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Introduction: The electricity generated from nuclear plants and petroleum-
based products has a negative influence on the environment as a whole. It has
shown the utility to search out and promote the utilization of renewable,
environmentally friendly, and sustainable energy sources such as solar, wind,
and geothermal. Nowadays, Wind energy resource has quickly emerged as the
world’s fastest-growing energy source.

Methods: However, the selection of the most suitable places for developing a
wind farm is a crucial challenge that can be seen as a problem of site selection,
which involves numerous conflicting variables. Therefore, it is classified as an
MCDM (multi-criteria decision-making) problem. The main objective of this
research is to determine the best locations in Burundi for the installation of
wind farms. The Fuzzy Analytic Hierarchy Process (FAHP) was used to weigh the
criteria considering their relative importance. This study considers several key
factors when determining the optimal location for a wind farm. These factors
include wind speed, slope, proximity to the grid network, distance to roads, and
land use/land cover (LULC). Furthermore, a geographic information system (GIS)
is utilized to generate the final suitability wind farm locations map.

Results and Discussion: The obtained results indicate that 20.91% of the whole
study area is suitable nevertheless, only 1.96% is tremendously suitable for wind
turbine placement. The western part of Burundi is the optimal area for
constructing a wind farm, and the most is in Lake Tanganyika.
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1 Introduction

Energy is a major factor in any country’s sustainable development and prosperity.
However, the growing trend in energy demand is followed by an increase in the global use of
fossil fuels, which results in significant climate, environmental, and health costs. (IEA, 2021;
Mohammadzadeh et al., 2018).With this rapid increase in energy demand, the development
of technologies for harvesting renewable energy has also accelerated. Wind energy, as stated
by the Global Wind Energy Council (GWEC), is a renewable energy source that has
experienced remarkable and rapid development. The global wind power capacity reached
743 GW by the end of 2020, with an addition of 93 GW in the same year. By 2021, it
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surpassed 840 GW, and by 2022, it reached 906 GWwith 9% growth
(Rajendran et al., 2022; Global Wind Energy Council, 2023).

Wind energy represents one of the most promising, mature, and
rapidly expanding renewable energy sources (Saraswat et al., 2021;
Shahid et al., 2019). Its fastest growth is explained by the fact that it is
considered a clean, reliable, and renewable energy resource that
positively contributes to minimizing the issue of worldwide
concerns about climate change and energy sources (Diffendorfer
et al., 2021). Furthermore, the utilization of wind energy not only
generates employment opportunities but also contributes to the
reduction of CO2 emissions. According to research, wind energy use
is anticipated to increase in Canada, Sweden, China, and Germany
by 2025 (Sadorsky, 2021). This clean and affordable energy source
not only appeals to investors but also provides a practical solution
for reducing dependency on fossil fuels. Studies have demonstrated
that combining wind turbines with other energy sources can
effectively decrease carbon emissions (Yousefi et al., 2022).

Moreover, wind resources are intrinsically unpredictable
because of their dependency on geographic and climatic factors
as well as the time of the region under consideration. This
results in different values from one place to another for daily
and seasonal changes. Therefore, there is a clear need for an
effective assessment of suitable placements for the installation
of wind turbines to maximize wind energy production while
minimizing the effects of different challenges (Wu et al., 2018;
Damousis et al., 2004).

At a given scale, wind energy is generated by installing wind
farms in the windy areas. Selecting the right type of turbine is vital
for establishing a sustainable wind farm. It must be able to
seamlessly adjust to the diverse topography, climate, and time
conditions of the site. The process of making a choice is often
influenced by various factors, where multiple decision criteria
conflict with each other (Rediske et al., 2021; Seyed et al., 2022;
Badi et al., 2023). These factors include the following key technical
requirements (Yousefi et al., 2022):

- Sustained wind speed that is adequate for generating
substantial power;

- Sufficient area to accommodate wind turbines and related
infrastructure;

- Ground conditions that are suitable for constructing and
operating the wind farm;

- Access to the electricity grid, enabling the distribution of the
generated power;

- Feasibility of providing access for oversized loads that may be
required during construction or maintenance;

- Terrain and topography suitable for optimal wind turbine
placement and operation.

Several strategies can be employed to effectively tackle the
challenges of selecting turbines considering their multi-criteria
nature. They fall under the domain of multi-criteria decision-
making (MCDM). MCDM is an operation sub-discipline that
assesses several operational competing factors in
decision-making.

MCDM methods are used to handle decision problems
involving multiple factors in the decision-making process. These
criteria conflict with each other and are mutually in-

commensurable. Incommensurability refers to a scenario where
the decision criteria have different units and magnitudes.
Numerous MCDMs have been developed by researchers and
each has advantages as well as disadvantages; therefore, the
choice of which one to use is also an important decision.
Common techniques include the weighted sum method,
PROMETHEE, TOPSIS, VIKOR, ELECTRE, goal programming,
AHP, Grey relation analysis, minimummanhattan distance (MMD)
approach and Fuzzy logic, among others. (Mardani et al., 2015; Gr,
2020; Łaska, 2020; Indrajayanthan and Mohanty, 2022).

Numerous research studies have been conducted worldwide
to identify the best areas for wind power facilities, using various
MCDM methods. To determine the most effective approach for
this study, previous works on the subject are thoroughly
examined. Table 1 provides a comprehensive overview of prior
research on wind farm site selection, prominently showcasing the
MCDM-FAHP method as the premier decision-making tool for
identifying the best location. The MCDM-FAHP method has not
only been widely used for selecting wind farm sites but has also
demonstrated its usefulness in other domains like solar farms,
urban planning and resource allocation (Seyed et al., 2022;
Barakat et al., 2019; Li et al., 2022). What sets it apart from
other methods is its capacity to handle intricate decision-making
situations and yield dependable outcomes. Therefore, it can be
confirmed that the FAHP method rep-resents unrivaled
effectiveness and efficiency, making it the ideal choice for
implementation in the present study.

MCDM methods have a significant limitation in their
applicability, particularly when it comes to decision-making
based on both ‘AND’ and ‘OR’ operations between criteria. In
such situations, these approaches become ineffective. However,
the Fuzzy logic theory provides a viable solution as it can handle
decision rules involving ‘AND’ or ‘OR’ operations and effectively
manage complex scenarios that combine ‘AND-OR’ type rules. This
is why the implementation of Fuzzy logic is highly advantageous in
developing and executing multiple decision criteria for wind farm
site selection.

The fuzzy logic tool is based on Zadeh’s fuzzy set theory, which
he proposed in 1965 (Zimmermann, 2010). The fuzzy set theory
offers a framework in which several conceptual phenomena can be
precisely and rigorously analyzed. Furthermore, it can also be
considered as a modelling language, fitting for cases in which fuzzy
relations, criteria, and phenomena exist. A fuzzy logic tool is an
essential tool in risk assessment in the way it compensates for the
lack of knowledge and ambiguity faced when assessing the risks
related to complex technological systems. It is also more useful
when working with fuzzy linguistic concepts like low, medium,
high, etc. (Gr, 2020; Nguyen et al., 2022).

The main steps in the fuzzy-logic method procedure are
depicted in Figure 1(Badran et al., 2011; Abdelmassih et al., 2021;
Mustafa and Barabadi, 2022):

- Rule base: it contains all the rules and conditions defined by
experts to control the decision-making system;

- Fuzzification process: in this step, the input variable values are
provided by experts. It permits to convert crisp inputs into
fuzzy sets that correspond to the intuitive perception of the
system’s status;
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- Inference engine: this component helps to determine the
degree of match between fuzzy inputs and the rules. It is a
main step because all information is treated in the inference
engine. Based on the percentage match, it determines what
control to perform in response to the different combinations of
the input variables;

Defuzzification: this process is performed to convert significant
fuzzy outputs into specific output variables.

The economic viability of a wind project greatly depends on
identifying the most suitable areas for wind farm development.
There is a need to find a systematic approach to determine where
these potential locations exist as well as the cost of power

TABLE 1 Wind resource site selection previous research of some countries.

Ref Location Chosen criteria Site selection type Research
approach

Alhuyi et al.
(2020)

Shahrood, Khorramdareh,
Zabol, and Abadeh in Iran

Wind speed, power lines, land use/land cover, slope, roads,
settlements

Wind farm site selection Fuzzy TOPSIS

Ecer (2021) Izmir, Turkey Wind speed, slope, topography, Land use, buffers, farm
areas

Onshore Wind farm site selection MCDM-BWM

Yousefi et al.
(2022)

Semnan Province, Iran Slope, wind speed, power lines, urban areas, highways, roads Wind Farm site selection GIS-based AHP

Ifkirne et al.
(2022)

Southeast France Wind speed, protected areas, slope, elevation, electrical
substations, road networks

Mapping suitable sites for onshore
wind farms

Combined
GIS-AHP

Gao et al. (2020) China Wind speed, power lines, slope, elevation, protected areas,
accessibility, employment

Offshore Wind farm site selection MCDM-ILAO

Li et al. (2020) China Slope, wind speed, main roads, transmission lines, building
areas, bird sanctuaries

Wind farm site selection MCDM-Fuzzy AHP

Saraswat et al.
(2021)

Gujarat, India Wind speed, terrain slope, substation locations, human
factors, environmental factors

Wind farm site selection MCDM-Fuzzy AHP

Zalhaf et al.
(2022)

Sudan Slope, wind speed, grid lines, roads/railways, lightning strike
flash rate, elevation, airports, cities

Wind farm site selection MCDM-Fuzzy AHP

Cunden et al.
(2020)

Mauritius Wind speed, aspect, elevation, slope, roads, national
electrical grid, protected areas

Wind farm site selection MCDM-AHP

Yousefi et al.
(2022)

Semnan Province, Iran Elevation, slope, wind speed, main roads, electric lines,
rivers, airports, settlement zones, wetlands, and protected

areas

Wind farm site selection MCDM-Fuzzy AHP

Ayodele et al.
(2018)

Nigeria Wind speed, elevation, land cover/flood areas, airports, grid
lines, protected areas, important bird areas, boundaries,

roads, water bodies, rivers, settlements

Wind farm site selection Type-2 Fuzzy AHP

Xu et al. (2020) Wafangdian, China Wind speed, slope, electricity grids, main roads, protected
areas, urban areas, power plants, bird migration channels,

chemical plants

Wind farm site selection FAHP and
stochastic VIKOR

Ajanaku et al.
(2022)

West Virginia Wind potential, slopes, electrical lines, major roads, airport,
protected areas, lakes/rivers, critical wildlife habitat,

residential development

wind farm site selection Type-2 Fuzzy AHP

Shahid et al.
(2019)

Songkhla, Thailand Wind speed, solar potential, elevation, land use, airport,
roads, transmission lines

Identifying the ideal location for
solar and wind sites

GIS and AHP

Gil- et al. (2022) Gulf of Maine Wind speed, bathymetry, Substations, coast, water quality,
ports, dismantling costs

Offshore wind farm site selection Fuzzy AHP GIS-
MCDM

Hussaini et al.
(2022)

Southeastern Spain Wind speed, protected areas, watercourses/streams, roads/
railroad network, Mediterranean coast

Onshore wind farm site selection Fuzzy AHP GIS-
MCDM

Nasery et al.
(2021)

Herat, Afghanistan Annual average wind speed, slope, residential areas, power
transmission lines, roads, LULC

Wind farm site selection GIS-based
fuzzy AHP

Noorollahi et al.
(2016a)

Iran Slope, urban areas, wind speed, power lines, substations,
roads and highways

Solar farms Site Selection GIS and FAHP

Li et al. (2022) Nanjing, China Elevation, slope, precipitation, temperature, aspect Urban Parks Selection F-AHP

Barakat et al.
(2019)

Béni-Mellal, Morocco Bare soil, arboriculture, arable fields, forest, built up Land use and land cover change
and its environmental impact

GIS and FAHP
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production. With this objective, a fuzzy GIS-MCDM-based
approach is recommended as the best tool for wind farm sitting
based on prior research (Li et al., 2020; Cavazzi and Dutton, 2016;
Villacreses et al., 2017; Ayodele et al., 2018; Kaya et al., 2019; Aliyev
et al., 2020).

The F-AHP process is a combination of fuzzy logic theory and the
classical AHP process. The analytic hierarchy process (AHP) provides a
precise technique for determining the importance of different decision
criteria. It is a highly systematic approach to evaluating complex
judgments, allowing for effective organization and analysis of
multiple factors. This process involves the construction of a pairwise
matrix to assess the relative importance of decision criteria. The matrix
is further normalized to establish the relative significance of each
criterion, a vital component in the decision-making process. By
integrating fuzzy theory, the AHP method effectively tackles
scenarios where criterion weighting entails partial truth or
uncertainty (Baalousha et al., 2023).

The FAHP method was selected for this study for site-selection
problems due to several compelling reasons. Firstly, it is a highly
regarded and widely used method known for its high computational
efficiency and practicality. Moreover, it seamlessly integrates with GIS, a
widely used tool for land analysis and site selection. Another advantage is
its ability to conduct hierarchical modelling, enabling the incorporation
of subjective judgments and consistency verification. Additionally, the
FAHPmethod takes into consideration both quantitative and qualitative
criteria, offering a comprehensive approach to problem interpretation.
With the capability to perform various sensitivity analyses, FAHP
provides flexibility in handling different criteria. Furthermore, it
streamlines the decision-making process by facilitating pairwise
comparisons among the criteria. Lastly, the method takes into
account the consistency and inconsistency of alternatives, making it
an invaluable tool (Mosadeghi et al., 2015; Perkin et al., 2015; Rehman
andKhan, 2016; Sedaghat et al., 2019; Yunia andRahmawati, 2020; Pang
et al., 2021; Sánchez-Lozano et al., 2021).

FIGURE 1
Fuzzy logic main steps.

FIGURE 2
Study area location.
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In Burundi, the exploration of wind resource assessment
remains relatively unmapped. This particular topic has been
underexplored in previous studies, making it a significant gap
that needs to be addressed. Although limited studies have been
conducted in Burundi, including one conducted by (Bashahu
et al., 2022), which examined 1 year of hourly wind speed data
from two stations. This research offers invaluable insights for
strategically organizing and executing wind energy conversion
systems (WECS) in these areas. Furthermore, another study,
(Bashahu and Buseke, 2016), performed a statistical analysis
on a 4-year span of hourly wind speed data from four
additional Burundian stations. Hence, it is of utmost
importance to conduct further research on this matter to
obtain general information on Burundi wind resource
potential and its distribution throughout the territory.
Unleashing the power of wind energy will revolutionize
Burundi’s energy landscape, providing a sustainable solution
to the country’s energy scarcity.

Furthermore, no research has focused on the selection of
optimal wind farm placements and their classification. This will
help decision-makers to know which type of wind farms fit well in
Burundi and at which scale they can contribute to future projects.

The main objective of this research is to assess the feasibility of
establishing wind farms in various locations across Burundi. The

study utilized the MCDMmethodology, focusing on the fuzzy-AHP
technique, to identify the optimal locations for wind farm projects
using GIS software. Different criteria are taken into account to
identify the best locations. These include factors like wind speed,
slope, aspect, distance from transmission lines and power grids,
distance from protected areas, distance from airports, elevation, and
distance from major roads.

Finally, this study’s main contributions and originality may be
stated as follows: A cutting-edge wind farm suitability mapping
method based on Fuzzy Analytic Hierarchy Process (FAHP) and
Geographic Information System (GIS) methodologies is presented.
This innovative approach takes into consideration technical,
environmental, social, and spatial factors in the Burundi’s
territory. This research investigation is the first of its kind to
identify the optimal locations for constructing wind power plants
(WPPs) in Burundi.

The remainder of this paper is divided into the following
sections: the second section is the research background, the third
section describes the methodology used to solve the considered
problem; the fourth section provides a comprehensive description,
analysis, and discussion of both the GIS and the proposed decision
problem; and the fifth section presents the results and engages in a
thorough discussion of these findings. Finally, the sixth section
succinctly outlines the main conclusions of this study.

FIGURE 3
Burundi restricted areas.
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FIGURE 4
Restriction factors that influence the selection of wind farms in Burundi (DIVA-GIS, 2023; logcluster, 2022; ENERGYDATA, 2007;
Dreamstime, 2023).

TABLE 2 The nine-point fuzzy conversion scale (Tripathi et al., 2022).

Linguistic terms Crisp scale TFN scale Reciprocal TFN scale

Equally preferred 1 (1, 1, 1) (1/1, 1/1, 1/1)

Equally to moderately preferred 2 (1, 2, 3) (1/3, 1/2, 1/1)

Moderately preferred 3 (2, 3, 4) (1/4, 1/3, 1/2)

Moderately to strongly preferred 4 (3, 4, 5) (1/5, 1/4, 1/3)

Strongly preferred 5 (4, 5, 6) (1/6, 1/5, 1/4)

Strongly to very strongly preferred 6 (5, 6, 7) (1/7, 1/6, 1/5)

Very strongly preferred 7 (6, 7, 8) (1/8, 1/7, 1/6)

Very strongly to extremely preferred 8 (7, 8, 9) (1/9, 1/8, 1/7)

Extremely preferred 9 (8, 9, 9) (1/9, 1/9, 1/8)
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2 Methodology

Before development, manufacture, installation, commissioning
and operation there is a need to process site selection at an

early stage to assess the feasibility of wind farms in light of
environmental concerns, economic feasibility, and other criteria.
This study’s methodology framework was developed in three
key stages:

TABLE 3 Fuzzy AHP pairwise comparison matrix.

Criteria C1(Wind
potential)

C2(Slope) C3 (Distance
to roads)

C4 (Distance
to grids)

C5(Aspect) C6 (LULC) C7 (Elevation)

C1 1 1 1 2 3 4 6 7 8 4 5 6 6 7 8 9 9 9 4 5 6

C2 0.25 0.33 0.5 1 1 1 4 5 6 2 3 4 4 5 6 6 7 8 2 3 4

C3 0.13 0.14 0.167 0.17 0.2 0.25 1 1 1 0.33 0.5 1 1 1 1 2 3 4 0.17 0.2 0.25

C4 0.17 0.2 0.25 0.25 0.3 0.5 1 2 3 1 1 1 2 3 4 4 5 6 0.25 0.33 0.5

C5 0.13 0.14 0.167 0.17 0.2 0.25 1 1 1 0.25 0.33 0.5 1 1 1 2 3 4 0.17 0.2 0.25

C6 0.11 0.11 0.111 0.13 0.1 0.17 0.25 0.33 0.5 0.17 0.2 0.25 0.25 0.33 0.5 1 1 1 0.13 0.14 0.17

C7 0.17 0.14 0.125 1.5 0.7 2 0.17 0.2 0.25 0.25 0.33 0.5 0.17 0.2 0.25 0.13 0.14 0.17 1 1 1

FIGURE 5
FAHP phase process.

FIGURE 6
Flowchart of the proposed methodology.
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(a) The FAHP-MCDM approach was utilized in the initial stage to
establish and prioritize the criteria for wind farm site suitability.
A comprehensive evaluation of restriction and exclusion
factors was conducted, leading to the definition of specific
criteria for wind farms. These criteria were then ranked
according to their level of importance.

(b) To advance to the next stage, we conducted a comprehensive
GIS analysis in order to identify the necessary GIS operations.
This enabled the creation of classified digital map layers for each
criterion, setting a solid foundation for the subsequent analysis.

(c) In the final stage, wind farm suitability map was generated to
identify themost suitable locations for wind farm development.
Wind data collected over a 10-year period from several
meteorological stations owned by the Geographical Institute
of Burundi (IGE BU) was used to create an extensive wind map
of the country of Burundi. Data from the World Bank and
REGIDESO are used to create digital map layers for GIS
software. These sources provided Burundi’s main roads and
electrical network maps (Devex, 2013).

2.1 Study area

The main focus of this study lies on Burundi, Figure 2, an
East African country that is entirely landlocked. Burundi shares

borders with Tanzania to the south and east, the Democratic
Republic of Congo to the west, and Rwanda to the north. Its
precise geographical coordinates are between 2° 15′– 4° 30′S and
28° 58′– 30° 53′E. Burundi is 27,834 square kilometers and is
located in two major watersheds: the Nile basin (13, 800km2)
and the Congo River basin covering 14, 034 km2. Being an
East African country, Burundi’s climate is mainly shaped
by the North-South movement of the Intertropical
Convergence Zone (ITCZ), and the El-Nino Southern
Oscillation (ENSO). Consequently, the annual averages of
climate parameters like precipitation, temperature, and wind
speeds vary according to the specific climate zone (Heckmann
et al., 2016; Nkunzimana et al., 2019; Tabutin and
Schoumaker, 2020).

2.2 GIS-MCDM technique

GIS-MCDM combination allows evaluation of the criteria and
their factors by the mean of characteristics within a specific range of
decision rules and assessment. The technique is commonly used to
select ideal site processes in a huge variety of scientific fields (Gr,
2020). Lots of the problems people have in suitable site selection are
geographic and, thus, coupling GIS with the MCDMmethod has the
potential to solve such complex decision-making problems

TABLE 4 F-AHP comparison matrix.

Fuzzy comparison matrix

Criteria C1 C2 C3 C4 C5 C6 C7

C1 1 1 1 2 3 4 6 7 8 4 5 6 6 7 8 9 9 9 4 5 6

C2 0.25 0.33 0.5 1 1 1 4 5 6 2 3 4 4 5 6 6 7 8 2 3 4

C3 0.13 0.14 0.17 0.17 0.2 0.25 1 1 1 0.33 0.5 1 1 1 1 2 3 4 0.17 0.2 0.25

C4 0.17 0.2 0.25 0.25 0.33 0.5 1 2 3 1 1 1 2 3 4 4 5 6 0.25 0.33 0.5

C5 0.13 0.14 0.17 0.17 0.2 0.25 1 1 1 0.25 0.33 0.5 1 1 1 2 3 4 0.17 0.2 0.25

C6 0.11 0.11 0.11 0.13 0.14 0.17 0.25 0.33 0.5 0.17 0.2 0.25 0.25 0.3 0.5 1 1 1 0.13 0.14 0.17

C7 0.17 0.14 0.13 1.5 0.67 2 0.17 0.2 0.25 0.25 0.33 0.5 0.17 0.2 0.25 0.13 0.14 0.17 1 1 1

TABLE 5 F-AHP criteria weighting and ranking.

Geometric mean of fuzzy Fuzzy weight Average

ri Wi Mi Ni Rank

C1 3.074 3.514 3.904 0.438 0.4249 0.4063 0.423 0.4071 1

C2 1.739 2.091 2.479 0.248 0.2529 0.2581 0.253 0.2433 2

C3 0.543 0.638 0.774 0.077 0.0771 0.0806 0.078 0.0754 4

C4 0.855 1.104 1.369 0.122 0.1335 0.1425 0.133 0.1276 3

C5 0.521 0.602 0.701 0.074 0.0728 0.073 0.073 0.0706 5

C6 0.283 0.321 0.381 0.04 0.0388 0.0396 0.040 0.0381 6

C7 0.300 0.292 0.387 0.043 0.0353 0.0403 0.039 0.0379 7

Frontiers in Energy Research frontiersin.org08

Placide and Lollchund 10.3389/fenrg.2024.1353388

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1353388


(Saraswat et al., 2021; Li et al., 2020). Concerning optimal wind farm
site selection, the GIS-MCD methods have been standardized to
effectively search for and select the best wind sites (Yousefi
et al., 2022).

The main steps followed by the GIS-MCDM technique are (Ali
et al., 2017):

• Problem definition. Try to define and understand
the problem by fixing the goal or objective as clearly
as possible;

• Criteria and limitations determination through a
combination of experts’ opinions and information from
various sources;

• Transform values onto a relative scale to allow comparison
between each of the criteria;

• Weight assignment to criteria in regards to the fixed objective
and respect for each other;

• Combine, synthesize and aggregate criteria together;
• Analyze and then approve results.

After the criteria determination, their hierarchy must be defined
to calculate corresponding weights. All criteria are converted into
standard values and combined using the weighted linear
combination method, a widely used method (Balogun et al.,
2017) that is based on the factors’ weighted aggregation, to
finally generate a suitability map.

2.3 Criteria determination

The optimal wind farm site selection problem depends on
several criteria that include attributes and objectives. They can
differ from the different areas and should have some properties
to adequately represent the multi-criteria. Criteria must also be
comprehensive and measurable (Yalcin et al., 2017; Dhunny et al.,
2019). Consequently, to assess well the criteria, it is important to
identify such relevant factors affecting the optimal wind farm site
selection typically including topographic, geographic, climatic,
socio-environmental, economic, location and political aspects.

For this study, the choice of evaluation criteria is based on
previous various studies and is categorized into two main categories,
restriction and exclusion criteria (See Table 3). The exclusion criteria
comprise legally protected areas such as natural reserves, seaports,
airports, and tourist sites. The areas dropping under this category are
rejected and consequently not eligible for wind farm sites.
Conversely, restriction criteria define a distance to be respected
from the selected zone for the implementation of wind farms. The
distance can be determined in terms of a buffer zone inside which
the wind farm cannot be constructed. Some examples of those zones
are found around settlements, water bodies, natural parks, airports,
and aircraft landing corridors, among others (Refer to Figure 3 for
this study).

The construction of wind energy facilities must consider that
the selected location is not subject to any legal restrictions but

FIGURE 7
Reclassified Wind speed of Burundi.
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also has a set of factors influencing the decision. The choice of
those factors is primarily dictated by the study area. Therefore,
based on studies so far done, this study classified these factors
into three general groups (geographical factors, climatological
factors, and geographical location factors) (Xu et al., 2020;
Sánchez-Lozano et al., 2014; Aksoy and San, 2019; Taoufik
and Fekri, 2021). The factors are divided into a set of criteria
that impact the selection of the wind turbine location and will
make one site preferable rather than another (Caceoğlu et al.,
2022; Shafiee, 2022).

2.3.1 Wind speed
The local wind speed (intensity, direction, consistency, and

uniformity) is the most important factor which plays a key role
in wind farm project performance. A wind turbine’s energy
generation is directly proportional to the cube of the wind speed,
and it is given by Eq. 1:

P � 1
2
ρAv3 (1)

where P is the power produced by the wind turbine in watts (W), A
is the area swept by the turbine blades in square meters, ρ is the air
density in kg/, and v is the wind speed in m/s. Wind speed is the key
factor of wind power development. Doubling the wind velocity gives
eight times the wind power. Therefore, wind velocity is very
important for optimal wind farm site locations.

2.3.2 Slope
Land slope influences the cost involved in wind farm

implementation due to the difficulties in access and
groundwork on sloppy lands. In many studies, reference is
taken in the range of 100 − 250 (Yousefi et al., 2022; Zalhaf
et al., 2022; Cunden et al., 2020; Sánchez-Lozano et al., 2016).
Hence, high priority is given to flat grounds and locations with
lower slopes when selecting regions for wind farm installation.
Therefore, it is convenient the slope should not be too large to
facilitate the accessibility of maintenance and
installation equipment.

2.3.3 Elevation
Wind resource varies with altitude and is better at high

altitudes but decreases at very high altitudes due to air density
decrease. Elevation above 2000 m, is sometimes considered the
cut-off altitude (Noorollahi Y. et al., 2016). Hence, ground
elevation is also considered a factor in the choice of the best
wind farm location. Therefore, flat terrain will be favourable for
wind farm project construction, operation, and maintenance
(Hoang et al., 2022).

2.3.4 Aspect
The better the aspect of the wind farm’s location, the

more straightforward it is to erect. As a result, the slope at the
location of the wind farm should be oriented toward the prevailing

FIGURE 8
Reclassified DEM of Burundi.
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wind blow (Villacreses et al., 2017; Feng, 2021). In terms of wind
potential, the slope orientation concerning wind direction is one of
the crucial factors (Pamucar et al., 2017).

2.3.5 Distance to airports/sea ports
It is recommended to install wind farms at a distance from

airports/seaports and similar facilities. It is highly recommended
to install wind farms in locations that are at a considerable
distance from airports and seaports (Sánchez-Lozano
et al., 2014).

2.3.6 Proximity to main roads
Being close to the main road network is crucial in reducing

transportation costs and facilitating material transport for wind
turbine implementation (Hoang et al., 2022). The distance from the
main roads is a significant economic factor, and therefore, the best
location for a wind farm should be one that is near existing roads,
rather than building new ones to access the site (Pamucar
et al., 2017).

2.3.7 Proximity to national grids
Since wind energy must be connected to the grid,

the proximity to the national grid affects the cost of a
wind farm. Increasing the distance between the wind farm
and the electrical grid will inevitably lead to higher

transmission costs (Alhuyi et al., 2020; Rehman and Khan,
2016). Hence, the power transport to consumers using
the existing power transmission lines hugely reduces the
project cost. Figure 4 illustrates a variety of maps that
depict the restriction factors that affect the process
of selecting suitable sites for wind farms. The Burundi
maps of high voltage electric lines and national roads
were obtained from the official reports published in
Burundi country and are digitalized using ArcGIS
software (Balogun et al., 2017; Yalcin et al., 2017; Dhunny
et al., 2019).

The wind speed map is the outcome of the ArcGIS
process obtained using weather research and forecasting model
(WRF) output simulations. Wind speed data collected at a height
of 12 m above the ground level was used for a wind potential
simulation using the WRF model. However, modern wind
turbines have hub heights ranging from 25 to over 100 m.
Therefore, the WRF wind speed outcome was extrapolated to
60 m above ground level for a more comprehensive analysis
(Baalousha et al., 2023; Van Sark et al., 2019; Benti et al.,
2023). The slope, aspect and elevation map factors for this
work were obtained using ArcGIS software and digital
elevation model (DEM) data. The DEM is downloaded from
the ‘U.S. Geological Survey (USGS) EarthExplorer tool’ (US
Geological Survey, 2019).

FIGURE 9
Map of distance from the national electrical transmission line.
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2.4 Fuzzy AHP

The AHP methodology, first established by Saat in 1980
(Cavazzi and Dutton, 2016), is widely acknowledged as a robust
and flexible MCDM method for dealing with complex decision
problems (Sánchez-Lozano et al., 2016). The decision maker can
utilize it to effectively analyze complex decision problems that
involve various criteria and obtain accurate results. The AHP
enables a more comprehensive examination of the intricate facets
of objective aspects related to a problem. Furthermore, it helps
ensure the accuracy and constancy of their evaluation, thereby
minimizing potential human errors during the decision-
making procedure.

The AHP process through three main stages to get the final
decision (Yousefi et al., 2022; Zalhaf et al., 2022):

• Develop complex problems in a hierarchy of goals,
alternatives, and criteria to assess those alternatives;

• Comparison of alternatives at each level of the hierarchy, one
criterion at a time;

• At last, generate a vertically oriented decision-making matrix
that spans across the multiple levels of the hierarchy.

Despite its strengths, AHP does have some weaknesses. For
instance, there is a mutual dependency among alternatives, which

can occasionally result in relatively less accurate outcomes.
Additionally, when multiple decision-makers with different
perspectives are involved, defining criterion weights can become
more complex. Furthermore, AHP relies on opinions and
experience-based data collection, which may introduce some
limitations. The main problem encountered when utilizing the
AHP lies in the presence of uncertain, biased, and vague
opinions expressed by experts (Gr, 2020; Sánchez-Lozano et al.,
2021; Zalhaf et al., 2022).

The classical AHP method was extended to the fuzzy sets theory
and the fuzzy AHP (FAHP) has been developed to handle complex
decision problems accurately and more systematically than the
simple AHP scheme. This technique integrates the fuzzy set
theory concept with basic AHP. It displays the elaboration of a
standard AHP into a fuzzy domain by applying fuzzy numbers
rather than real numbers (Ali et al., 2017).

The FAHP application process is summarized below (Havle and
Kılıç, 2019; Özdemir et al., 2018):

Step 1: This step consists of defining a fuzzy pairwise
comparison matrix. This matrix consists of the main criteria that
may have an impact on the problem under investigation. Diagonal
matrices are built using the hierarchical structure’s sub-criteria.

Decision-makers utilize fuzzy linguistic terms to assign the
significance of one criterion over another. To achieve this, the
decision-makers refer to Table 2 (In Table 2, TFN stands for

FIGURE 10
Map of distance from national roads.
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Triangular Fuzzy Number). The conversion scale displayed
illustrates the nine-point scale utilized in converting responses
into fuzzy numbers. The resulting pairwise comparison matrix is
given by Eq. 2:

~A �
1 ~a12
~a21 /

. . . ~a1n
/ ~a2n

/ /
~am1 /

1 /
/ 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (2)

Where ~A is the pairwise comparisonmatrix and ~amn is the joined
comparison value of the criteria m and n.

Step 2: The comprehensive assessment is generated by
combining the pairwise comparison matrices in this stage. This
investigation employs fuzzy triangular numbers to calculate the
judgment matrix. The results of this calculation can be found in
Table 3. To accurately calculate the TFNs, Excel software has
been employed. Each triple value represents the preference score
of the considered criterion relative to other criteria as defined
in Table 2.

Land use and land cover (LULC) refers to the standard
restriction areas such as archaeological sites, forests, wetlands,
seaports, aviation zones, military zones, water bodies, and urban
areas from which wind turbines should be placed at a
specific distance.

The decision-makers are aggregated using Eq. 3:

lij � ∏K
k�1

lijk⎛⎝ ⎞⎠1/K

, mij � ∏K
k�1

mijk
⎛⎝ ⎞⎠1/K

, uij � ∏K
k�1

uijk
⎛⎝ ⎞⎠1/K

(3)

where ~A � (lij, mij, uij ),with lij, mij, uij stand for the lower, middle,
and upper values of support of a fuzzy number, i and j are
respectively the row and column, and K represents the number
of decision-makers. In this study K � 7 corresponding to the
number of considered criteria.

Step 3: This computes the fuzzy weights matrix. The fuzzy
comparison values are first calculated in this stage using Eq. 4:

~ri � ∏n
j�1

~aij⎛⎝ ⎞⎠1/n

, i � 1, 2, . . . , n (4)

Next, fuzzy weights ~wi of the criteria are calculated as follows
using the following equation, (Eq. 5):

~wi � ~ri ⊗ ~r1 ⊕ ~r2 ⊕ . . .⊕ ~rn( )−1 (5)
Where ~ri denotes the geometric mean of the fuzzy comparison

values and ~wi are the criteria weights.
Step 4: The center-of-area approach is used to defuzzify fuzzy

weights using Eq. 6:

wi � l ~wi +m ~wi + u ~wi( )/3 (6)

Step 5: Crisp weights normalization using Eq. 7:

FIGURE 11
Slope reclassification map.
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wr � wi

∑n
i�1
wi

(7) Figure 5 displays the six steps that are integral to the F-AHP
phase process. These steps guide the way in defining the problem
accurately and ultimately establishing the solution that is most

FIGURE 12
(A) Burundi Aspect Model Classification and (B) Burundi average annual wind rose.
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FIGURE 13
Map of wind farm suitability placements.

FIGURE 14
Share of the suitability based on the restriction factors.
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desired. These steps are computed using R-4.3.2 (R package for fuzzy
AHP computation) and Excel software in this study.

Figure 6 provides a concise summary of the proposed research
methodology, incorporating all the previously mentioned details.

3 Results and discussion

This section will present and discuss the FAHP-GIS results in
terms of spatial analysis of optimal wind turbine locations in
Burundi. This includes the numerical values representing the
optimal weight of the evaluation factors and the suitability map
for the optimal wind sites.

3.1 FAHP results

In this study, the optimal weights of restriction factors
mentioned in section Figure 5 are obtained using the FAHP-
based MCDM method. Tables 4, 5 provides the numerical
weights for each criterion (CRI), obtained through the use of
Fuzzy pairwise comparison matrices. After obtaining the
weight values for each criterion from the F-AHP pairwise
comparison matrix presented in Table 3, this study utilized
Buckley’s algorithm to calculate the geometric mean of
fuzzy values (ri) and fuzzy weights (Wi) (Abdullah et al.,
2021; Wang et al., 2021). To refine the results further,
the averaged weight criterion (Mi) was normalized, resulting
in the final normalized weight (Ni) for each criterion. The
obtained weights corresponding to the criteria are given
in Table 4.

According to the findings, the wind potential carries the greatest
weight among other factors, amounting to an impressive 41%
percentage. This means the wind potential has a high priority in
the selection of the optimal areas for the implementation of wind
farms. It is followed by the slope, proximity to the grids, distance
from the roads, aspect, LULC and elevation with 24%, 13%, 8%,
7.3%, 4% and 4% respectively.

3.2 Land suitability mapping for wind farm
site placement

Mapping wind suitability involves a meticulous and systematic
process, where each criterion is classified into specific categories
(Benti et al., 2023). The approach thoroughly evaluates each
criterion’s suitability level and ranks them accurately, from
highest to lowest, to ensure precise results. This section
introduces the classification of criteria and factors that are

essential for evaluating suitable locations for wind farms. In this
work, “Counts” represents the number of records of each class.

3.2.1 Wind potential reclassification
As mentioned on the map, Figure 7, the wind speed is classified

into four scales: very good, good, moderate, and poor. About 2.10%
of the land area registered very high, 30.67% high, 47.52% moderate
and 19.72% low wind speed. The cut-in wind speed typically ranges
between 2.5 and 4 m/s (Loukatou et al., 2018; Satymov et al., 2022;
Wind-Energy, 2023). Approximately 32.77% of total land area is
considered highly suitable for wind turbines, which are classified as
class 3 and 4 exclusively based on wind speed.

3.2.2 Elevation model reclassification
According to the map of the DEM of Burundi, Figure 8, 13%,

30% and 50% are situated in the elevation ranging from 739 to
1000 m, 1000–1500 m and 1,500–2000 m a.g.l respectively. These
regions correspondingly represent extremely, very strongly, strongly
preferred places for the implementation of wind farms (Cunden
et al., 2020; Chikoto et al., 2015). As it has been mentioned in section
2.3.3, the altitude of 2000m is considered the cut-off favourite
elevation for wind resources. Accordingly, for Burundi, about 7%
of the land area has an elevation above 2000 m making it an
unsuitable or less preferred place for wind farm placement. More
than 90% of Burundi’s land is suitable for wind farms due to its
elevation being less than 2000 m.

3.2.3 Distance from major electrical
transmission lines

Figure 9 displays the distance in km from the main national
electric network. The area within a distance less than 5 km from the
electrical lines is strongly suitable and the land areas between 5 km
and 15 km are relatively suitable for wind site selection. However, it
is considered impractical to implement wind farms in areas that are
more than 15 km away from the national electric grid.

3.2.4 Distance from main roads
The maps of connectivity to main roads, Figure 10, show

different categories of the distance from the national roads
(logcluster, 2022). The land area situated at a distance of less
than 0.5 km and a distance greater than 20 km is considered an
exclusion zone for wind farm installation and represents 36% of
Burundi. The Burundi land areas located at a distance in the range of
0.5–10 km away from the main roads are considered a strongly
suitable location for wind farms. Furthermore, the land areas located
at a distance ranging from 10 to 20 km are considered suitable for
wind farm projects. In contrast, the land areas sited at a distance of
20 km or farther away from the main road network are unsuitable or
less preferred for the implementation of wind farms.

TABLE 6 Estimated potential wind energy (EPWE).

Turbine EPWE (MW) AEPWE (MWh) Reduction in CO2/year (kg)

Vestas V63 (1.5 MW) 0.397 3.481 2,492.4

Enercon E−58/10.58 (1 MW) 0.337 2.953 2,114.6

Bonus B39/500 (500 kW) 0.149 1.305 933.9
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3.2.5 Slope model reclassification
Figure 11 displays the slope value distribution through Burundi.

More than 70%of the Burundi, area is dominated by slope values
below 15° with about 57% from 0°–10° and 18% from10°-15°. These
areas are considered to be the most excellent places for wind farm
installation considering the construction cost (Zalhaf et al., 2022;
Baalousha et al., 2023). Places with slopes varying between 15° and
25° represent 19% and they are considered relatively favourable for
wind turbine siting. The remaining areas which have slopes >25° are
not appreciated for the wind farm locations.

3.2.6 Aspect model reclassification
The two main attributes of wind are its speed and direction.

These attributes impact the wind farm implementation to optimize
its energy production. The prevalent wind blows direction and
aspect orientation are two linked factors influencing wind turbine
production. As it has been mentioned before, flat terrains are highly
recommended when choosing the locations of wind turbines.
Therefore, in this work, the aspect of Burundi is evaluated and
the percentage aspect distribution is given for each direction. The
map of the aspect model of Burundi, Figure 12A, revealed that the
aspect orientation consists of flat terrain by 8.1%, the north by
10.13%, the northeast by 10.53%, the east by 12.08%, the southeast
by 13.31%, the south by 11.23%, the southwest by 10.81%, the west
by 11.61% and the northwest by 12.2%. The wind rose of Burundi,
Figure 12B is produced using on-field data obtained from the
meteorological institution Institut Géographique du Burundi
(IGEBU) through Matlab software. As shown in previous studies,
Burundi’s predominant wind blow is from southwest to southeast
(Placide et al., 2021). Consequently, the southeast, south and
southwest aspect orientations are the fitting direction for wind
farm implementation in Burundi. To this is added the flat land
to totalize 43.45% of potential locations for wind farm construction
in Burundi in terms of direction consideration.

3.3 Identification of the optimal locations for
the wind farm

This study used GIS to locate optimal sites for wind farms using
raster and vector data sets as inputs. The weighted values are utilized
to determine the degree of suitability for the wind turbine site
selection of Burundi. Based on the annual average wind values and
other factors, the wind farm site suitability map, Figure 13, displays
three classes of sites. Locations with an average wind speed of less
than 2.5 m/s are deemed inappropriate for the installation of wind
farms. On the map, the land area in green colour is unsuitable to be a
candidate for a wind farm at any scale.

The area in yellow colour represents the relatively suitable
locations for wind farm sitting. The region in red colour is
highly recommended as a suitable area to be a candidate for
wind turbine sitting.

The main part of the suitable region is located in Lake
Tanganyika, in the western part of Burundi. This area
encompasses both the prime locations for wind farm sitting and
the majority of the relatively suitable locations. This region is ideal
for harnessing wind energy due to its strong and consistent ideal
conditions for wind farm project development. Wind farms in this

region could greatly boost renewable energy production in Burundi
and aid in sustainable development. The region’s ample wind
resources also have the potential to support global efforts against
climate change. Apart from unsuitable areas, there also exist
exclusion zones which cannot be eligible for wind farm
installation. Such zones are found as protected areas on the
Burundi wind farm site suitability map (Figure 12). They include
forests, an airport, port, natural reserves and north lakes.

The GIS generates a useful attribute table that displays the area
corresponding to each class. According to Figure 14, the outcomes
show that just 1.96% (546km2) of Burundi’s land is suitable for wind
power plant constructions. In contrast, 18.95% (5275km2) of the
regions analyzed demonstrate relative potential for such
installations. This also means that 79.09% (22014km2) of the
land in issue is judged unsuitable for wind turbine installation.
Hence, it clearly demonstrates that a significant portion of Burundi’s
land is not suitable for wind farm installations. This underscores the
crucial need for careful deliberation when choosing the sites for wind
turbines. Furthermore, this clearly demonstrates the importance of
evaluating the availability of alternative options for other types of
renewable energy sources.

3.4 Potential energy generation and
environmental benefits

The suitable area experiences wind speeds exceeding 7 m/s,
which leads to a significant amount of potential energy
generation. Table 6 further strengthens this point by showcasing
the projected energy output for three selected wind turbines.

The estimated wind energy is for a single turbine, yet envisioning
a wind farm comprised of hundreds of turbines, it becomes clear that
deploying wind farms in appropriate locations can substantially
enhance energy access in Burundi. For example, the Kenyan wind
farm, boasting 365 wind turbines, each with an outstanding 850-kW
capacity, holds a total capacity of 310 MW. In Burundi, a similar
wind farm with Vestas V63 (1.5 MW) turbine type could generate
240 MW of power. The estimated capacity greatly exceeds the
capacity of the largest existing power plant, Rwegura
Hydropower, which has a capacity of only 18 MW (Nsabimana,
2020). With wind turbine implementation in place, total potential
energy generation could increase exponentially, making it possible
to meet a significant portion of Burundi’s energy demands. This
would not only ensure a more reliable power supply but also
contribute to reducing carbon emissions and promoting
sustainable development in the country.

Burundi’s power supply is largely dominated by hydropower
plants, making it heavily reliant on seasonal rainfall. This
dependence results in major shortages during dry seasons, from
June to August and December to January. To overcome this energy
shortage, REGIDESO, a Burundi company in charge of electricity
supply, owns diesel generators used as a backup power source to
supplement the hydroelectric supply during dry seasons. The use of
diesel has negative environmental impacts due to its high carbon
emissions and contribution to air pollution.

The unit CO2 emission per MWh generated from fuel is
estimated at 716kg − CO2 (JAPAN INTERNATIONAL
COOPERATION AGENCY, 2010). By multiplying the annual
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energy production of wind farms with this unit, we can precisely
evaluate the environmental impact and determine the annual
reduction in CO2 emissions. The estimated reduction in CO2

emission for the selected wind turbines is presented in Table 6.
The Estimated potential wind energy (EPWE) is determined by

the following equation, Eq. 8:

EPWE � 1
2
ρ × A × v3 inW[ ] (8)

Where A represents the area swept by the wind turbine blades,
and ρ is the density of air which is approximately 1.23kg/m3. The
variable v represents the average wind speed.

Every wind turbine generator has a maximum efficiency limit
when it comes to converting the energy of the wind into useable
energy. Albert Betz, a renowned German physicist, discovered this
limit. He calculated that no wind turbine could convert more than
59.3% of its kinetic energy into mechanical energy. This is known as
the Betz Limit and represents the theoretical maximum coefficient of
power that any wind turbine can achieve (Ranjbar et al., 2019; De
et al., 2018). Considering the Betz Limit, Eq. 8 can be refined as
follows, Eq. 9:

EPWE � 1
2
ρ × A × v3 ×

59.3
100

inW[ ] (9)

The annual EPWE (AEPWE) is given by Eq. 10:

AEPWE � EPWE × 365 × 24 × 10−6 inMWh[ ] (10)

4 Conclusion

This study used the MCDM system coupled with GIS to produce
the wind suitability map of Burundi. The WRF model simulation
outputs over Burundi territory were employed to classify the regions
in terms of wind speed potential. Topographical, climatological, and
location restriction factors were established. These restrictions such as
aspect, slope, elevation, distance from major electrical transmission
lines, distance from main roads and the protected zones divided the
Burundi country into suitable and unsuitable areas for wind power
facilities placement.

The results indicate that the Burundi territory has highly
favourable areas for extracting wind energy, making it suitable
for implementing medium-scale wind farms. The western part of
the country has the highest potential for wind farms. The results
signify about 1.96% of the hall country with the highest wind farm
potential. At the same time, approximately 19% of the study area
registers relatively suitable wind farm potential.

As it is the first time this kind of study has been used to evaluate
the optimal wind site selection over Burundi, it is recommended that

further research focus on additional methods for optimal wind site
selection to compare the results. Additionally, the study did not
distinguish between onshore and offshore wind farm site
assessments. To achieve this, the authors plan to conduct a
techno-economic analysis to evaluate the unit cost of wind
energy in various locations throughout Burundi.
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