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This paper developed an intelligent multi-agent system (MAS) with a multi-layer
framework for multi-microgrids (MMGs) using robust and modern
communication patterns for deployed agents to achieve distributed tasks. The
MMG paradigm introduces three microgrids (MGs) based on the type of load,
working environment, and living habitat: residential, commercial, and industrial.
In addition, a day-ahead and real-timemodel is proposed for day-ahead and real-
time signals. Intelligent agents in the multi-layer MAS framework make smart
decisions based on multiple algorithms to optimize schedule power and
minimize costs, considering demand dispatch and demand response as core
components. Maximum renewable energy utilization aims to increase user
comfort and reduce greenhouse gas (GHG) emissions. Load agents deployed
in each MG ensure maximum efficiency. The proposed framework recommends
various tariff rates and tariff adjustment strategies to promote and offer an
economic evaluation across the respective indices. To minimize the
monopoly of the energy market, an efficient energy market model is
developed for the proposed MMG paradigm to maximize the competition by
incorporating future and spot-market trading schemes for day-ahead and real-
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time signals. The comparative analysis indicates optimized results based upon the
cost-benefit analysis, cost reduction, power transaction in the market, and
maximum utilization of renewable energy resources (RERs).

KEYWORDS

multi-agent systems, multi-microgrid, energy management, day-ahead, real time,
intelligent agent multi-agent systems, intelligent agents

1 Introduction

1.1 Background

According to the International Energy Agency, the renewable
energy utilization rate increased by 3.7% in 2019, a minor
increase compared to that of the previous year. Wind
(150 TWh) and solar (140 TWh) power accounted for 27% of
the global electricity supply and contributed to 85% of renewable
energy growth. The main factors contributing to such growth are
extensive support in policy and a reduction in technological
prices. Consequently, the power sector lowered greenhouse gas
(GHG) emissions by nearly 170 Mt in 2019 (IEA, 2020).
Furthermore, in a microgrid, to tackle the resiliency and
reliability issues arising from the intermittent nature of
renewable energy resources (RERs), this concept has been
introduced to maximize energy utilization and the power
system’s credibility. According to the U.S. Department of
Energy, a microgrid (MG) is a group of interconnected loads
and distributed generation resources (DERs) within clearly
defined electrical boundaries that act as a single controllable
entity concerning the grid (Ton and Smith, 2012).

The microgrid’s broader concept revolves around the
deployment of self-sufficient distributed electricity generation
resources on a small scale along with the energy storage systems
(ESSs) near the consumers with adequate controllability over
consumption demand (Hirsch et al., 2018). The generation
resources may also include conventional resources along with
clean energy. Microgrids can operate in two modes: grid-
connected and islanded. The decentralized and distributed
architecture of the resources in microgrids completely negates
the transmission losses. Microgrid ecosystems allow automation,
controllability, and monitoring of distributed assets within a
cost-effective economic operation, making them less expensive
than centralized and main-grid systems (Cortes et al., 2017).
Multi-microgrids (MMGs) can be referred to as a networked
cluster of adjoining microgrids for coordination of energy
management and interactive assistance among each other (Xu
et al., 2018).

The interconnectivity of microgrids uses different factors,
including the more effective use of renewable energy sources,
lower operating costs, black-out support, increased stability, and
resiliency (Alam et al., 2020). All the benefits mentioned above are
achievable through effective energy management in both the
microgrid and multi-microgrid paradigms. Energy management
is widely applicable to achieve optimal load scheduling based on
available energy and market considerations. Energy interactions
across the grids under the multi-microgrid paradigm boost
stakeholder engagement, resulting in more competitive energy

markets. As a result, the MMGs’ power and economic stability
have improved (Yang et al., 2019). According to Khalid et al. (2019),
energy management improves grid dependability and stability while
lowering customer costs and usage. Zlatkovic et al. (2019) applied
demand side management using real-time pricing and an inclining
block rate (IBR) tariff to schedule a load for homes effectively.

Demand side management (DSM) is a method of energy
management that benefits both customers and utilities. Liang
et al. (2019) implemented the demand response on a commercial
building to achieve satisfactory user comfort within an optimal
operating cost range. Demand response is one of the techniques of
demand side management, which allows users to change their
consumption patterns at peak hours in response to the pricing
signal. In addition to residential and commercial MGs, industrial
microgrids have also gained popularity in recent years. Naderi et al.
(2017) shows the planning of industrial estate for maximizing
renewable resource utilization, keeping in view the reliable and
sustainable operation of sensitive loads. Choobineh and
Mohagheghi (2016) proposed a framework for the industrial
microgrid that can achieve optimal energy usage, reduce the cost,
and delay the lifetime of assets. The number of MGs in distribution
networks has increased dramatically due to the fast adoption of
DERs. As a result, MG interaction and energy exchange are
significant concerns in multi-microgrid systems.

Tan and Chen (2020) aimed to concurrently minimize the
system’s cost, emissions, and loss through multi-objective
optimization. Ahmadi and Rezaei (2020) decreased the cost and
increased the generation performance of the multi-microgrid
framework using the proposed the demand response program
(DRP) strategy in energy management. To deploy a microgrid, it
is necessary to undertake an economic study of the project, allowing
investors to relate to it. Husein and Chung (2018) conducted an
economic analysis for designing an optimal microgrid considering
the tax benefits and incentives of integrating RERs. Oueid (2019)
discussed the financial information required for planning MGs to
facilitate evaluating similar projects. The Microgrid Decision
Support Tool (MDSTool) was used in Vu et al. (2019) to
conduct a detailed technical and economic analysis of grid-
connected PVs with the energy storage system to achieve an
optimal university microgrid. The net present value (NPV) is
used as a metric for economic evaluation of the project. The
MMG system’s dependability and economic evaluations are
studied in Wang et al. (2018).

1.2 Literature review and research gap

In multi-microgrids, an energy management system (EMS) is
used to optimize the scheduling of power resources and energy
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TABLE 1 Modeling details of the complete MMG setup.

Base load of SRMG appliances LED bulb Ceiling fan Wi-Fi router LED TV Coffee maker Laptop

Power (W) 50 50 6 80 1,317 60

Category (rich (R), middle (M), and poor (P)) R/M/P R/M/P R/M/P R/M/P R R/M/P

PFDs and TFDs of SRMGs

Appliance Power (W) Category (R, M, and P) Appliance Power (W) Category (R, M, and P)

VAC 2,500–4,500 R Washing machine 730 R/M/P

AC 1,400–1,800 R/M Dishwasher 1,000 R/M/P

Refrigerator 500 R/M/P Microwave oven 500 R/M/P

Ironing machine 1,000 R/M/P Clothes dryer 2,000 R

Cooler 40 P Water pump 746 R/M/P

Base load of SCMG
appliances

Power (W) Category (L, M, and S) Appliance Power (W) Category (L, M, and S)

Syringe pump 20 L Telecommunication tower 5,000 L/M/S

Mechanical
ventilator

38 L ATM machine 75 L/M

Patient monitors 35 L Elevator 3,400 L/M

Blood pressure cuffs 5 L Ceiling fan 80 L/M/S

Centrifugal device 180 L Laser printer 450 L/M/S

LED bulb 13 L/M/S Angiography 9,000 L

Desktop computer 180 L/M/S MRI 13,000 L

Laptop 60 L/M CT scanner 5,000 L/M

Ice cream Machine 1,800 L/M/S Radiography 1,400 L/M/S

Medium-duty
commercial
microwave

1,500 L/M Ultrasound 800 L

Biochemistry
analyzer

65 L/M Treadmill 1,679 L

Oxygen concentrator 480 L/M/S

(Continued on following page)
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TABLE 1 (Continued) Modeling details of the complete MMG setup.

Base load of SRMG appliances LED bulb Ceiling fan Wi-Fi router LED TV Coffee maker Laptop

PFDs and TFDs of SCMGs

Appliance Power (W) Category (L, M, and S) Appliance Power (W) Category (L, M, and S)

HVAC 2,500–4,500 L/M/S MRI 13,000 L

C/deep freezer 450 L/M/S CT scanner 5,000 L/M

Commercial REF 500 L/M/S Ultrasound 800 L

Vending machine 183 L/M Biochemistry analyzer 65 L/M

AC 1,400–1,800 L/M Agriculture tubewell 5,000 L/M/S

Clothes dryer 3,000 L/M/S Water pump 8,000 L/M/S

Radiography 1,400 L/M/S Commercial W/machine 1,000 L/M/S

Commercial Iron 2,200 L/M/S Commercial cooler 200 S

Base load of SIMGs

Appliance Desktop computer GreenUp High-bay BY550 lights

Power (W) 180 200

TFDs and PFDs of SIMGs

Appliance Power (kW) Appliance Power (kW)

Crusher 130 Clinker cooler 15

Conveyor belts 50 Cement mill 68.25–78.75

Bucket elevator 4 Conveyor belts 50

Vertical roller mill 67.5–87.5 Packaging 25.5

Bucket elevator 4 Washing of olives 9.06

Gravity-type blending 0.13 Crusher 22.4

Rotatory kiln 760–840 Paste production 5.5

Extraction 22 Separation 5.5
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storage devices to ensure supply–demand equilibrium through
exchanging power among grids by adopting different trading
mechanisms. During the last few years, there has been a surge of
attention on the EMS among researchers for interconnected
multi-microgrids. A hierarchical Stackelberg game model in an
MAS with three separate stack-holders was proposed in Dong
et al. (2020). The suggested energy trading model maximizes each
participant’s economic rewards while achieving energy
management via the incentive demand response. However,
existing research does not include a full sensitivity analysis of
this model nor provides detailed information about the load type
in microgrids. Furthermore, the model considers only day-ahead
operation for all the three stack-holders and ignores real-time
operation. Within the multi-microgrid paradigm, Zhuo et al.
(2019) suggested an independent MG for battery energy storage
systems (BESSs). Parallel to demand response initiatives, the
independent BESS will maximize the share of renewable
energy sources while reducing grid power dependency.
However, the studies cannot provide a detailed study of the
suggested framework’s financial report and scheduled load.
Bui et al. (2018) proposed the concept of adjustable power in
a multi-agent framework for a multi-microgrid paradigm.
Mixed-integer linear programming (MILP) underpins all
established models, making them simple to apply and
computationally inexpensive. The proposed methodology
reduces the MMG’s operational costs while ignoring
GHG emissions.

Using model predictive control (MPC) and two-stage
stochastic programming with recourse, Systems et al. (2020)
proposed an efficient control technique for a hierarchal
framework-based MMG system with integrated energy
management. The authors claim to have achieved a reduction
in grid power exchange as well as an optimal solution technique
for power scheduling. Yin and Li (2021) focused on developing
an energy management framework for achieving decentralized
autonomous microgrids that operate in an MMG system with
optimal operation coordination. The hybrid metaheuristic
multi-layer reinforcement learning technique is implemented
to lower the peak-to-average ratios, reduce power fluctuations,
lower operational costs, lower computational strain, and
improve load forecasting. By deploying fuzzy-based peer-to-
peer energy exchange in interconnected multi-microgrids, the
energy management technique presented in Thirugnanam et al.

(2021) minimizes the cost of consumer energy use. The random
vector functional link network (RVFLN) technique models load
demand and distributed generators (DGs). For peer-to-peer
energy exchange, dynamic pricing is used. This work does
not go through the different loads or how they are
scheduled. Additionally, the availability of historical data is a
barrier to deploying such models.

A unique online consensus alternating direction method of
multipliers (OC-ADMM) algorithm is presented in Guo et al.
(2021) to handle P2P trading mechanisms in real-time. This
mechanism lessens the computational burden with precise
assessment and maximizes online social welfare. The
distributed power management system discussed in Rajaei
et al. (2020) is based on the alternating direction method of
multipliers (ADMM) in the distributed MMG hierarchy for day-
ahead operational scheduling considering the technical
constraints of the distribution network. Unlike a conventional
centralized controller, a transactive energy signal initiates
ADMM and MG scheduling processes for distributed
microgrid coordination. Liu et al. (2021) optimized energy
scheduling and the trading of microgrid and electric vehicles
with nearby microgrids by considering the availability of fast
charging services in the MAS framework. The authors used
convex optimization to solve the problem of time-flexible EV
driving. Purage et al. (2022) aimed at achieving market
equilibrium, global optimality, and microgrid constraint
without invading market participants’ privacy in a
decentralized P2P energy trading mechanism.

The ADMM is applied to each market participant for
coordination in the proposed market framework. Energy
management for four nanogrids comprising two residential,
one commercial, and one industrial building was presented in
Ramadan et al. (2019). The authors viewed nanogrids as
prosumers or aggregators, resulting in an effective demand
response (DR) and lower operational costs. Using the
MATLAB and JADE framework for Multi-Agent Network
(MAN) deployment, a hybridized reinforcement learning and
powerful machine learning algorithm accomplished optimal
trading and scheduling of nanogrids. The authors, however,
neglect to specify the load details for each nanogrid. Rezaei
et al. (2022) introduced conditional value-at-risk (CVaR) into
the scheduling problem of the MMG system to reduce the low-
profit risk even in the worst-case situation. The findings show

FIGURE 1
Behavior of intelligent thermostats for a (A) cooling system and (B) heating system.
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that raising the emission factor and risk does not influence the
predicted profit decrease. Karimi and Jadid (2023) proposed a
tri-layer integrated energy system framework in the MG that
minimizes costs and maximizes the integration of RERs.
However, the proposed work has not considered the
economic analysis and device-level load scheduling.
Furthermore, the proposed framework fails to minimize the
robustness of an operation at each layer.

Karimi et al. (2023) suggested the Average Power Flexibility
during Peak Period Index (APFDPPI) to reduce the occurrence
of new peaks and maximize the reliability of the MMG system

due to the uncoordinated DR. Real-time (RT) MMG operation
and economic evaluation for independent investors are not
presented in the proposed research. A bi-layer predictive
energy management system (PEMS) is deployed (Xu et al.,
2023) in uncertain renewable multi-energy systems for
reliable operation of microgrids and to reduce operational
costs. The authors have not discussed the energy transaction
among grids and the details of the MG load nature and its
scheduling. Ali et al. (2023) proposed the energy management
system for the residential load only but have neglected the
priorities to be assigned to the appliances during low

FIGURE 2
(Continued).
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generation power. Furthermore, the economic viability of the
MG for power transactions in the energy market is not
highlighted. To ensure the reliable and stable operation of the
MG cluster, a centerless control strategy is employed in Shi et al.
(2023). The proposed work has not discussed the energy
management strategies for efficient operation of MGs.
Furthermore, the techniques to use renewables and load
scheduling are also neglected. Zhong et al. (2022) used the
ADMM in day-ahead scheduling to reduce the MMG’s
operating expenses and increase energy while maintaining
confidentiality. For each MG, the rolling horizon method is
employed for intra-day scheduling to lower the charge
and expenses.

1.3 Contributions and organization of
the paper

The contribution of the proposed work is two-fold. First, the
technical and economic perspectives of the proposed work are
covered. This paper’s contributions are summarized as follows:

• This paper proposes a cost-effective and energy-efficient
solution through energy management modeling of three
different load nature multi-layered agent-based hierarchical
interconnected and grid-connected microgrids: smart
residential microgrid, smart commercial microgrid, and
smart industrial microgrid.

FIGURE 2
(Continued).
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• The proposed scheme provides optimal control over personal
comfort, pricing, and bilateral power transactions in energy
markets by deploying a robust and secure multi-agent system
framework in the Python environment.

• The proposed framework develops a deregulated market for
real-time and day-ahead signals by providing spot-market and
future market environments, respectively.

• User comfort, power efficiency, maximum clean energy
utilization, and cost minimization objectives are achieved
simultaneously for both models through proposed modified
multi-objective gray wolf optimization and modified multi-
objective prioritized plug-and-play and knapsack
algorithms.

• A cost–benefit analysis of each microgrid in the multi-
microgrid paradigm is performed using parameters such as
net present value, internal rate of return, return on
investment, payback period, and profitability index
through various tariff adjustment techniques for
renewable energy resources and battery energy
storage systems.

The proposed paper is organized as follows: Section 3 provides
the approach adopted by researchers to model the suggested
framework for each MG and implementation of the proposed
study. The results of the proposed work and discussion on it are
given in Section 4, and Section 5 presents the conclusion of the
proposed work.

2 Methodology

2.1 Modeling of the complete MMG setup

The devices deployed as the fixed load in each MG are energy-
efficient, and their financial and functional requirements determine their
quantity. The simplex mode of communication (uni-directional
communication) occurs between the fixed load device agent and the
controller of the respective MGs. Table 1 shows the base load of smart
residentialmicrogrids (SRMGs), smart commercialmicrogrids (SCMGs),
and smart industrial microgrids (SIMGs). Time flexible devices (TFDs)
are traditionally moved away from peak times to prevent excessive prices
and load constraints on their utility with maximum user comfort. These
load devices are relocated to the period of extra renewable generation
power in the proposed model to achieve maximum RER utilization and
reduce energy curtailment. Furthermore, power flexible devices (PFDs)
are optimally set in a rated range of power through an intelligent
thermostat. According to the American Society of Heating,
Refrigerating, and Air-Conditioning Engineers (ASHRAE) standard
55-2010, intelligent thermostats ensure that AC and HVAC systems
function between 20°C and 27°C based on Psur. Power flexible devices
deploy duplex communication with their respective controllers. PFDs
and TFDs for an MMG are given in Table 1.

In PFDs, an intelligent thermostat in HVAC and AC is fed with the
Psur signal and real-time temperature sensor data for 24 h by using a
level 3 controller to function according to the framework based on the
ASHRAE 505 standard. The use of the Psur signal results in less energy

FIGURE 2
(Continued). Illustration of the multi-microgrid setup: (A) SRMG; (B) SCMG; (C) SIMG.
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restriction and reliance on the traditional electric grid. The thermostat’s
cooling and heating functions are active 24 h a day, using real-time and
day-ahead signals. The thermostat’s temperature is set by an intelligent
agent in response to the incoming signal. Based on the incoming Psur

signal from the respective controller, the thermostat agent makes an

intelligent Tpref cooling choice. When the Psur signal received is more
significant than 0, the agent lowers the temperature point below Tpref,
and the value ofΔT falls below 0. The temperatureTpref increases when
the incoming signalPsur is less than 0 andΔT becomesmore significant
than 0. Similarly, an agent actively raises the thermostat’s temperature

FIGURE 3
(Continued).
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set point P set if the incoming signalPsur value is positive. In response to
the negative value of Psur, the temperature set point decreases to
Tupper. Tupper and Tlower are the allowable upper and lower
temperatures used for heating, defined as per the ASHRAE
standard 55-2010, respectively. The mathematical
representation of the thermostat is given in Eqs 1, 2:

Tset,cooling,heating t( ) � Tpref + ΔT, (1)

where
Tset,cooling,heating � Set Room temperature at
t by thermostat for cooling, heating
Tpref � preferable room temperature
ΔT � variation from Tpref,

ΔT � ≥Tmin ,max − Tpref

≤Tmax ,min − Tpref
{ . (2)

From Figures 1A, B, the thermostat’s set point oscillates between
the permitted limits of temperature, Tlower and Tupper, depending
upon the value of the Psur signal and the mode of the thermostat.
The slope of the fluctuation is given by Eqs 3–5:

Slopehigh � Psur

Tlower,upper − Tpref
if Psur > 0, (3)

Slopelow � Pdef

Tupper,lower − Tpref
if Psur < 0, (4)

Psur t( ) � Psur −∑24
t�1Psur∑24

t�1Psur

. (5)

To ascertain the value of ΔT at any particular time t, the
intelligent agent evaluates the incoming Psur and observes

whether it is less or more than the average value of Psur over
24 h. From Eqs 6, 7, the set point temperature of the thermostat
at any instant is calculated.

Tset,cooling,heating t( ) � Tpref + Psur t( )
Slopehigh,low

Psur > 0, (6)

Tset,cooling,heating t( ) � Tpref + Psur t( )
Slopelow,high

Psur < 0. (7)

In the proposed paper, it has been observed from Eq. 8 that every
1℃ thermostat change has a 6.4% change in the power consumption
of HVAC and AC. Increasing the temperature decreases HVAC and
AC load consumption for cooling purposes. Similarly, load
consumption increases with the increase of 1℃. Conversely, rise
and fall in temperature increase and decrease consumption for
heating purposes, respectively.

ΔTcooling � −1℃ + 6.4% consumption

+1℃ − 6.4% consumption
{ ;

ΔTheating � +1℃ + 6.4% consumption

−1℃ − 6.4% consumption
{ .

(8)

2.2 Multi-layer MAS infrastructure for smart
MMG setup

A smart residential MG is a basic model for different categories
of homes based on its standard of living and load demand based on
the personal comfort and poor, rich, and middle classes, as

FIGURE 3
(Continued). Workflow of SRMGs: (A) layer 3; (B) layer 2; (C) layer 1. Workflow of SCMGs: (D) layer 3; (E) layer 2; (F) layer 1. Workflow of SIMGs: (G)
layer 3; (H) layer 2; (I) layer 1.
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demonstrated in Figure 2A. The configuration is designed for both
real-time and day-ahead (DA) MG operations. The real-time
approach operates based on hourly signals such as load demand,

generation from RERs, and energy price. In contrast, the day-ahead
model operates entirely on forecasted data for 24 h. The power needs
of the occupants of the mentioned homes with respect to the

FIGURE 4
Workflow of (A) MMPPnP and (B) efficient energy management market.
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economic diversity are increased by cost-effective alternatives
subject to their affordability and various living patterns. Similarly,
a smart commercial MG framework comprises different
classifications depending upon the level of power consumed by
each scale.

In the proposed work, three commercial-scale, namely, small,
medium, and large, setups are considered for both real-time and
day-ahead signals, as shown in Figure 2B. With intelligent
scheduling of power and time-adaptable devices, commercial
modeling addresses the priority assigned to the devices of each
commercial scale, cost, and power efficiency. The schedule is done so
that the work of each MG category is not disrupted. Shops, markets,
buildings, agricultural land, educational institutions, and hospitals
(emergency and outpatient door (OPD)) make up the commercial
grid load.

In the proposed work, the smart industrial MG setup consists
of high-energy-intensive cement and medium-energy-intensive
olive oil industries, as shown in Figure 2C. The industrial load is
intelligently scheduled through the active participation of agents
in the MAS framework. It is a common observation that
industries are more vulnerable to the penalties imposed on
them for maximum power usage at peak times. Depending
upon the feasibility, the industries are not prepared to
schedule their load if the cost of not producing at a particular

hour exceeds the penalties. However, in our research, industries
are allowed to increase production at peak times for clean
generation to fulfill the demand. Consequently, both industries
achieved cost minimization, reduced production risk, and
increased clean energy utilization. Furthermore, the intelligent
actions of smart agents assist in achieving the industry’s routine
productivity and profitability matters. The MAS framework
deploys advanced communication patterns and low latency
rates which edify the agents to achieve their distributed
objectives in a complex and secure environment. In addition,
a secure transport protocol, namely, inter-process
communication (IPC), is deployed for connecting agents. The
modeled MAS in the proposed paper for each of the three MGs is
of a hierarchical type divided into three levels.

2.2.1 Layer 3
A home agent controller (HAC) employs a request–reply

communication pattern for asking about the details from the
load agent devices in SRMGs. Load agent devices use the
push–pull communication pattern to send the necessary
information for scheduling to the HAC. Similarly, a
Commercial agent controller (CAC) and an industrial zone
controller (IZC) in SCMGs and SIMGs send and receive queries
regarding the load details to categorized areas and zones using the

TABLE 2 Essential details related to SRMGs.

Installed RER capacities/
cases

Case 1 Case 2 (base case) Case 3

Solar (kW) 100 200 250

Wind (kW) 50 100 150

Aggregated power (kW) 150 300 400

Bid and offer/grid type Bid ($/kWh) Offer ($/kWh)

Commercial 0.095 0.09

Industrial 0.1 0.09

Coal-fired power plant (main grid) 0.105 0.065 (FiT)

Monthly billing/cases Case 1 Case 2 (base case) Case 3

Schedule load ($) 2,425.9 2,552.2 2,667.3

Business-as-usual (BAU) load ($) 4,487.7 4,031.9 3,844.0

Emissions/cases Case 1 Case 2 (base case) Case 3

Emissions from renewables (g/kWh) 21,671 28,539 31,390

Emissions from the coal grid (g/kWh) 906,101 1,097,080 1,187,561

Decrease in emissions (%) 97.60836 97.39866 97.3568

Proposed tariff breakdown tariffs ($/kWh) Base
TOU (BT)

Half-base
TOU (HBT)

Double-base
TOU (DBT)

Base flat
rate (BFR)

Half-base flat rate
(HBFR)

Double-base flat rate
(DBFR)

Renewable ON-peak generation 0.065 0.0325 0.13 0.04225 0.02112 0.0845

Renewable OFF-peak generation 0.085 0.0425 0.17 0.02975 0.01487 0.0595

Battery 0.0875 0.04375 0.175 0.075 0.04 0.145

Flat rate 0 0 0 0.072 0.036 0.144
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request–reply and push–pull communication patterns. The HAC,
CAC, and IZC in SRMGs, SCMGs, and SIMGs deploy MMGWO
and modified multi-objective-prioritized plug-and-play
(MMPPnP) algorithms for day-ahead and real-time signals,
respectively, to achieve the defined objectives, . From Eqs 9–11,
TLdevices (x) represents the total load of the devices attached to the
HAC, CAC, and IZC in each category of the load pattern in terms
of priority. The value of x determines the load category of eachMG
in the MMG paradigm. Ltotal (x) provides the total load of the MG
by adding the base load. Dpriority is the array of devices that
represent the increasing priority of the devices. PFD and TFD
represent the power of time flexible and power flexible devices. For
the effective dispatching of scheduled devices to meet the DR, the
total load at the ongoing time L(x)(t) linked via agents is given by Eq. 12:

x � home categories � home pattern Rich,Middle, Poor( )[ ]{ },
x � commercial categories � Areas Large,Medium, Small Scale( )[ ]{ },
x � industrial categories � Zones High,medium( )energy intenisve[ ]{ },

Dpriority x( ) � P 1( ), P 2( ), . . . .P total.no.devices( ){ }, (9)
TLdevices x( ) �∑no.of.PFD

n�1 (Dpriority) PFDn( ){ }
+∑no.of.TFD

k�1 (Dpriority
) TFDn( ){ } (10)

Ltotal x( ) �∑24

t�1Bl x( ) + TLdevices x( ), (11)
L x( ) t( ) � Bl x( ) t( ) + (TLdevices x( ) t( ) × γ10). (12)

t represents the incoming signal (day-ahead or real-time). γ10
gives the status (ON/OFF) of the connected devices at the

FIGURE 5
(Continued).
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time frame t. As mentioned previously, TLdevices (x)(t) gives
the power of time flexible and power flexible devices at
the current t for each MG in the MMG paradigm.

Therefore, γ10 only accounts for TLdevices(x)(t). The signal
of surplus generation Psur triggers the ON/OFF status of
a device.

FIGURE 5
(Continued).
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TFDn � 1,
Psur > 0
DS.T ≤ t≥DE.T

Pt ≤Pthres

⎧⎪⎨⎪⎩ ,

0, otherwise

(13)

PFDn � 1,

thermostat atmax level
0<Psur ≥PFDnmax

DS.T ≤ t≥DE.T

Pt ≤Pthres

⎧⎪⎨⎪⎩
thermostat atmin level

PFDnmax > Psur ≥PFDnmin, 0
DS.T ≤ t≥DE.T

Pt ≤Pthres

⎧⎪⎨⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

0, otherwise

(14)

Load-device agent controllers intelligently transition the mode
of connected devices based on the defined restrictions in Eqs 13, 14.
TFD is directed to turn ON when the incoming Psur exceeds the
consumer load. The tariff price determined at that hour should be

less than the consumer’s defined threshold price based on their
affordability and comfort. Furthermore, each MG category
determines the starting time, ending time slot, and time duration.
At that instant, the instant TFD should be within the range of the
starting and ending time and is not fully ON for the defined hours.
The controller strictly monitors the parameters and makes
autonomous and precise decisions for the connected devices.
Similarly, the PFD thermostat intelligently adjusts the thermostat
according to the incoming Psur signal. Based on the above Eq. 16, the
thermostat is adjusted at the maximum level when the incoming Psur

signal is greater than or equal to the n flexible device’s maximum
power PFDnmax. Alternatively, the thermostat is set to the minimum
level when the incoming Psur signal is less than PFDnmax and greater
than the n power flexible device’s minimum power PFDnmin . The
PFD intelligent agent controller also considers each MG category’s

FIGURE 5
(Continued).
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cost and time limits when scheduling devices. The workflow of layer
3 in SRMGs, SCMGs, and SIMGs is demonstrated in Figures 3A, D, G,
respectively.

2.2.2 Layer 2
This layer comprises a local community controller (LCC) in

SRMGs, CAC in SCMGs, and IAC in SIMGs. Each MG constitutes

FIGURE 5
(Continued). Illustration of the RTM of SRMGs: (A) base case power flow; (B) and (C) base case status of schedule devices; (D) case 1; (E) case 3; CBA
of the proposed tariff; (F) PBP; (G) ROI; CBA of the proposed tariff adjustment strategy (TAS); (H) NPV; (I) IRR; (J) PI.
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the BESS with different capacities in the proposed paper. Because of
the intricate numerical computations and intelligent decisions
executed by the agents in this layer, it has core importance. Layer
2 serves as a link between the consumer and generational levels.
Consequently, this layer acts both as a sink and a source across the
24-h operation of agents. Layer 2 controllers for each MG use a
request–reply pattern for communication with the BESS, layer 1, and
layer 3. At each time period (per hour), the layer 2 controllers obtain
power consumption and power generation signals simultaneously

from the respective MGs. Controllers calculate the demand/
generation power difference from the received power signals and
decide the power status using a knapsack algorithm. Priorities are
assigned to receiving power utilization by the LCC, CAC, and IAC, as
shown in Eq. 15, in the proposed research. The operation of devices is
explained based on a four-tiered priority list assigned by the PPnP.
Figures 3B, E, H show the workflow of layer 2 in SRMGs, SCMGs, and
SIMGs, respectively. The mathematical representation of power at
layer 2 is represented in Eqs 16, 17:

TABLE 3 Proposed tariff adjustment strategy (TAS) for the MMG.

Tariff
adjustment
strategy

TAS 1 TAS 2 TAS 3 TAS 4 TAS 5 TAS 6 TAS 7 TAS 8 TAS 9 TAS
10

TAS 11 TAS 12

Tariff structure for
25 years

Base
TOU

tariff PB.
Half-
base
TOU
tariff

onward

Base
TOU

tariff for
25 years

Half-
base
TOU

tariff for
25 years

Double-
base
TOU

tariff for
25 years

Double-
base
TOU

tariff PB.
Base
TOU
tariff

onward

Double-
base TOU
tariff PB.
Half-base
flat rate
tariff

onward

Base-flat
rate tariff
PB. Half-
base flat
rate tariff
onward

Base flat
rate tariff

for
25 years

Half-
base flat
rate tariff

for
25 years

Double-
base flat
rate tariff

for
25 years

Double-
base flat
rate tariff
PB. Base
flat rate
tariff

onward

Double-
base flat
rate tariff
PB. Half-
base flat
rate tariff
onward

TABLE 4 Essential details related to SCMGs.

Installed RER capacities Case 1 Case 2 (base case) Case 3

Solar (kW) 400 500 550

Wind (kW) 400 500 550

Aggregated power (kW) 800 1,000 1,100

Bid and offer/grid type Bid ($/kWh) Offer ($/kWh)

Residential 0.09 0.095

Industrial 0.1 0.095

Coal-fired power plant (main grid) 0.105 0.07 (FiT)

Monthly billing/cases Case 1 Case 2 (base case) Case 3

Schedule load ($) 14,410.5 13,075.1 7637.8

BAU load ($) 14,978.7 13,875.8 13,838.2

Emissions/cases Case 1 Case 2 (base case) Case 3

Emissions from RER (g/kWh) 111,881 116,104 118,071

Emissions from the coal grid (g/kWh) 4,732,576 4,771,981 4,779,022

Decrease in emissions (%) 97.635931 97.56697 97.52939

Proposed tariff breakdown tariffs ($/kWh) Base
TOU (BT)

Half-base TOU (HBT) Double-base
TOU (DBT)

Base flat rate (BFR) Half-base flat
rate (HBFR)

Double-base
flat rate
(DBFR)

REG ON-peak 0.07 0.035 0.14 0.0455 0.02275 0.091

REG OFF-peak 0.09 0.045 0.18 0.0315 0.01575 0.063

Battery 0.0925 0.04625 0.185 0.08 0.04 0.155

Flat rate 0 0 0 0.077 0.0385 0.154
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Ppriority 1( ) � Fixed/BaseLoad
Ppriority 2( ) � Scheduled LoadTFD/PFD
Ppriority 3( ) � BESS
Ppriority 4( ) � Market Controller

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (15)

Py � Psource t( ) − Bl x( ) t( ) + TLdevices x( ) t( )( )( ), (16)

PBESS � Py
+ive γ1( )
−ive γ0( ){ . (17)

y represents the power received by the LCC, CAC, and IAC
deployed in layer 2 for SRMGs, SCMGs, and SIMGs, respectively.
The aggregated power consumption of each MG with the battery
acting as a sink at any instance t is given by the following Eq. 18:

Py total( ) � Py + PBESS. (18)

2.2.3 Layer 1
Layer 1, as shown in Figures 3C, F, I, acts as a gateway among RERs,

MGs through the energymarket, and level 2 systems. Layer 1 constitutes
the Residential micro-grid controller (RMGC) in SRMGs, Commercial
micro-grid controller (CMGC) in SCMGs, and Industrial micro-grid
controller (IMGC) in SIMGs. Additionally, solar agents (SAs) and wind
agents (WAs) are also deployed in layer 1. RMGC, CMGC, and IMGC
are the primary controllers in layer 1 and are involved in maximizing
the efficiency and utilization of RERs of the respective MGs.
Furthermore, it actively participates in energy trading with the
primary grid and other nearby microgrids on the surplus and deficit
power. In the case of Pdef, RMGC, CMGC, and IMGC define a priority
list, as that given in the following equations, which is based on cost and
emission minimization. The knapsack takes optimal decisions

FIGURE 6
(Continued).
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regarding power import deployed in layer 1 of each MG, as shown in
Eqs 19–22, based on the necessity priority mentioned in Eq. 23:

knapsack � weight, value, number( ), (19)

Pz total gen( ) t( ) � ∑m
1

Py t( )⎛⎝ ⎞⎠ + PMG i( ),main grid t( ), (20)

Pimport � Py × Ni t( ) × γ10, (21)

Priority 1( ) � MG i( )
Priority 2( ) � main grid

( ), (22)

NiSRMG �
1 → Power outage

0.9 → Base load

0.7 → Residential emergency needs

0.2 → Home Luxury needs

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ ;

NiSCMG �

1 → Hospital needs

0.9 → Defence organization

0.8 → Educational institution

0.7 → offices

0.5 → commercial buildings

0.2 → markets, shops

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
NiSIMG � 1 → Emergency Situation

0.5 → Appliances operation
{ .

(23)

FIGURE 6
(Continued).
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z represents the RMGC, CMGC, and IMGC, and Pz (total gen)
shows the RER power received by each MG. The RMGC,
CMGC, and IMGC employ a request–reply pattern for
communicating with RERs and layer 2 in SRMGs, SCMGs,
and SIMGs, respectively. A synced publish–subscribe channel
is used for taking part in REMMC activities. The solar and wind
power output at any instant t is calculated using Eqs 24, 25 (Malik
et al., 2020):

PVsolar t( ) � G t( )
1000
( ) × Prated,1000 + ηMPPT, (24)

where
G(t) � hourly incoming solar irradiance at 90° angle (W/m2)

ηMPPT � conversion efficiency of the PV system′s converter
Prated,1000 � Per PV array rated power at 1000w/m2

From Eq. 25, the speed of wind at real-time t is given by v,
whereas Pmax is the maximum power that can be extracted from the
wind turbine, and Pfurl is the extracted output power at the
cutout speed.

Pwind �

0 vcutout < v< vcutin

Pmax
v − vcutin

vrated − vcutin
( ) 3 vcutin < v< vrated

Pmax + Pfurl + Pmax

vcutin − vrated
( ) vrated < v< vcutin

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
. (25)

FIGURE 6
(Continued).
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2.3 BESS

To encounter the volatile nature and ensure maximum
utilization of the output power of RERs, we accommodate
the BESS to supply supplementary services. The BESS stores
surplus energy at the time of maximum or surplus generation
and uses it afterward to satisfy the required demand during
minimal generation or emergencies. Additionally, the cost of
power is minimized by ignoring the power import from another
microgrid or the primary grid. The BESS communicates with
the layer 2 controller of each MG through a secure and fast
channel using the push–pull communication pattern. As given
in Eq. 15, the proposed paper has given the BESS the third
priority for employing the RER output power. The battery
deployed in the proposed paper is a lithium-ion battery
(LIB). Lithium-ion batteries are most popular because of
their high energy density, extended lifespan, and high cost
and performance efficiency (Hannan et al., 2017). The agent
associated with the BESS effectively monitors the performance
measuring the parameters such as state-of-charge (SOC),

depth-of-discharge (DoD), and round-trip-efficiency (RTE)
and ensures the safe and reliable operation of the battery.
For per hour along with 24 h, the state-of-charge of the
battery is determined from the net power Pbatt present in the
battery, round-trip-efficiency ηRTE, and maximum capacity
Emax .cap, also known as the rated capacity, and is
mathematically represented in Eq. 26. The PPnP algorithm is
deployed by the BESS agent to smartly observe the charging and
discharging of a battery given in Eqs 27–33. The BESS agent
examines the incoming surplus power and takes appropriate
action based on the situation.

SoC% t( ) � ∫t�24
t�1 Pbatt t( )ηRTE dt

Emax .cap

⎛⎝ ⎞⎠ × 100. (26)

Only the power capacity Pcap can be used to charge the battery
Pch(t) from the available power Pavail (t). Similarly, the battery can
discharge Pdisc(t) only Pcap for the necessary power Puse (t).

Pavail t( ) � Psur t( ) × ηch × δ10 if SoC<Emax .cap{ , (27)

FIGURE 6
(Continued).
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Pch t( ) � Pavail Pcap( )( ) if Pavail t( )≥Pcap,{ (28)
Pch t( ) � Pavil t( ) if Pavail t( )< Pcap,{ (29)

Puse t( ) � Pdef t( ) × ηdisc × δ10 if Emin .cap < SoC≤Emax .cap{ , (30)
Pdisc t( ) � Puse Pcap( )( ) if Puse t( )≥Pcap,{ (31)
Pdisc t( ) � Puse t( ) if Puse t( )< Pcap,{ (32)

Emin .cap ≤ SoC% t( )≤Emax .cap. (33)

2.4 Framework and algorithms

The proposed algorithm intends to achieve goals such as
prioritizing and optimizing green energy utilization, increasing
user comfort, and lowering consumer bills and greenhouse gas
emissions. This suggested framework is unique, in that it
achieves all of the objectives at the same time, delivering a

futuristic and practical approach to the multi-
microgrid paradigm.

2.4.1 Environment for modeling and developing
the MAS framework

A Python-based unique and adaptive environment is developed
for operating the MAS in the current work. osBrain is an
OpenSistemas-designed Python-based library employed for
creating and communicating agents in an MAS. osBrain
facilitates the configuration of agents to adopt durable,
innovative, and dynamic complex multi-hierarchical formations.
The agents deployed using this library operate in real-time,
autonomously, with vital intelligence, effective control, and safe
communication capabilities. For agents to communicate information
in an MAS, the brain provides basic communication patterns such as
push–pull, request–reply, and publish–subscribe, as well as
sophisticated communication patterns such as the asynchronous
request–reply channel and the synced publish–subscribe channel.

FIGURE 6
(Continued). Illustration of the RTM of SCMGs: (A) base case power flow; (B), (C), and (D) base case status of schedule devices; (E) case 1; (F) case 3;
CBA of the proposed tariff; (G) PBP; (H) ROI; CBA of the proposed TAS; (I) NPV; (J) IRR; (K) PI.
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The developed MAS framework deploys scenario-based
communication, as mentioned above. Inter-process communication
is a transport protocol for communication and data or power
interactions among agents. Furthermore, osBrain uses many Python
packages such as NumPy, SciPy, time, andMatplotlib for visual analysis
and numerical data computation. To avoid unwanted organizations
from compromising the MAS, osBrain provides secure and trusted
networks for the agents to share information. The proposedMAS in the
MMG paradigm is developed with the assistance of the osBrain module
by employing multiple communication methods and networks
depending on circumstances. The concept of object-oriented
programming (OOP) in Python is also deployed for accessing
programmed functions of agents in real-time scenarios.

2.4.2 Gray wolf optimization
Gray wolf optimization (GWO), introduced in Mirjalili et al.

(2016), is one of the most effective meta-heuristic optimization
algorithms. Because of the extreme precision of the solution, the
reduced computing strain, and the minimization of slow
convergence, GWO leads to other meta-heuristic algorithms such
as the genetic algorithm (GA), African buffalo optimization (ABO),
particle swarm optimization (PSO), binary particle swarm
optimization (BPSO), and central force optimization (CFO)
(Haseeb et al., 2020). This meta-heuristic algorithm mimics gray
wolves’ natural command structure and hunting procedure. The
alpha wolf position is regarded as the fittest and best solution in the
proposed MMGWO with the following objective functions:

objectives � maximize UC, utilization ofRER, Power Efficiency( )
� minimze emissions, cost, power import fromgrid( ).

2.4.3 Modified multi-objective prioritized plug-
and-play

Modified multi-objective-prioritized plug-and-play is an iterative
method that, at each iteration, produces the best result under the
defined limitations, which is then fed to the controllers for deployment.
The objective of this approach is to effectively utilize the RER
generation, reduce consumer bills, maximize the user’s comfort, and
increase the power efficiency of the devices. For achieving these
objectives, certain conditions are imposed on the controller.
Consequently, an intelligent controller makes autonomous decisions
while considering the constraints that lead to plug-in/plug-out devices.
The proposed research implements MMPPnP in a real-time model for
24 h with per-hour signals. Figure 4A explains the working flow of
MMPPnP. The objectives of the proposed work are given below.

objectives � maximize UC, utilization ofRER, Power Efficiency( )
� minimze emissions, cost, power import fromgrid( ).

2.4.4 Knapsack
To reduce costs and emissions while increasing UC and RER

utilization, generation and storage in the algorithm are carried out
according to the demand dispatch and DR pattern scheduling at the
chosen periods using the multiple knapsack problem (MKP) criteria

TABLE 5 Essential details related to SIMGs.

Capacities of the installed RER/cases Case 1 Case 2 Case 3 (base case)

Solar (kW) 600 400 1,000

Wind (kW) 600 400 1,000

Aggregated power (kW) 1,200 800 2,000

Bid and offer Bid ($/kWh) Offer ($/kWh)

Commercial 0.095 0.1

Residential 0.09 0.1

Coal-fired power plant (main grid) 0.105 0.075 (FiT)

Monthly billing/cases Case 1 Case 2 Case 3 (base case)

Schedule load ($) 7,233.21 7,168.4 7,347.1

BAU load ($) 8,114.1 8,412.7 7,613.2

Emissions/cases Case 1 Case 2 Case 3 (base case)

Emissions from RERs (g/kWh) 72,614 67,899 88,294

Emissions from the coal grid (g/kWh) 2,595,963 2,591,943 3,156,523

Decrease in emissions (%) 97.2028 97.3804 97.2028

Proposed tariff breakdown
tariffs ($/kWh)

Base TOU (BT) Half-base
TOU (HBT)

Double-base
TOU (DBT)

Base flat rate (BFR) Half-base flat
rate (HBFR)

Double-base
flat rate (DBFR)

REG ON-peak 0.075 0.0375 0.15 0.04875 0.024375 0.0975

REG OFF-peak 0.095 0.0475 0.19 0.03325 0.016625 0.0665

Battery 0.0975 0.04875 0.195 0.085 0.045 0.165

Flat rate 0 0 0 0.082 0.041 0.164
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(Zhong et al., 2022). MKP deployment for resource allocation with
“m” resources (capacities), a set of “n” objects, and “j” number of
knapsack maps projected the problem accordingly (Karimi et al.,

2023). The proposed work develops a constraint to limit the
power usage based on the load profile and its states given in Eqs
34, 35:

FIGURE 7
(Continued).
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Cons t( ) × χ t( )≤C t( ), (34)

whereχ(t) � binary state
[0, 1] of appliances at each hour,C(t) � per hour

power capacity,Cons(t) � permitted
consumption to selected appliances,

Gen t( ) × χ t( )≤ g t( ), (35)

FIGURE 7
(Continued).
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where
χ(t) � binary state [0, 1] ofgeneration soruces at each hour
g(t) � hourly power generation available from integrated
power generation soruces
Gen(t) � generation dispatched by each generating plant

2.4.5 Efficient energy management market
The conventional infrastructure only enables a one-direction

power flow from the generator to the end user, without any
response. On the other hand, modern advanced grids provide
bi-directional power and communication flow to adjust the load
and generation. Consequently, the cost is reduced, thus achieving
one of the primary goals of the proposed work. Different strategies
have been explored in the literature review for energy transactions

with the MG and main grid within the MMG paradigm. The
proposed work in this paper provides a realistic alternative to
accomplish a solution concerning the technical, economical, and
environmental concerns. Because each MG in the MMG paradigm
retains RERs, the efficient energy management market controller
(EEMMC) primarily transacts clean energy. For this reason,
importing of energy from the primary grid is minimized and
GHG emission is reduced likewise. The main grid is the least
priority for transactive energy in the proposed work. The EEMMC
asks each MG in the MMG about the status of energy and cost.
Each MG GAC provides information according to the need of an
hour or day. The provided information is secured with the EEMMC
and is simultaneously shared by each MG. Depending upon the
proposed model in this paper, the agent adopts a uniform clearing

FIGURE 7
(Continued).
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price and bilateral trading for real-time and day-ahead models in spot-
market and future market environments, respectively. In the current
project, a double-sided bidding method is being used to make the
market more competitive. The proposed efficient energy market
workflow is shown in Figure 4B.

3 Results and discussion

A proposed MMG paradigm in the current work incorporates
residential, commercial, and industrial MGs. SRMGs comprise five
rich-, seven middle-, and 12 poor-class homes, categorized on the basis
of appliances. The SCMG is classified into large, medium, and small-
scale commercial areas covering different appliances installed in
commercial markets, educational institutes, hospitals, offices, and
agricultural land. Cement and olive oil production are the sectors of
the industrial grid that use high andmedium energy levels, respectively.
All the three MGs are integrated within an MAS environment through

modern communication patterns. Two models, day-ahead and real-
timemodels, are presented based on the time signal received. Themodel
proposed in this paper is designed and programmed so that it tends to
be effectively adopted according to each MG’s needs and planning. The
business-as-usual (BAU) load represents the consumer’s unscheduled
device usage or not optimized load pattern.

3.1 RTM for the MMG

3.1.1 RTM cases for SRMGs
The proposed model in the paper is built by considering

different installed RER capacities, as given in Table 2, for
SRMGs. Agents in the real-time model (RTM) receive hourly
signals for the MMG paradigm’s operation. In an uncertain
environment, the agents perform an intelligent action to optimize
the operation of each MG and accomplish the defined objectives.
Figure 5A represents a base case of hourly operation of SRMGs.

FIGURE 7
(Continued).
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Figure 5A depicts that as the peak generation of the introduced RER
is more prominent than the maximum load, the imported power by
SRMGs is low in contrast to its exported power. The initial hours of
power deficiency are satisfied by the BESS. Due to the non-
availability of power in the energy market, power is imported
from the main grid to satisfy the load demand at hours 19–23 by
the bidding price mentioned in Table 2. Similarly, surplus power is
exported to SCMGs at hour 5 and the main grid at hours
5–17 through the energy market, with offer price shown in
Table 2. Furthermore, Figure 5A demonstrates the effective
scheduling of the total load by MMPPnP considering the
generation curve and incoming tariff as compared to the
unscheduled BAU load. As shown in Figures 5B, C, the TFD and
PFD agents turn ON/OFF devices at the ON-peak and OFF-peak
hours of generation. The device status, ON and OFF, is represented
by 0 and 1, respectively. Status 1 and status 2 for PFDs correspond to
the minimum and maximum thermostat levels, respectively. The

thermostat is set at the maximum level at ON-peak hours of
generation, resulting in maximum user comfort with minimum
cost. In contrast, the thermostat level is changed to status 1 at OFF-
peak RER generation hours.

Figure 5D is the graphical representation of case 1 of SRMGs.
Figure 5D depicts that RERs cannot meet the scheduled load
demand during OFF-peak generation hours. As a result, initially,
limited power is taken from batteries. Then, the SRMG approaches
the energy market to meet the remaining load demand. Due to the
volatile nature of the market, power import from the main grid is
more than that of other MGs. Agents deployed in SRMGs
intelligently optimize thermostat levels for PFDs at low
generation hours. Due to the high installed capacity, as given in
Table 2, the SRMG exports more energy in case 3, resulting in
negligible energy import as compared to case 1 and case 2. Because
of enough surplus power, as shown in Figure 5E, the thermostat of
PFDs is positioned to a maximum level, reflecting the efficient

FIGURE 7
(Continued). Illustration of the RTM of SIMGs: (A) base case power flow; (B), (C), and (D) base case status of schedule devices; (E) case 1; (F) case 2;
CBA of the proposed tariff; (G) PBP; (H) ROI; CBA of the proposed TAS; (I) NPV; (J) IRR; and (K) PI.
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working of agents. The energy transactions for case 3 can be
visualized in Figure 5E. Due to the unavailability of power in the
market, the load demand from hours 21 to 23 is satisfied by the main
grid. The monthly bill for the schedule load and BAU load pattern is
calculated by considering the cost of the power taken from the RER,
battery, and other MGs. It can be seen from Table 2 that the monthly
bill for scheduled load is lower than that for the unscheduled load in
all three cases of renewable power generation. This reflects the
compelling and optimal load scheduling by deploying the proposed
MMPPnP in RTM SRMGs. The increasing pattern of the schedule
load cost in case 2 and case 3 shows the intelligent setting of the
thermostat by agents for PFDs. Similarly, the decreasing trend of the
BAU load shows the availability of more surplus power in
subsequent cases.

At any hour, power is taken from RERs, batteries, and other
renewable MGs (SCMGs and SIMGs) to meet the load demand by
avoiding the grid, equivalent to reducing carbon emissions. Table 2
shows the emissions of SRMGs for the three cases of renewable
energy generation. Table 2 depicts a tremendous decrease in carbon
emissions if a load is satisfied from renewable sources compared to
meeting the same. The cost–benefit analysis of SRMGs is determined
by considering different parameters which are calculated to
reference the investors or IPPs for implementing the proposed

framework. The proposed tariff breakdown for the proposed
model is given in Table 11. The Base TOU tariff is decided based
on the solar FiT set for local residential areas in Pakistan. Half-base
and double-base TOUs represent the half and double tariff of the
base TOU, respectively. The base flat rate is the average sum of the
base TOU ON and OFF-peak generation tariff.

As demonstrated in Figures 5A, F, the sensitivity analysis for
the proposed model has determined the payback period for
different cases. Figure 5F depicts that case 1 has a more
extended payback period for different tariffs than cases 2 and
3. Due to the lowest tariff charge by the investor for selling
power, as given in Table 3, the half-base TOU and half-base flat
rate tariffs in each scenario have a more extended payback
period. Because of the significant investment and low demand
fulfillment from RERs, these two tariffs are considered invalid
for case 1. On the contrary, double-base TOU and double-base
flat rate tariffs exhibit the best results for selecting tariffs in each
case. The best outcome for all the instances is provided by case 3,
which has a short payback period for all tariffs. This results from
RER electricity being used to its fullest potential to meet the
load demand.

The annual return-on-investment for each of the three RTM
SRMG cases is shown in Figure 5G. The ROI for half-base TOU

TABLE 6 Essential details of the MMG in the DAM.

MG SRMG SCMG SIMG

Schedule load ($) 2,662.3 13,081.8 7,324.6

BAU load ($) 4,031.9 13,875.8 7,613.2

Emissions from RERs (g/kWh) 36,001 125,468 88,014

Emissions from the coal grid (g/kWh) 1,311,169 4,665,652 3,146,513

Decrease in emissions (%) 97.25427 97.31082 97.2028

Future contract settlement of SRMGs with SCMGs and SIMGs

MGs Industrial Commercial

Export (kW) 0 128.92934

Import (kW) 24.1026172 0

Export price ($/kWh) 0 0.08

Import price ($/kWh) 0.095 0

Future contract settlement of SCMGs with SRMGs and SIMGs

Export (kW) 328.39056 127.5114364

Import (kW) 440.9856713 99.12766626

Export price ($/kWh) 0.09 0.08

Import price ($/kWh) 0.095 0.075

Future contract settlement of SIMGs with SRMGs and SCMGs

Export (kW) 1,162.456364 312.3887344

Import (kW) 0 0

Export price ($/kWh) 0.095 0.09

Import price ($/kWh) 0 0
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and half-base flat rate tariff, observed in Figure 5G, is considered
to be the lowest in all cases. In contrast, double-base TOU and the
double-base flat rate have the highest ROI values for different
capacities of RERs. Case 1 in Figure 5G is assessed as infeasible
for the investors as it has the lowest ROI. This is due to the
increase in power import from other MGs and the main grid to
meet the demand. On the other hand, case 3 is considered the
most feasible as it has the highest values of ROIs for different
tariffs. The current work proposes different tariff adjustment
strategies given in Table 3 to calculate the NPV, PI, and IRR for
different installed capacities of RERs. Figure 5H illustrates the
NPV of SRMGs by adopting various tariff adjustment strategies
(TASs) for different cases. It can be seen in Figure 5H that TAS
3 and TAS 9 have the lowest NPV, but TAS 10 has the best NPV
among all situations. Additionally, as seen in Figure 5I, IRR is
kept to a minimum by adhering to TAS 3 and 9. The adoption of

TAS 4, however, results in the greatest IRR. The highest and
lowest IRRs between these cases can be seen in case 1. Case 2 has
the highest PI through implementing TAS 10, as shown in
Figure 5J. However, RER installation, as in case 1, is infeasible
to pursue as its PI is less than 1 in most TASs.

3.1.2 RTM cases for SCMGs
The RTM of SCMGs is evaluated through an acquaintance of

different scenarios and their economic assessment. Therefore, the
load demand is maintained throughout. Different cases are taken
into consideration based on the capacity of the installed RER, as
represented in Table 4. RERs with 1000 kW capacity are installed for
the base case of SCMGs. It can be seen from the graphical
representation of SCMGs, in Figure 6A, that power export is
maximum at the ON-peak hour of generation. In contrast, power
is initially imported from the battery and then the SCMG

FIGURE 8
(Continued).
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approaches to the energy for meeting the scheduled load. At power
deficit hours 3, 4, 5, 18, and 19, power is imported from SRMGs and
SIMGs by bidding the price given in Table 4. The corresponding
signal is communicated to the efficient energy market in the RTM
for every hour with excess or lack of power. The SCMG places an
offer and bid for the corresponding power through the
communicated signal.

Figure 6E demonstrates that the load curve is more dominant
than the generation curve at off-peak hours for case 1. As a result,
initially, limited power is taken from batteries. Then, SCMGs
approach the energy market to meet the remaining load demand.
As shown in Figure 6E, deficiency is satisfied by taking power
from the SIMG at hours 3, 4, 5, 18, and 19. Similarly, the SRMG
provides energy to the SCMG at hour 5, but the market clears at
an industrial bid. Thus, the SRMG experiences social welfare
benefit from the market environment. Power is taken from the
main grid at 3, 4, 18, 19, 20, 21, 22, and 23 h due to insufficient

power to satisfy the load. Due to the volatile nature of the market,
power import from the main grid is more than that of
the other MGs.

Case 3 consists of RERs with the highest capacity as provided
in Figure 6F. Consequently, the thermostat is tuned to a
maximum level and maximum energy is exported to other
MGs as compared to other cases. Consequently, less electricity
is purchased from the energy market than in the other scenarios.
At load surplus hours of 9, 11, 12, 13, and 14, power is exported to
SIMGs and SRMGs at the offer price shown in Table 4. The cost
of the electricity used from RERs, batteries, and other MGs is
considered while calculating the monthly bill for the schedule
load and the BAU load. Scheduled load cost in case 3 is the lowest,
as shown in Table 4. This is due to the minimum power import
from other MGs and the maximum utilization of clean energy.
The low cost of the schedule load shows the efficient and effective
load scheduling achieved by implementing the suggested

FIGURE 8
(Continued).
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MMPPnP and knapsack in RTM SCMGs. Carbon dioxide
emission by taking power from the main grid is minimized by
importing power from RERs, batteries, and other MGs with
RERs. Emissions from SCMGs satiating the same demand
from the main grid and RERs are demonstrated in Table 4. It
can be seen from Table 4 that there is a prominent decrease in
emissions that can be achieved through the proposed work.

For executing the proposed framework for SCMGs, specific
metrics of CBA are calculated to pave the way for investors or
IPPs. Three scenarios are put into consideration based on the
capacity of the installed RER. As shown in Figure 6G, the
suggested model’s sensitivity analysis was used to evaluate the
payback period for the defined cases. It can be analyzed from
Figure 6G that there is a prominent decrease in PB for different
cases by adopting half-base TOU and the half-base flat rate tariff.
Furthermore, by introducing additional tariffs, PB also reduces
the ascendingly arranged cases. The primary factor behind the
decline in PB is the maximum use of clean energy. However, the

capital and operating costs of a large number of RERs cause the
PB of the installed setup to be delayed, even though clean energy
usage is constant. Case 1 in Figure 6H has the lowest and highest
ROI by deploying half-base TOU, half-base flat rate, double-base
TOU, and double-base flat rate tariffs, respectively. This is
because of the low initial and operation costs and maximum
utilization of clean energy. It can be seen from Figure 6I that
adopting TAS 4 and TAS 10, given in Table 4, achieves the
highest NPV for SCMGs. Moreover, case 1 has the highest IRR
for TAS 4 and TAS 10, as demonstrated in Figure 6J. The PI for
different cases by deploying various TASs is illustrated in
Figure 6K. The analysis in Figure 6K reveals that case
1 achieved the highest PI by using TAS 4 and TAS 10 in the
RTM for SCMGs.

3.1.3 RTM cases for SIMGs
Table 5 shows the values of installed RERs, which are taken into

consideration for the evaluation of different cases of the RTM for

FIGURE 8
(Continued).
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SIMGs. The capacity of the installed RER for case 3 is the highest
among other cases. Due to the highest capacity of the installed RER
in SIMGs, the generation curve is highly dominant along 24 h, as
shown in Figure 7A. Consequently, the SIMG experiences no power
deficiency as the total scheduled load demand is met by the installed
RER. Due to high surplus power, the maximum power is exported to
nearby MGs and the main grid by offering it in the energy market at
the price given in Table 5. Figure 7 (B–D) shows the optimal
scheduling of devices in SIMGs by deploying MMPPnP.

The energy flow in SIMGs for case 1 by deploying the RTM is
represented in Figure 7E. It can be seen from Figure 7E that most of
the load is satisfied by clean energy, and the remaining surplus
power is communicated to the energy market for trading. However,
at hours 11 and 12, the SIMG approaches SCMGs to satisfy the
scheduled load. Further power deficiency is satisfied by the main
grid at a high tariff. Case 2 has the lowest capacity for the installed

RER and is illustrated in Figure 7F. Due to the low power provided
by RERs at hours 11 and 12, the SIMG approaches the energy market
where the SCMG is the only provider of energy. As a result, the
SIMG imports power from the SCMG at a low price by avoiding the
high price main-grid energy import, as given in Table 5. The
monthly bill of the scheduled and BAU load for SIMGs is
provided in Table 5. Case 2 has the lowest monthly bill due to
the low price of power import from the SCMG and SIMG. While in
other cases, the low power is satisfied by importing power from the
main grid mostly. Furthermore, PFDs in the SIMG operate at a low-
rated power at hours of low generation. Consequently, the PFD in
case 3 operates at the maximum rated power and increases
the bill cost.

By importing energy from RERs, batteries, and other MGs with
RERs, carbon dioxide emissions caused by using the power from the
main grid are reduced to a minimum. Table 5 shows emissions from

FIGURE 8
(Continued). Power flow of the DAM base case of (A) the SRMG; (B) SIMG; (C) SCMG, CBA of the proposed tariff for MMGs; (D) PBP; (E) ROI, CBA of
the proposed TAS for MMGs; (F) NPV; (G) IRR; and (H) PI.
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the SIMG satisfying the same demand from the main grid and RERs.
As given in Table 5, the proposed work has the potential to reduce
emissions significantly. Specific CBA parameters are estimated
based on the capacities of the installed RERs to provide an idea
for investors or IPPs in executing the suggested framework for
SIMGs. Different CBA parameters are calculated for the proposed
tariff given in Table 5.

The payback period for different cases of the SIMG is illustrated
in Figure 7G. It can be seen from Figure 7G that case 3 has the
shortest PB. This is due to the maximum utilization of RERs by the
SIMG and low power import. Consequently, ROIs for different
tariffs of case 3 are maximum compared to other cases shown in
Figure 7H. The NPV for the RTM SIMG, given in Figure 7I, shows
that case 3 shows a dominant difference among different cases for
various TASs suggested in Table 5. Figure 7J shows that case 1 has a
high IRR compared to case 3 by adopting TAS 4 and 10. However,
case 3 gives a high IRR for the rest of TASs. As seen in Figure 7K,
case 3 is the most feasible, whereas case 2 is the least feasible to
pursue for different TASs.

3.2 Day-aheadmodel for theMMGparadigm

The DAM’s operation is based upon the forecasted data where
DA signals are communicated only once to the agents at the start of
each day. The monthly bill for the base case of the DAM in the
MMG paradigm is calculated and is given in Table 6,
i.e., MMGWO for the DAM efficiently minimizes the cost of
load consumption by effective scheduling of the load as
compared to the BAU. Deployed intelligent agents efficiently
optimize the signals and plans intelligently for achieving
defined objectives. Figure 8A visualizes the energy flow
operation by deploying the DAM in the SRMG, and it is
observed that the maximum load is scheduled at signal hours of
low tariff and maximum renewable energy generation. At hours of
maximum surplus, the battery is charged first, and then the
remaining surplus power is sent to the market for energy
transactions. Furthermore, Figures 8B, C show the power flow
of SCMGs and SIMGs over 24 h, respectively. During hours 5–17,
the RER generation is greater than the load scheduled, and the
thermostat is adjusted to a maximum level, and maximum number
of devices are turned ON to minimize the cost and maximize the
UC. The comparative analysis of proposed tariffs and their
adjustments are shown in Figures 8D–E and Figures 8F–H,
respectively.

4 Conclusion

The proposed work develops an intelligent and efficient MAS
framework in three different load-based MGs in the MMG
paradigm. An adequate communication infrastructure among
agents is implemented to complete the distributed tasks smartly.
The proposed work aims to maximize RER utilization, reduce
monthly consumer bill, maximize user-comfort, and reduce
emissions. MMPPnP, MMGWO, and knapsack are deployed
concurrently with the demand dispatch and demand response
techniques for real-time and day-ahead signals to obtain

optimum results for the defined objectives. Intelligent
thermostat agents set the optimal temperature of the HVAC
and AC according to the ASHRAE standard 55-2010 depending
upon the incoming Psur signal. An efficient energy market is
developed to provide spot-market and future market
environments for real-time and day-ahead signals,
respectively. The current work offers future prospects for the
IPPs or investors by introducing different tariff adjustment
techniques, which provides a win–win situation for the
investor and consumer. Each MG is evaluated on the basis of
the capacity of the installed RERs and its effect on emissions,
monthly bill reduction, cost–benefit analysis, and energy
transactions for both real-time and day-ahead signals.
Considering a base case for the deployed RTM for each MG as
case 2, the capacity of the installed RER is increased and
decreased in case 1 and case 3, respectively. The results show
that case 1 of SRMGs and SCMGs, whereas case 2 of SIMGs has
the lowest CO2 emissions as 97.6083%, 97.6359%, and 97.3084%,
respectively. Case 2 of SRMGs and SCMGs has the lowest
monthly bill among other cases. Similarly, the monthly bill is
low for case 3 as compared to that of case 1 and case 2 in SIMGs.
Different TASs are proposed for the investors to deploy. Case
3 shows the best results in terms of the PB, ROI, and NPV,
whereas the IRR and PI are the highest for case 1 and case 2 in
SRMGs. For SCMGs, PB and NPV are the lowest and highest for
case 3 in commercial MGs, respectively. Additionally, case
1 shows the highest values for the IRR, PI, and ROI, whereas
case 3 has the best average value for the ROI in the commercial
MG. Furthermore, case 3 of SIMGs has the best values for the PB,
ROI, PI, and NPV, but case 1 achieves the highest IRR. Future
market cases show that under the considered scenarios, SIMGs
have the lowest PB and highest NPV. Furthermore, SRMGs have
the highest ROI, PI, and IRR for settling future contracts. The
optimized results based upon the cost–benefit analysis, cost
reduction, power transaction in the market, and maximum
utilization of RERs have been obtained for each MG. In the
future, hardware implementation for the current work will be
carried out by providing a secure environment for the power and
payment methodology.
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