
TYPE Original Research
PUBLISHED 30 May 2024
DOI 10.3389/fenrg.2024.1343879

OPEN ACCESS

EDITED BY

Lorenzo Ferrari,
University of Pisa, Italy

REVIEWED BY

Hakeem Niyas,
Rajiv Gandhi Institute of Petroleum
Technology, India
Rudrodip Majumdar,
National Institute of Advanced Studies, India

*CORRESPONDENCE

Yongling He,
626749435@qq.com

RECEIVED 24 November 2023
ACCEPTED 06 May 2024
PUBLISHED 30 May 2024

CITATION

Yuan Z, He Y and Meng Z (2024), Hybrid
energy storage configuration methodology,
taking into account the accumulation of wind
farm forecast deviations.
Front. Energy Res. 12:1343879.
doi: 10.3389/fenrg.2024.1343879

COPYRIGHT

© 2024 Yuan, He and Meng. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

Hybrid energy storage
configuration methodology,
taking into account the
accumulation of wind farm
forecast deviations

Zhongfang Yuan, Yongling He* and Zhanbin Meng

Beibu Gulf University, Qinzhou, China

The accumulation of wind power prediction deviations will make it difficult
to maintain the long-term stable operation of energy storage. To solve this
problem, this paper proposes a hybrid energy storage system configuration
method containing second-use batteries. This paper establishes a three-battery
hybrid energy storage operation strategy that considers the accumulation of
prediction deviation and prevents the accumulation of prediction deviation by
changing the energy storage used at the end of the dispatch cycle. It also
establishes an optimal allocation model for energy storage capacity, which
takes into account the performance parameters and life loss of the second-
use batteries and the new power battery. Finally, Gurobi is used to simulate
the field data of a wind farm. The simulation results show that this method is
effective in preventing the accumulation of prediction deviation while reducing
wind power grid deviation and improving the level of energy storage utilization.
It can play a certain reference role in the configuration of energy storage
for wind farms.
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windpower forecasts, hybrid energy storage,windpower, planningoptimizationmodel,
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1 Introduction

Wind power has entered the era of large-scale grid-connected operations, but
the randomness of wind power output and its anti-peaking nature bring great
challenges to the power grid (Sepulveda et al., 2021). Hybrid energy storage, combining
a power battery and a second-use battery, can effectively solve these problems
(Zakeri and Syri, 2015; Guerra et al., 2021; Zou et al., 2023). By using large-capacity
second-use batteries as capacity storage for the time-sequence transfer of wind
farms and using power batteries as power storage for rapid response to output
deviations, the advantages and disadvantages of the two types of storage can be
reasonably utilized to complement each other in completing the established work tasks.

Abbreviations: SOC, state of charge; DOD, depth of discharge; BESS, battery energy storage system;
WSCS, wind speed curve scoring.
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Under the current powermarket, wind farms need to declare the
future wind storage joint output curve based on the wind forecast
1 day in advance according to the consumable target issued by the
power grid.The operation process needs to complywith the declared
curve, and if it deviates from the declared output curve during
operation, it will be penalized according to the degree of deviation
(Yu et al., 2022). Due to errors in wind power forecasting, the total
intraday output of a wind farm cannot be fully matched with the
energy that can be consumed by the grid (Li et al., 2022; Qi et al.,
2023). This error will accumulate in the energy storage system. It
will gradually increase the degree of deviation from the declared
curve. The accumulation of multiple cycles may lead to the inability
of the energy storage to operate effectively in conjunction with the
wind farm (Lin et al., 2021).

Wind power deviations that are already equipped with peaking
energy storage can be achieved by increasing the wind storage
capacity to balance the operation cycle of the storage battery.
However, this method will produce a large number of duplicate
power constructions and capacity redundancies, leading to poor
economic efficiency (Nguyen and Lee, 2016). The control strategy
can be optimized by changing the energy storage charging and
discharging operating states to reduce the likelihood of reaching
the limit state. However, although the optimal control strategy can
ensure that the energy storage is in a relatively smooth operation
state by controlling the energy distribution, the impact on the overall
grid connection still exists due to the unchanged total energy input
and output (Sewnet et al., 2022).

To reduce the impact of prediction bias, Yang et al. (2023)
proposed a wind storage combined system based on a real-time
learning predictionmodel with dynamic error compensation, which
improves the accuracy of wind power prediction and reduces the
uncertainty of wind farm output through the wind speed curve
scoring (WSCS) model. Yuan et al. (2021) proposed a scenario-
based prediction method to address the uncertainty of wind
farm output; this method involves generating a dataset using the
generative adversarial network method and applying a genetic
algorithm to predict multi-objective scenarios. Although the above
method improves the accuracy of wind power prediction, it still
fails to solve the problem of the accumulation of prediction bias.
To reduce the accumulation of deviation, Lin et al. (2021) used
hybrid energy storage to suppress the wind power output deviation
and proposed a storage operation stability index, which allocates
the output through the real-time state of storage to prevent the
accumulation of prediction deviation from affecting the storage
output; Liu et al. (2023) proposed a data-driven energy storage
management strategy considering the wind power prediction
interval, which focuses on the effect of the wind power prediction
on the daily operation of the storage, quantifies the wind power
uncertainty, and provides the data management strategy for the
wind power prediction. The impact of wind power prediction
on the daily operation of energy storage is quantified to obtain
long-term stable operation of energy storage; Zhu et al. (2021) also
proposed a similar energy storage management strategy, which
applies deviation statistics and frequency decomposition to energy
allocation and capacity allocation by comparing with the actual
power. The abovementioned methods incorporate wind power
forecasting and maintain the energy storage energy at a certain
interval through energy allocation methods. Still, these methods

will affect the energy allocation during the operation cycle, which
will generate grid connection deviations and the corresponding
penalties. Xu et al. (2023) proposed a day-ahead scheduling method
using a trapezoidal fuzzy number equivalence model describing the
uncertainty of wind power forecasting and day-ahead scheduling to
improve the robustness of wind farms on the grid; Tu et al. (2023)
balanced the economics and robustness of day-ahead scheduling for
wind farms by fitting three typical features to the wind power output
uncertainty and establishing a two-stage day-ahead scheduling
model. The abovementioned literature reduces the impact of bias
accumulation through the idea of improving the robustness of day-
ahead scheduling, but this may lead to a larger amount of wind
abandonment as well as the possibility of not being able to meet the
intraday scheduling demand when experiencing extreme forecast
deviations.

Although much progress has been made in these approaches,
the cumulative impact of prediction bias is often not considered
or addressed. 1) The method of improving the prediction accuracy
can reduce the prediction error and increase the quality of the
grid connection. However, the intrinsic prediction error still exists,
and the energy storage will continue to accumulate deviations in
multi-day operations. 2) Although the method of optimizing energy
distribution can solve the problem of accumulation of prediction
bias, the energy storage energy is in a relatively stable state. However,
in order to maintain the balance of energy storage, this method
will inevitably affect the grid-connected quality of wind farms and
may cause additional curtailment or grid-connection deviation. 3)
The robust scheduling method can slow down the accumulation of
prediction bias, but due to the randomness of wind power output,
robust scheduling often reduces the economy of wind power grid
connections and fails when encounteringmore extreme cases.These
methods can usually only slow down the accumulation rate of
prediction deviations or inevitably affect the operation of hybrid
energy storage during intraday operation, thus affecting the overall
output effect of wind farms to a certain extent.

The accumulation of prediction deviations will lead to the failure
of energy storage operations, which will affect the grid-connected
quality of wind farms. In order to solve this problem, this paper
proposes an optimal allocation method for hybrid energy storage in
the scenario of peak shaving and control output fluctuation energy
storage in the scenario of the wind farm, which can effectively
prevent the accumulation of wind power prediction bias under
the condition that it has a small impact on wind power grid
integration. Three groups of energy storage batteries are used for
peaking and controlling wind power output fluctuations, and by
switching the functions of the battery packs at the end of the
operating cycle, it is ensured that the battery packs used for
controlling output fluctuations can restore the initial energy to
prevent the accumulation of prediction deviations on alternate days.
Compared to other methods, the present method combines peaking
energy storage with energy storage for controlling power output
fluctuations and effectively prevents the accumulation of energy
storage prediction deviations by operating at the end of a dispatch
cycle; at the same time, it reduces the additional deviations that are
generated tomaintain the energy balance of the energy storage cycle.
In addition, this method can reduce the system’s computational
complexity by preventing the accumulation of deviations through
fixed control.Thismethod can ensure the long-term stable operation
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of battery energy storage systems (BESS) and reduce the impact of
prediction deviation on the combined wind storage output.

2 Integrated hybrid energy storage
operation strategy considering the
accumulation of forecast bias

The power grid requires wind farms to declare the forecast
output before the day of the forecast, and based on the forecast, the
wind farms will be issued with consumable targets. After accepting
the target, the wind farm declares an output plan for the grid based
on the energy storage it has deployed. During the daily operation
phase, the wind farms are required to generate electricity according
to the declared output plan (Gholami et al., 2018). In cases of severe
deviations, economic penalties may result. Given the existence of
forecast deviations, energy storage systems need to be configured to
smooth out the deviations.

Although energy storage can smooth out the prediction bias at
different moments, the total charging and discharging of the energy
of the storage battery is often not balanced due to the randomness
of wind power output, as shown in Figure 1A (Lin et al., 2021).

Typically, energy storage systems used for peaking are relatively
easy to maintain a balance of charge and discharge because the
charge and discharge schedules have been developed beforehand.
However, energy storage systems used for smoothing forecast
deviations tend to experience an accumulation of deviations. With
continuous operation formany days, the forecast deviation gradually
accumulates, resulting in an extreme situation where the energy
storage system used to smooth out the forecast deviation may be
depleted or overpowered, failing to meet the wind farm’s demand
allocation.

The conventional energy storage operating curve for preventing
deviation accumulation is shown in Figure 1. The prediction
deviation accumulation is prevented by controlling the charging and
discharging balance of the energy storage during the operation cycle,
and the deviation is eliminated in the output in the form of grid-
connected deviation. However, there are two main problems with
this approach: on one hand, it fails to fully utilize the energy storage
capacity, failing to maximize the economic benefits; on the other
hand, it has a certain impact on the operation of the energy storage
system, which may limit the flexibility of the energy storage.

In this paper, a three-storage hybrid operation strategy is
proposed, which includes three groups of storage batteries called
1, 2, and 3, where battery group 1 is a second-use battery for peak
shifting and battery groups 2 and 3 are new power batteries, which
have equal capacity.

In the first operating cycle, batteries 1 and 2 are combined for
peaking, while battery 3 is used for smoothing out the prediction
deviation. At the end of an operating cycle, batteries 1 and 2maintain
a balanced charging and discharging capacity according to the
output schedule; however, due to the prediction bias, battery bank
3 is unable to maintain a balanced state of power.

At the beginning of the second operating cycle, the operating
functions of batteries 2 and 3 are switched, with batteries 1 and 3
being used for peaking and battery 2 being used for smoothing out

FIGURE 1
Prediction of energy storage charge state under deviation
accumulation. (A) Unbalanced energy storage cycle charge and
discharge energy situation. (B) Traditional method of restoring initial
energy at the end of the operating cycle. (C) The proposed method in
this paper does not need to consider the cycle charge and discharge
energy balance method. The picture simulates two half-cycle energy
storage operations; the vertical axis is the energy storage SOC, where
Smax and Smin are the maximum and minimum safe charge of the
energy storage and Sini is the initial SOC state of the energy storage;
and the horizontal axis is the time, which spans two and a half energy
storage operation cycles, respectively.
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FIGURE 2
Diagram of the operation strategy of the energy storage device. (A) Electricity distribution method during the operation cycle of the energy storage
device. (B) Electricity distribution method after the cycle of the energy storage device. Switching the BESS2 and BESS3 functions after an operating
cycle allows the smoothing of the prediction deviation storage to be stabilized for a long period.

the prediction deviation. This ensures that the prediction deviation
does not accumulate in the second operating cycle. At the same time,
in the operation strategy of battery packs 2 and 3 is that battery pack
2 is used for smoothing out the prediction deviation and battery
pack 3, which is not required to be used for smoothing out the
prediction deviation, can balance the charging and discharging
energies during the operation cycle. Its operating curve is
shown in Figure 1C.

This hybrid operation strategy utilizes the characteristics
and advantages of different types of energy storage batteries to
achieve the goals of peaking and smoothing forecast deviations
by switching battery bank functions. Through rational battery
bank scheduling and energy management strategies, grid
connection deviation is minimized while the overall performance
and sustainability of the wind farm configuration of energy
storage are improved. Figure 2 shows a schematic of this hybrid
operation strategy.

3 Mathematical model of energy
storage configuration for the hybrid
energy storage system considering
grid-connected characteristics

3.1 Analysis of hybrid energy storage
utilization

After the retirement of lithium-ion batteries, the second use
of the power grid under simulated load conditions has good
life characteristics. According to experiments by power battery
manufacturers, second-use of the power battery pack (48V50Ah)
undergoes 1C/1C and 100% depth of discharge (DOD) charging
and discharging at 45°C and room temperature (RT) conditions,
respectively, after the rated capacity is below 80%. The experimental
results show that before reducing to 60% of the rated capacity, it will
undergo between 3,000 and 6,000 cycles (BYD, 2016). In addition,
experiments have found that the battery life exceeds 3,000 times
under simulated load conditions [RT, 0.5C, 80% (DOD)] in the
power grid (Lai, 2020). The battery has a significant price advantage,

with a price of about 60% that of new batteries, which can greatly
improve the efficiency of energy storage configurations (Dong et al.,
2023). However, the second use of batteries will deteriorate after
cyclic use and is not suitable for high-power charging. In addition,
stricter state-of-charge (SOC) restrictions need to be implemented.
This will, to some extent, have an impact on the configuration of
second-use batteries.

For the second use of lithium-ion batteries, it is necessary
to evaluate their initial operating conditions. Currently, lithium-
ion batteries are mainly used in electric vehicles and electric
bicycles. Electric bicycles have good operating conditions, but their
individual capacity is low, making it difficult to scale their second
use. The operating conditions of electric vehicles are complex, and
lithium-ion batteries may experience significant degradation during
operation. Due to the concentrated energy storage configuration in
wind farms, safety requirements are high. When using second-use
batteries, careful screening should be carried out in conjunction
with battery recycling enterprises. For example, when grouping
and classifying electric vehicles into different types and operating
conditions, it is important to consider not only the number
of cycles and service life of lithium-ion batteries but also the
operating conditions of electric vehicles. Special treatment should
be given to categories with high operating temperatures and
frequencies of use.

Extensive research has been conducted on the application of
cascading battery energy storage (Deng et al., 2021; Zhang et al.,
2021; Yang et al., 2021). By utilizing batteries in communities,
microgrids, smart grids, and other application scenarios, the
economic efficiency of energy storage configurations can be
improved while meeting performance requirements. In addition,
a large number of cascade utilization battery energy storage
demonstration projects have been built for peak shaving,
frequency regulation, arbitrage, backup energy, and other
purposes (Look, 2017; Gjerløw, 2018; ELSA Consortium, 2020;
Mosbæk, 2020; Faessler, 2021).

The demand for high-power fast charging and discharging
cannot be met using the second-use battery alone, so an additional
new power battery needs to be configured to provide supplementary
power. By combining the characteristics of the two batteries, good
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performance complementarity can be achieved, which together
prevents the accumulation of prediction bias (Guerra et al., 2020).

3.2 Hybrid energy storage lifetime loss
modeling

3.2.1 Energy storage lifetime depletion modeling
Wind energy storage faces complex working conditions. The

depth of charging and discharging, the charging and discharging
power, and the number of cycles all impact the life of the
storage battery. The irregularity of charging and discharging for
energy storage batteries cannot be solely accounted for based on
the manufacturer’s standard factory life, necessitating a separate
assessment. The National Renewable Energy Laboratory of the
United States has proposed a battery damage life model based on
experimental data (Drouilhet and Johnson, 1997). It considers that
under rated operating conditions, the total discharge of the battery
throughout its entire lifecycle is referred to as the total effective
discharge (in units of A.h). This is expressed as (Eq.s 1-3)

A11 = LR1DR1CR1, (1)

A12 = LR2DR2CR2, (2)

A13 = LR3DR3CR3. (3)

Among them,A11, LR1,DR1, and CR1 represent the total effective
discharge, rated cycle life, rated depth of discharge, and rated
capacity of the second-use battery, respectively. A12, LR2, DR2, and
CR2 denote the total effective discharge, rated cycle life, rated depth
of discharge, and rated capacity of the new power battery used for
peaking, respectively. A13, LR3, DR3, and CR3, respectively, stand
for the total effective discharge capacity, rated cycle life, rated
discharge depth, and rated capacity of the new power battery used
for smoothing out the prediction deviation.

In practice, different charging depths and charging power will
cause different losses in battery life, so converting the actual
discharge amount into the effective discharge amount A2 is
necessary. . The battery’s lifespan will be counted as a cut-off when
the accumulated A2 = A1 after N cycles.

The charging and discharging losses of each storage battery are
equivalent to the standard loss, represented as follows in Eqs 4-6:

A21,t =
LR1PR1d

a
1,t

aD−b1,t e
−CD1,tP dc

1, t

, (4)

A22,t =
LR2PR2d

a
2,t

aD−b2,t e−CD2,tP dc
2, t

, (5)

A23,t =
LR3PR3d

a
3,t

aD−b3,t e−CD3,tP dc
3, t

, (6)

where a, b, and c are constants, which are 694, 1.98, and 0.016,
respectively; A21,t, A22,t, and A23,t are the equivalent standard losses
of the second-use battery at time t, the new power battery used for
peaking, and the new power battery used for smoothing out the
prediction deviation, respectively; d a

1, t, d
a
2, t, and d a

3, t are the
actual Ah values of discharging of the second-use battery at time t,

new power battery used for peaking, and new power battery used
for smoothing out the prediction deviation, respectively. D1,t , D2,t ,
andD3,t are the discharge depths of the second-use battery at time t,
the new power battery used for peaking, and the new power battery
used for smoothing out the prediction deviation, respectively; and
P dc

1, t,P
dc
2, t, and P dc

3, t are the power absorbed by the grid from
the second-use battery, newpower battery used for peaking, andnew
power battery used for smoothing out the prediction deviation at
time t, respectively.

3.2.2 Economic discounting of energy storage
losses

Converting the lifetime loss per charge/discharge into cost
consumption. As shown in Eqs. 7-10

Ca =
(1+ r)T

eye

r(1+ r)T
eye
− 1
, (7)

Closs1,t =
[(Cbattery1+C

eqip
1 )E1A21,tCa +W1Cpower]

A11
, (8)

Closs2,t =
[(Cbattery2+C

eqip
2 )E2A22,tCa +

W2Cpower

2
]

A12
, (9)

Closs3,t =
[(Cbattery2+C

eqip
2 )E2A23,tCa +

W2Cpower

2
]

A13
. (10)

Ca represents the discount factor of the lithium battery system.
Closs1,t, Closs2,t, and Closs3,t denote the cost consumption of the
second-use battery at time t, the new power battery for peaking, and
the new power battery for smoothing out the prediction deviation,
respectively. r is the discount rate, and Teye is the planned service
life of the lithium battery system; Cbattery1 represents the unit price
of the second-use battery, while Cbattery2 represents the price of the
power battery; C eqip

1 , C
eqip
2 are the peripheral equipment costs of

the second-use battery and new power battery, respectively. W1 and
W2 denote the rated power of the second-use battery system and the
new power battery system, respectively. Cpower represents the cost
of the energy storage inverter of the energy storage station. E1, E2,
and E3 are the installed capacities of the second-use battery, the new
power battery used for peaking, and the new power battery used for
smoothing out the prediction deviation, respectively.

3.3 Economic modeling of hybrid energy
storage for wind farm deployment

Optimization aims at wind farms achieving the maximum
economic benefit from the deployment of energy storage; this
benefit includes the daily income from electricity sales, the daily
carbon emission benefit, as well as battery charging and discharging
losses and deviation penalties due to non-compliance with the grid
connection curve submitted a few days ago (Chen et al., 2022).
The objective function is determined by the above factors and is
formulated below in Eq. 11:

MaxC = (Csell + Ccarbon −Cmaintain −Cbias) , (11)

whereCsell represents the daily electricity sales revenue.Ccarbon is the
daily carbon emission revenue. Cmaintain is the daily operation and
maintenance expenditure and Cbias is the daily deviation penalty.
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3.3.1 Revenue from electricity sales
The main means by which wind farms make a profit is by

delivering electricity to the grid according to a predetermined
output curve. The energy storage absorbs the portion of the actual
output that exceeds the predefined output curve or generates wind
abandonment; the energy storage uses the portion that is below the
predefined output curve to release energy or generates an economic
output deviation as shown in Eq. 12

Csell =∑n
t=0
(Pt −P

abandon
t −P ch

1, t +P
dc
1, t −P

ch
2, t +P

dc
2, t

−P ch
3, t +P

dc
3, t −P

deviation
t )Cprice , (12)

where Pt is the actual output of the electric wind farm at time t;
Pabandon

t is the abandoned wind at time t; P ch
1, t,P

ch
2, t,and P ch

3, t
are the power released by the grid for the second-use of battery,
new power battery for peaking, and new power battery for
smoothing out the prediction deviation at time t, respectively;
P dc

1, t,P
dc
2, t,and P dc

3, t are the power absorbed by the grid at time
t from the second-use of battery, new power battery for peaking,
and new power battery for smoothing out the prediction deviation.
P deviation

t is the grid integration deviation of wind power at time t.
Cprice is the feed-in tariff.

3.3.2 Revenue from carbon emissions
Additional revenue from energy storage by discharging instead

of peaking in conventional thermal power plants is an important
part of the revenue from deploying energy storage. It will be
composed of the energy discharged from storage and the price of
carbon emissions as shown in Eq. 13

Ccarbon =∑n
t=0
(P dc

1, t + P
dc
2, t + P

dc
3, t)P

carbon
price , (13)

where P carbon
price is the carbon price.

3.3.3 Battery depletion costs
Energy storage battery charging and discharging will produce

life loss; toomuch charging and dischargingwill affect thewind farm
configuration of energy storage revenue as shown in Eq. 14

Cmaintain =∑n
t=0
(Closs1,t + Closs2,t + Closs2,t) . (14)

3.3.4 Grid deviation penalty
The wind power fluctuation will lead to a deviation between the

grid connection and forecast curves, and the grid will penalize the
plant according to the deviationwhen the deviation at time t exceeds
the permissible amount as shown in Eq. 15

Cbias = (∑n
i=0

P deviation
t − P deviation

permit )P
deviation
check Cprice, (15)

where P deviation
permit is the permitted value of grid-connection deviation

and P deviation
check is the penalty value of grid-connection deviation.

3.4 Hybrid energy storage system
constraints

3.4.1 Power capacity constraints
Power capacity is the total maximum amount of energy released

by a storage battery per unit of time and is limited according to the

nature of the storage battery.The power capacity of the battery needs
to be limited to a lower level of 15 percent of its capacity. The power
capacity of a new power battery can be relatively large, up to 25
percent of its capacity as shown in Eq. 16-19

0 ≤ P ch
1, t ≤ 15%E1, (16)

0 ≤ P dc
1, t ≤ 15%E1, (17)

0 ≤ P ch
2, t ≤ 25%E2, (18)

0 ≤ P dc
2, t ≤ 25%E2. (19)

3.4.2 Maximum and minimum SOC constraints
SOC is the ratio of energy to total energy capacity at time t.

Limiting the maximum and minimum SOC of a storage battery
prevents overcharging and overdischarging and improves battery
life. Because of poor consistency, high internal resistance, and
other reasons, the SOC of the battery needs to be limited more
conservatively as shown in Eq. 20-22

10% ≤ SOC1,t ≤ 90%, (20)

5% ≤ SOC2,t ≤ 95%, (21)

5% ≤ SOC3,t ≤ 95%, (22)

where SOC1,t, SOC2,t, and SOC3,t are the SOC power of the
second-use battery, new power battery for peaking, and new power
battery for smoothing out the prediction deviation at time t,
respectively.

3.4.3 Energy storage system energy balance
constraints

Tomaintain the energy balance of the energy storage, the energy
storage charge is equal to its discharge after one cycle. However, if
the proposed method is used, there is no need for Batteries B or C to
maintain an operating cycle energy balance as shown in Eq. 23-25

∑n
t=0

P ch
1, tη1 =∑

n
t=0

P dc
1, t

η1
, (23)

∑n
t=0

P ch
2, tη2 =∑

n
t=0

P dc
2, t

η2
, (24)

∑n
t=0

P ch
3, tη2 =∑

n
t=0

P dc
3, t

η2
, (25)

where η1 and η2 are the charging and discharging power of
the battery system for the second-use battery and the new
power battery system, respectively. The charge/discharge efficiency
includes the integration of the charge/discharge efficiency of the
power conversion system and the storage battery. The efficiency
is 0.9 for the second-use battery and 0.95 for the conventional
power battery.
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3.4.4 Constraints on charging and discharging
energy storage in the same group

Energy storage battery packsmust not be dischargedwhile being
charged as shown in Eq. 26-34

Pch,co1, t = 1, (26)

Pdc,co1, t = 1, (27)

Pch,co1, t + P
dc,co

1, t ≤ 1, (28)

Pch,co2, t = 1, (29)

Pdc,co2, t = 1, (30)

Pch,co2, t + P
dc,co

2, t ≤ 1, (31)

Pch,co3, t = 1, (32)

Pdc,co3, t = 1, (33)

Pch,co3, t + P
dc,co

3, t ≤ 1, (34)

where Pch,co1, t,P
ch,co

2, t,and Pch,co3, t represent the state representations
at time t of the second-use of battery, the new power
battery used for peaking, and the new power battery used
for smoothing out forecast deviations are in the charging
state, respectively. Pdc,co1, t,P

dc,co
2, t, and Pdc,co3, t represent the state

representations in the discharge state at time t for the second-
use battery, the new power battery used for peaking, and the
new power battery used for smoothing out forecast deviations,
respectively.

3.4.5 Constraints on charging and discharging
heterogeneous energy storage

To reduce energy storage life consumption, different
groups of energy storage cannot be in different charging and
discharging states as shown in Eq. 35-38

Pch,co1, t + P
dc,co

3, t ≤ 1, (35)

Pch,co3, t + P
dc,co

1, t ≤ 1, (36)

Pch,co2, t + P
dc,co

3, t ≤ 1, (37)

Pch,co3, t + P
dc,co

2, t ≤ 1. (38)

3.5 Wind abandonment constraints

To prevent the waste of resources, a wind farm shall
not abandon more than 5 percent of its total electricity
production per day as shown in Eq. 39

∑n
i=0

Pabandon
t ≤ 5%∑n

t=0
Pt. (39)

TABLE 1 Wind farm techno-economic assumptions.

Type Value

Maximum abandoned wind value % 5

Feed-in tariff/yuan 0.4

Carbon emission price/(yuan) 1.2

Deviation assessment coefficient/ 3

Deviation allowable value/percent 5

Price of second-use battery/(yuan/Wh) 0.65

Price of new power battery/(yuan/Wh) 1.1

New power battery integrated system
price/(yuan/Wh)

0.25

Price of the integrated battery system for
second-use/(yuan/Wh)

0.31

Energy storage inverter price/(yuan/Wh) 0.1

Charge/discharge efficiency of decommissioned
power battery system/%

90

New power battery system efficiency/% 95

Design life of energy storage power station/year 5

Rated power of new power battery/Wh 1x battery installed
energy

Rated power of second-use battery/Wh/ 0.8x battery installed
energy

Rated discharge depth of energy storage battery/ 0.8

Rated life of energy storage battery/times 2000

Annual discount rate/% 5

4 Analysis of examples

The techno-economic assumptions for the wind farm
are shown in Table 1.

Taking the data of a certain day in a wind farm in China
as an example, two configuration methods are simulated
in this simulation. By comparing it with the traditional
method, the effectiveness of the proposed method in this
paper is proved.

Scenario 1: operate according to the hybrid energy storage
configuration method proposed in this paper.

Scenario 2: use the traditional hybrid configuration
method, but also set up three groups of energy
storage; however, it is necessary to keep the storage
balanced between charging and discharging during the
operating cycle.
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FIGURE 3
Combined output curves of wind storage under different scenarios:
(A) Scenario 1 and (B) Scenario 2.

After linearizing the battery life loss model, the scenarios were
solved in Python using Gurobi.

4.1 Hybrid energy storage grid integration
effect

As shown in Figure 3, the power curves of Scenarios 1 and
2 are similar in the 0–8 h period, and there is no obvious power
deviation, during which the wind power output is larger than the
grid’s consumption target and the energy storage is in the charging
state. However, after 8 h, the power curves of different scenarios are
quite different. Scenario 2 has a continuous deviation from the grid
from8 h until the end of 24 h and always has a certain deviation from
the pre-declared curve. The deviation time of Scenario 1 is shorter,
and the magnitude is lower than that of Scenario 2.

No matter whether the scenario proposed in this paper is used
or not, grid connection deviation will be generated, but the grid
connection deviation generated by this scenario is smaller, the
duration is lower, and the wind farm grid connection is more
effective.

These data can be better analyzed through the wind farm grid
integration deviation.

FIGURE 4
Grid connection deviation of wind farms under different scenarios.

Figure 4 shows the grid connection deviation under both
scenarios.

From Figure 4, it is clear that the grid connection deviation of
Scenario 2 is larger in duration and power than that of Scenario 1.
Scenario 1 grid connection deviation occurs only during 11–17 h,
i.e., the second half of the time when storage discharge is required,
whereas Scenario 2 grid connection deviation occurs during the
whole period of storage operation.

With the same total generation, this may be because Scenario
1 storage can release more energy to smooth out grid connection
deviations at different moments in time. The reasons for this
situation are further explained below.

As can be seen in Figure 5, the energy storage outputs of the
two scenarios are close to each other in the 0–9 h period; in the
remaining period, the battery pack of Scenario 1 used to control the
output fluctuation releases more energy in the 9–18 h period while
absorbing less energy in the 18–24 h period compared to that of
Scenario 2. This proves the previous conjecture because the storage
battery in Scenario 1 can release more energy to compensate for the
grid deviation.

In addition, Scenario 2 releases less energy while preemptively
absorbing some of the energy used for the peaking battery
bank during the charging period. This will cause a difference
in the capacity of the energy storage configuration under the
two scenarios.

Combining the wind farm forecast-actual output curves, we can
find that these differences occur because the total amount of power
generated on the day is lower than the total amount predicted,
which creates a scarcity of power due to the prediction deviation.
In contrast, Scenario 2 needs to control the charging/discharging
balance of the energy storage and can only release as much
energy as it can be replenished; therefore, it can only reduce the
amount of power out and increase the energy absorption at the
moment of recharging. In contrast, Scenario 1 does not need to
take this into account and only needs to ensure that the energy
is not at its limit at the end of the operating cycle.This conjecture
can be further proved by combining the variation of the storage
SOC used to control the power output fluctuation under different
scenarios.

As shown in Figure 6.
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FIGURE 5
Energy storage output curves under different scenarios: (A) Scenario 1
and (B) Scenario 2.

FIGURE 6
Variation of energy storage SOC used to smooth out the prediction
deviation under different scenarios.

From Figure 6, we can see that the charging curves of the
energy storage under the two scenarios at 0–8 h coincide with
each other, and both of them reach 95% of the limit power
state. However, Scenario 1 finally discharges to 5% of the limit
power, while Scenario 2 finally discharges to 10% of the SOC;
and after reaching 10%, Scenario 2 starts to charge rapidly,

restoring the initial 66% SOC state; in contrast, Scenario 1 restores
to an arbitrary SOC state, arbitrarily charging and discharging
to 30% SOC state.

Zhao et al. (2023) suggested that the efficiency of energy storage
is not only affected by the configured capacity but also by the
net charge/discharge amount of energy storage and the maximum
discharge depth. Compared with the 85% discharge depth in
Scenario 2, the discharge depth of Scenario 1 reaches 90%, which
is a more effective use of the battery capacity; at the same time, the
net discharge of energy storage in Scenario 2 is 0, which means that
the energy consumed and released in one cycle is the same, while the
net discharge energy of Scenario 1 is 36% SOC,whichmeans that the
energy storage provides an additional 36% SOC energy to the grid
for smoothing the fluctuation of the power output.

This curve also confirms the previous finding that the lack of
power reduces the net discharge in Scenario 2, causing additional
grid connection deviations. In addition, Scenario 2 is not able to
fully utilize the storage capacity and stops discharging before the
minimum SOC is reached.

Compared to Scenario 2, the method of Scenario 1 allows
the energy storage to have a deeper depth of discharge during
a charge/discharge cycle and allows for a net charge/discharge.
Therefore, the energy storage under Scenario 1 can work better with
the wind farm to smooth out the output fluctuation and not produce
an accumulation of prediction deviation.

The above analysis shows that in Scenario 1, compared
to Scenario 2, the energy storage has a deeper depth of
discharge and net discharge, which allows more energy to be
released and reduces the deviation from the grid, improving
the utilization of the storage capacity. Wind farms can achieve
a higher quality of grid connection using the configuration
of Scenario 1.

4.2 Hybrid energy storage economic
effects

Table 2 shows a comparison of the economic benefits of wind
farms under different configuration options.

According to Table 2, the daily revenue of Scenario 1 is about
3% higher than that of Scenario 2; i.e., the allocation method
proposed in this paper can increase the revenue of wind farms with
energy storage by about 3%. This enhancement is because Scenario
1 has higher revenue from electricity sales and carbon emissions,
as well as lower penalties for grid connection deviation.Combined
with the conclusions above, it can be shown again that this is
because Scenario 1 does not need to maintain the energy balance
during the operating cycle, so the energy storage has a larger
discharge space to release more energy and use this energy for
the smoothing of the grid deviation; therefore, the configuration
of energy storage in wind farms needs to be concerned not only
with the configured capacity but also with the net energy released
or absorbed during a cycle when configuring the energy storage.A
better understanding of the operating modes under different
scenarios can be obtained by comparing the relationship between
lifetime loss cost and capacity allocation under different scenarios, as
shown in Figure 7.
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TABLE 2 Comprehensive allocation of energy storage revenue.

Gross daily
revenue of wind
farm/10,000
yuan

Revenue of daily
electricity
sales/10,000
yuan

Daily carbon
emissions
revenue/10,000
yuan

Daily grid
connection
deviation
penalties/10,000
yuan

Daily operation
and
maintenance
cost/10,000
yuan

Scenario 1 126.94 132.12 29.21 0 34.39

Scenario 2 122.41 130.88 27.69 2 34.16

FIGURE 7
Capacity and lifetime loss cost of energy storage configuration under different scenarios: (A) Scenario 1 and (B) Scenario 2.

From Figure 7, it can be seen that the percentage of second-use
batteries used for peaking is more than 50% in both scenarios, but
the incurred energy storage lifetime cost is only 46.5% and 43% of
the total consumption cost. This is because hybrid energy storage
is configured in this paper, and the total lifetime consumption cost
can be reduced through the second use of batteries.In addition, we
can see that the life loss of the new power battery used to control
the output fluctuation under Scenario 1 is significantly lower than
that of Scenario 2. This is because Scenario 1 can end the operation
in any energy state without additional charging action, thereby

reducing the energy storage action and, at the same time, reducing its
life loss.

We also find that Scenario 1 has an additional capacity
of about 3% over Scenario 2, but its daily revenue from
electricity sales increases by only 1%, while the carbon
revenue increases by 9%. It can be inferred that the main
revenue of wind farms currently deployed with energy storage
comes from carbon revenue rather than from shifting the
generation schedule. This is similar to the conclusion of
Guerra et al. (2020).
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The above simulation results can prove that the proposed
method can avoid the accumulation of wind power prediction
bias and improve the economic performance of wind farms while
improving the grid-connected performance of wind farms with
energy storage.

5 Conclusion

This paper proposes a hybrid energy storage configuration
method to prevent the accumulation of wind power prediction bias,
with special consideration of the intraday energy storage operation
charging and discharging energy balance. By switching the energy
storage use at the end of the operation cycle, it has a larger charging
and discharging space, does not need to maintain the charging
and discharging energy balance within the cycle, and does not
generate bias accumulation. Through the field data simulation,
results show that

1) Energy storage in the control of output fluctuations, such as the
consideration of Sunday energy balance, may affect the overall
grid integration effect, resulting in grid integration deviation
and reducing the quality of wind farms connected to the grid.

2) Energy storage needs to be deployed not only in terms of the
capacity it is deployed for but also in terms of the net energy it
can release or absorb during each operating cycle.

3) The main way for wind farms to profit from the deployment of
energy storage is through carbon revenue rather than through
the transfer of wind power in a time series.

The study in this paper starts with the current situation, but
it will have different variations under different prediction-output
curves, different grid connection policies, and different prices of new
and second-use batteries. In addition, in future research, it is also
possible to combine standby units and different robust scheduling
methods to further reduce the capacity of energy storage allocation
and prevent the accumulation of prediction bias.

In addition, the energy storage of second-use batteries is not yet
mature, and the standards for retired power batteries that can be
used for energy storage are not yet standardized. When seamlessly
integrating second-use batteries, wind farms may need to limit the
service life, operating time, battery performance indicators, etc. of
second-use batteries due to safety, economy, and other reasons.
However, such restrictions may affect the interests of the first
user (the electric vehicle owner). After the electric vehicle battery
deteriorates to a certain extent, using it according to old driving
habits will accelerate battery aging. Second users (wind farms)
and intermediaries (car companies, second-use battery service
providers) can consider setting recycling ramp prices on old power
batteries to incentivize the first user to retire the batteries early
when they still have operation life left. The goal should be to have a

second-use lifetimebefore sending the dead batteries to the recycling
facilities. In future research, attention should be directed toward
enhancing the coordination between the first and second users to
maximize the utilization of key components.
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