilateral
deferred acceptance matching

Bilateral deferred acceptance is used to derive a stable matching
between devices and 5G subchannels.

Frontiers in Energy Research 10 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1378320
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Shi 10.3389/fenrg.2024.1378320

TABLE 2 Simulation parameters (Seo, 2012).

Parameter Value Parameter Value

J1, J2 1000, 280 I 100

qm 100 Rmax
j 8 bits/symbol

T 100 Pi,j(t) −17 dBm

V 10 T0 10

τ 1 s e5G(v) 0.4 $/Gbits

ρ 1 SINRmin 12.3 dB

Ns 14,000 symbols/s α 200

N0 −114 dBm Pe 10–7

ν 1.4 η −0.791

θ 10–4 μ [1.2,2.6]

Step 1: mi ∈M5G sends matching proposals to its most preferred
(qm − |Θi(t)|) 5G subchannels in its preference list FD

i .

Step 2: Each 5G subchannel, i.e., nj, j = J1 + 1,…, J, calculates the
total number of received matching proposals. If the matching
proposals received by all 5G subchannels meet the constraint C6,
then a stable matching between devices and 5G subchannels is
derived. The bilateral deferred acceptance matching is terminated.
Otherwise, if the constraint C6 is not satisfied, execute Step 3.

Step 3: Assume that nj receives more than one matching proposals.
If nj has not established a tentative matching relationship with
any device in previous iterations, it selects the device with the
largest preference, e.g., mi, and rejects the other devices. Then, a
tentativematching relationship is established between nj andmi, i.e.,
yi,j(t) = 1.

If nj has established a tentative matching relationship with some
device in previous iterations, e.g., mi’, it compares mi’ with mi
and selects the device with the largest preference value. Next, it
rejects other devices and renews the tentative matching relationship.
Therefore, devices which have been matched with subchannels
in previous iterations may get rejected in later iterators if better
matching candidate appears, which stands for the meaning of
deferred acceptance.

Step 4: The devices which are temporarily matched with 5G
subchannels are removed from the set FC

j . Meanwhile, the 5G
subchannels which have rejected mi are removed from the set FD

i .
Then, go back to Step 1 and reperform bilateral matching for the
rejected devices until no 5G subchannel remains.

3.2.5 Device and PLC subchannel bilateral
deferred acceptance matching

The bilateral deferred acceptance matching between devices
and PLC subchannels is performed similarly as that of 5G.
The iterative process between nj and mi is repeated until no
PLC subchannel remains. The proposed algorithm divides devices

FIGURE 3
Weighted sum of data transmission delay and traffic cost versus time
slot (I = 100).

FIGURE 4
Weighted sum of data transmission delay and traffic cost versus the
number of devices.

into two groups based on the large-timescale communication
mode selection result and allows parallel implementation of two
matchings. This dramatically reduces matching complexity and
convergence performance compared to existing approaches.

4 Simulation results

Within this segment, the efficacy of the algorithm put forward
is assessed via simulation-based analysis. An IoT-empowered
distribution energy dispatch scenario containing 10 IoT devices is
set. The quota of subchannel allocation qm is set as 10. There are
128 orthogonal subchannels, including 100 PLC subchannels and 28
5G subchannels. The alpha steady-state function is used to describe
electromagnetic interference. Table 2 presents the parameters used
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FIGURE 5
Traffic cost versus proportion of the 5G subchannel.

FIGURE 6
Data transmission delay and traffic cost versus α.

for the simulation (Liao et al., 2020; Zhang P. et al., 2023). Two
existing algorithms are compared with the algorithm put forward.
The first algorithm is the resource allocation scheme based on
the fire algorithm (RAF), which minimizes the weighted sum of
transmission delay and traffic cost and ignores the large-timescale
optimization of communication mode selection (Liu et al., 2019).
The second algorithm is the resource allocation algorithm based
on one-to-many matching (RAOM), which neglects the traffic cost
optimization (Yuan et al., 2019). Both comparison algorithmsdonot
consider the long-term average queuing delay constraint.

Figure 3 shows the weighted sum of data transmission delay
and traffic cost versus time slot. With the device number escalating
from 100 to 300, the weighted sum performances of the proposed
algorithm, RAF, and RAOM exhibit enhancements of 20.82%,
53.78%, and 37.47%, respectively. The algorithm put forward
considers the optimization of the communication mode selection
and subchannel allocation in a multi-timescale. In a large timescale,
by updating the bidding price, the proposed algorithm resolves
the conflicts among devices. In a small timescale, the proposed

FIGURE 7
Box plots of the virtual queue backlog.

FIGURE 8
Weighted sum of data transmission delay and traffic cost versus
SINRmin.

algorithm calculates the preference value based on the data
transmission delay, traffic cost, virtual queue backlog, and queuing
delay. The proposed algorithm constructs the partial preference
list, according to the data transmission reliability requirement,
and executes the grouping matching based on the large-timescale
decisions. This effectively reduces the complexity of matching
iteration and improves the weighted sum of data transmission delay
and traffic cost while satisfying the long-term average queuing delay
constraint. RAF ignores the large-timescale communication mode
selection, leading to the high complexity and worse weighted sum
performance. RAOM does not consider traffic cost optimization,
and its performance is the worst.

Figure 4 shows the weighted sum of data transmission
delay and traffic cost versus the number of devices. With the
device number escalating from 10 to 110, the weighted sum
performances of the proposed algorithm, RAF, and RAOM exhibit
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enhancements of 20.82%, 53.78%, and 37.47%, respectively.
When I = 110, compared with RAF and RAOM, the proposed
algorithm reduces the weighted sum performance by 33.13% and
53.65%, respectively. The algorithm put forward addresses the
conflicts through the dynamic bidding in a large timescale and
the bilateral deferred acceptance matching in a small timescale,
which can achieve the stable two-layer iterative matching strategies
among devices.

Figure 5 shows the traffic cost versus proportion of the 5G
subchannel. As the proportion of the 5G subchannel increases
from 15% to 60%, the traffic cost of the proposed algorithm
increases at a slower pace compared to that of RAF and RAOM.
When the proportion of 5G subchannel is 60%, the traffic cost
of the proposed algorithm is 34.03% and 53.35% lower than
those of RAF and RAOM, respectively. The proposed algorithm
considers the trade-off between data transmission delay and
traffic cost, avoiding the problem of high traffic cost due to
the excessive selection of 5G channels when the 5G subchannel
number is high.

Figure 6 shows the data transmission delay and traffic cost
versus α. The simulation result shows that the traffic cost
increases gradually with α, while the data transmission delay
decreases contrarily. When α increases from 100 to 900, the data
transmission delay is reduced by 95.25%, and the traffic cost
is increased by 55.45%. The increase in α makes the proposed
algorithm tend to optimize the transmission delay. Therefore, a
dynamic tradeoff is achieved between data transmission delay
and traffic cost by adaptively adjusting α in the proposed
algorithm.

Figure 7 shows the box plots of the virtual queue backlog.
Compared with RAF and RAOM, the proposed algorithm
reduces the median virtual queue backlog by 23.73% and
30.08%, respectively. The proposed algorithm transforms the
long-term constraint of average queuing delay into the stability
of virtual queue based on Lyapunov optimization. Moreover, it
considers the virtual queue of queuing delay into the preference
value calculation and effectively solves the competition problem
among devices.

Figure 8 shows the weighted sum of data transmission delay
and traffic cost versus SINRmin. As SINRmin increases, the weighted
sum performances of the three algorithms gradually increase.
The proposed algorithm achieves smallest increment. This is
due to the decrease in available channels caused by the increase
in SINRmin, resulting in an overall performance degradation.
The proposed algorithm can optimize the communication
resource allocation strategies based on the alternately iterative
matching between the large timescale and small timescale.
In addition, the proposed algorithm enhances the optimality
of matching through the bidding and deferred acceptance
mechanisms.

5 Conclusion

In this paper, we addressed the joint minimization problem
of data transmission delay and traffic cost. The delay and cost-
balanced communication resourcemanagement algorithm based on
two-layer iterative matching is proposed to satisfy the constraints

of the subchannel allocation number, subchannel allocation quota,
data transmission reliability, and long-term average queuing delay
by jointly optimizing the large-timescale communication mode
selection and small-timescale subchannel allocation. Compared
with the RAF and RAOM algorithm, the proposed algorithm
reduces the weighted sum of data transmission delay and traffic
cost by 43.22% and 22.13%, respectively. Particularly, the proposed
algorithm can efficiently guarantee the long-term average queuing
delay constraint. Compared with RAF and RAOM, the proposed
algorithm reduces the median virtual queue backlog by 23.73% and
30.08% and achieves the best queuing delay performance.

The large-scale access of IoT devices causes an explosion of data
for distribution energy dispatch. Limited computing resources of the
edge server cannot meet the data processing demands. A potential
solution is to combine edge computing with cloud computing,
thereby constructing a cloud-edge collaborative computing
framework to improve the data processing capacity. However,
this increases the optimization complexity of communication
resource allocation. How to reasonably allocate computing
resources to meet the data processing requirements with different
service priority is also an open issue. Therefore, future work
will focus on the joint optimization of cloud-edge collaborative
communication and computing resources to further improve the
data processing performance for IoT-empowered distribution grid
energy dispatch.
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