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Energy-efficient mobile node
localization using CVA
technology and SAI algorithm

Boliang Zhang*, Lu Shen, Jiahua Yao, Wuman Luo and
Su-Kit Tang*

Faculty of Applied Sciences, Macao Polytechnic University, Macau, Macao SAR, China

In the evolving landscape of the Internet of Things (IoT), Mobile Wireless Sensor
Networks (MWSN) play a pivotal role, particularly in dynamic environments
requiringmobile sensing capabilities. A primary challenge in MWSNs is achieving
accurate node positioning withminimal energy consumption, as these networks
often consist of battery-powered, mobile sensors where energy replenishment
is difficult. This paper addresses the critical problem of energy-efficient node
localization in MWSNs. We propose a novel positioning approach leveraging
Cooperative Virtual Array (CVA) technology, which strategically utilizes the
mobility of nodes to enhance positioning accuracy while conservatively using
energy resources. The methodology revolves around optimizing the number of
transceiver nodes, considering factors such as node moving speed, total energy
consumption, and positioning errors. Central to our approach is the Signal Arrival
and Interaction (SAI) algorithm, an innovative technique devised for efficient
and precise mobile node localization, replacing traditional Time of Arrival (ToA)
methods. Our simulations, conducted under various scenarios, demonstrate the
significant advantages of the CVA-based positioning algorithm. Results show a
marked reduction in energy consumption and robust performance in mobile
node scenarios. Key findings include substantial improvements in localization
accuracy and energy efficiency, highlighting the potential of our approach
in enhancing the operational sustainability of MWSNs. The implications of
this research are far-reaching for IoT applications, particularly those involving
mobile sensors, such as in smart cities, industrial monitoring, and disaster
management. By introducing a novel, energy-efficient positioning method,
our work contributes to the advancement of MWSN technology, offering a
sustainable solution to the challenge of mobile node localization.
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1 Introduction

With the continuous development of the Internet of Things
(IoT), wireless network-based IoT systems are becoming larger
and more complex, as well as increasing the tasks of the network.
At present, the IoT has been successfully applied in the fields
of Industry 4.0, personal health monitoring, smart homes, smart
cities, smart agriculture, military intelligence, disaster relief, etc.
(Onasanya et al., 2019; Zhu et al., 2022; Tse et al., 2020). Access
to Wireless Sensor Networks (WSN) provides environmental
information perception and interaction for various applications of
IoT, especially the mobility of Mobile Wireless Sensor Networks
(MWSN) further enriches the IoT applications (Gautam et al., 2019;
Yan et al., 2019; Menaka and Gauni, 2022). Considering an IoT
system with a huge number of wireless nodes and various types
of subnetworks, the same management node performs different
management policies for different types of mobile nodes, which
results in a complex system with mixed functions. As nodes
move to a network with different functions, the working status
changes accordingly.Those changes are highly dependent on reliable
communication, especially for measurement and control networks
with real-time requirements, which require a reasonable resource
allocation scheme to ensure real-time communication. In addition,
reducing power consumption is always a crucial problem to lower
the frequency of change battery power for mobile nodes. Therefore,
how to reasonably allocate the available resources to ensure reliable
communication when the working status of each wireless node
device changes and to achieve an optimal balance between network
functions and device power consumption has become an urgent
problem to be solved (Reddy and Satyanarayana, 2017).

One of the main applications of WSN is positionings, such
as precision navigation and target detection are some practical
instances of WSN-based positioning. The Matched Filter (MF)
estimator is a well-known technique in signal processing, used
for maximizing the signal-to-noise ratio (SNR) in the presence
of noise. Its application in the domain of MWSN is critical
for enhancing the accuracy of signal detection, particularly in
environments with high ambient noise levels. Similarly, the Energy
Detector (ED) is another fundamental tool in signal processing,
particularly valuable in scenarios where signal properties (like phase
or amplitude) are unknown or change rapidly. In MWSNs, ED is
instrumental for rapid signal detection, contributing to the efficiency
and responsiveness of the network.These estimators are particularly
relevant to our study as they form the basis for the development of
advanced positioning algorithms inMWSNs, laying the groundwork
for our proposed CVA-MIMObased positioning approach. InWSN,
knowledge of the positions of adjacent and non-adjacent nodes is
beneficial to select the optimal route for information exchange. In
addition, precise positioning can speed up information exchange
and reduce the energy consumption of nodes, which is a prerequisite
for nodes to conduct network tasks (Devi and Sethukkarasi, 2016).
Due to the mobility of positioning nodes in WSN, the typical
positioningmethods consist of twomain categories of the statistical-
based scheme and the non-statistical scheme (Benslimane et al.,
2014). Statistical-based positioning algorithms refer to Monte Carlo
positioning algorithms, and there are already a large number
of algorithms on Monte Carlo positioning algorithms and their
improvements (Chen et al., 2020; Song et al., 2021). Monte Carlo

positioning algorithms can be divided into four steps: prediction,
filtering, resampling, and positioning. The improved algorithms are
aimed at the prediction and filtering phases, where the interpolation
is used in the prediction phase to predict the speed and direction of
the node’s movement, while the conditions for filtering are set based
on network connectivity in the filtering phase. In the research of Zhu
and Ren (2020), the serialized Monte Carlo method was proposed
for the problem of mobile sensor network node positioning, which
was the earliest algorithm without ranging for mobile sensor nodes.
Then the Monte Carle Boxed Localization algorithm was proposed
in Zhang (2022), which adopted the Bounding Box technique. The
core idea of this technique is to use a rectangular area to represent
the sampling area. Therefore, the area of the sampling area can be
reduced, and the efficiency of positioning sampling can be improved.

Driven by the requirements of cost and application scenarios,
the application scenarios of WSNs are gradually expanding to more
complex environments, such as underwater and forests (Sunitha and
Karunavathi, 2019). Generally, the positioning algorithms forWSNs
are classified into Range-Free positioning schemes and Range-
Based positioning schemes according to whether measurement
information is required. Range-Free means that during the
positioning process, sensor nodes without measure distance
information, and the location information is mainly calculated
based on the topology of WSNs and the data communication
mechanism between nodes. The centroid algorithm (Bulusu et al.,
2000), the Approximate Point-in-triangulation Test algorithm
(APIT) (He et al., 2003), and the DV-Hop algorithm (Niculescu
and Nath 2001) are typical Range-Free positioning schemes. The
centroid algorithm (Bulusu et al., 2000) determines the centroid of
the polygon formed by the reference nodes around the target node
based on the connectivity of the network and takes it as the position
of the target node. The APIT algorithm (He et al., 2003) determines
the position of the target node by estimating the centroids within
the intersection of the triangles, which are formed according to the
reference node. The DV-Hop algorithm was proposed in Niculescu
and Nath (2001). Firstly, it calculates the minimum number of hops
and the average distance per hop between the unknown node and
the beacon node and then uses the product of the number of hops
and the distance to estimate the distance between the unknown
node and the beacon node. Finally, the estimated position of the
target node is calculated using the maximum likelihood method
or the trilateration method. The hardware cost of the Range-Free
positioning schemes is relatively low. However, it is easily affected
by the sensor network topology and network node density, and
thus the positioning accuracy is usually not high. In the recent
study, the authors proposed a new enhanced DV-Hop scheme to
address the shortcomings of the original DV-Hop scheme which
suffers from low localization accuracy and stability (Chen et al.,
2022). The proposed random sample-based consensus algorithm
can select more reliable beacon nodes to calculate the coordinates.
The authors of Wang et al. (2022) developed two types of localizers
for collaborative localization of WSNs with known and unknown
orientation angles from the perspective of Bayesian inference and
convex optimization.

As for the Range-Based positioning scheme, it means
that sensor nodes are equipped with measuring devices that
enable the combination of measurement data, communication
information, and topology of the sensor nodes for more accurate
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positioning. According to the measurement approaches, Range-
Based positioning algorithms can be divided into distance
measurement, direction (angle) measurement, and relative
positioning measurement. The distance measurement measures
the distance between nodes to find the geographic location in terms
of the Time of Arrival (ToA), Angle of Arrival (AoA) (Zhu and
Ren 2020), Time Difference of Arrival (TDOA) (Kaune, 2012),
Received Signal Strength Indication (RSSI), and direction of arrival
(Sunitha andKarunavathim, 2019).TheDILOC algorithmproposed
in Khan et al. (2009) is a typical positioning algorithm based on
distance measurement information. Specifically, it calculates the
centroid coordinates of nodes relative to neighbor nodes through the
Cayley-Meng determinant and transforms it into a linear problem.
The real position of the node is estimated by distributed iteration
method. However, the DILOC algorithm requires the node to be in
the convex hull of the neighbor nodes. The authors proved the non-
convexity of the positioning problem based on the ToA and RSSI
measurement models of signal, respectively, using the methods of
second-order cone programs (Salari et al., 2017) and semidefinite
programming (Salari et al., 2013) to transform the non-convex
optimization problem. To sum up, the focus of the Range-Based
algorithmmainly stays on distancemeasurement-based positioning,
while most of the Range-Free positioning algorithms are based
on the Monte Carlo positioning algorithm for improvement. The
above-mentioned distance measurement methods exhibit a high-
precision positioning capability. However, measurement errors
and time synchronization are common issues in designing ToA-
based approaches. It is necessary to adopt a new scheme to solve
the collision and synchronization problems in the ToA method to
improve the efficiency of WSNs (Jamshed et al., 2022).

Multiple-Input Multiple-Output (MIMO) technology is a
commonmethod in high-speedwireless networks.Themultiplexing
technique will provide diversity reception for different antennas,
which will bring numerous benefits to wireless networks. The
structural advantages of MIMO have been extensively studied in
communication systems but have not been sufficiently investigated
in positioning systems (Zhu et al., 2023). Considering the nodes’
physical size and energy constraints, it is practically impossible
to implement MIMO positioning in sensor nodes. However,
node cooperation can be utilized in WSNs to implement the
Virtual MIMO (VMIMO) technique. In VMIMO systems, a group
of sensors cooperates to send and receive data (Rafique et al.,
2013), and the cooperation of several single-antenna nodes forms
a VMIMO structure, which is beneficial to achieve the same
advantages of the MIMO structure (Li et al., 2012). In Prajapati
and Joshi (2020), the additional energy consumption of an
energy-efficient cooperative node communication is proposed and
discussed. The results showed that VMIMO technology could
address the problems of energy usage efficiency and latency.
In previous studies, the VMIMO technique reduced energy
consumption (Singh and Amin 2020; Prajapati and Joshi, 2021;
Niu et al., 2022), but its impact on distance errors between mobile
nodes was ignored.Therefore, in this paper, the Cooperative Virtual
Array MIMO (CVA-MIMO) technology is proposed to realize the
positioning of nodes and reduce the energy consumption of MWSN
in IoT environments. The CVA algorithm synchronises the clocks
by selecting the main node as the time reference. Alternatively,
virtual array technology is used to exchange time information with

each other to exchange time information with each other and to
perform clock calibration. For collision problems, CVA algorithm
shares information about communication resources, such as channel
status, transmission time, etc. Through collaborative virtual array
technology. Based on this information, nodes can perform collision
detection, avoidance and retransmission, select the appropriate
transmission time and frequency, and avoid conflicts with other
nodes’ data transmission. Moreover, the proposed CVA algorithm
exhibits strong robustness in the case of nodemovement. In general,
the main idea of this work is the use of CVA technology instead of
VMIMO and the introduction of the Signal Arrival and Interaction
(SAI) algorithm for mobile node localization, replacing the ToA
algorithm. This offers a new perspective and a unique approach
to the problem, as requested. The main contributions can be
summarized as:

• We have developed and implemented CVA technology
specifically tailored for Mobile Wireless Sensor Networks in
IoT environments.This approach is novel in the way it leverages
node cooperation for positioning, which is a significant
departure from traditional methods used in MWSNs.
• We propose the SAI algorithm, a new method for efficient
and accurate localization of mobile nodes. This algorithm is
unique in its ability to adapt to the dynamic nature of MWSNs,
providing reliable localization even in challenging conditions.
• A key innovation in our research is the focus on minimizing
energy consumption without compromising on positioning
accuracy. We have comprehensively calculated the optimal
number of transceiver nodes, considering factors like node
moving speed and total energy consumption, which is a novel
approach in this field.
• Our proposed method demonstrates significant advantages
in energy consumption reduction and robust performance,
particularly in scenarios involving mobile nodes. This aspect of
our work is particularly innovative, as it addresses a common
challenge in MWSN deployment.

The structure of this paper is as follows. Section 2 describes
the system model. The proposed method is provided in Section 3.
Simulation results are provided in Section 4 and finally conclusions
are drawn in Section 5.

2 System model

In this part, we illustrate an updated CVA-MIMO based ranging
model as shown in Figure 1. The suggested framework presumes
that linked nodes possess centroids within a unified cluster, with the
objective of uncovering the two-dimensional position of the center
of mass. We postulate that the greatest delay between a pair of nodes
inside the cluster falls short of the calculated duration. Taking into
account NR and NT as the counts of the receiver (R) and transmitter
(T) nodes, correspondingly, the centroids OT and OR symbolize
the polar coordinates of TXn and RXm. Here, m and n signify the
quantities of receivers and transmitters.

Figure 2 shows the details of the near-optimal algorithm for
ToA estimation. The SAI algorithm is a crucial technique for
improving localization accuracy and energy efficiency in MWSNs.
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FIGURE 1
System model for CVA-MIMO based ranging in MWSN.

The algorithm is primarily employed to estimate the ToA of
signals transmitted between nodes. The ToA plays a significant role
in determining the distance between nodes and localizing them
accurately. The basic idea of ToA estimation is to measure the
propagation time of the signal from the transmitter to the receiver.
This can be achieved by comparing the time delay between the
transmitted and received signals. By aligning the received signal
with a replica of the expected signal, the MF estimator effectively
improves the detection of the signal’s arrival time, which is a critical
factor in accurate node localization. Furthermore, we explore the
application of the ED in our system model, emphasizing its utility
in scenarios where quick and efficient signal detection is required.
The ED’s ability to detect the presence of a signal based solely
on its energy makes it an indispensable tool in our positioning
algorithm, especially in dynamically changing environments typical
of MWSNs. By incorporating these estimators into our system
model, we aim to achieve a balance between accuracy, speed, and
energy efficiency in node localization—the core objective of our
research. In a CVA-MIMO system, multiple receivers work together
to form a virtual array to enhance signal reception and detection
performance. ToA estimation starts by sampling the received signal.
Each receiver in the MIMO system samples the received signal.
These pre-processed sampled data are then used for subsequent
ToA estimation and to evaluate the propagation model.The channel
coefficients and delay calculations between the receivers then help
to estimate the signal propagation time. Finally, by comparing the
differences in delay between the received signals, an estimate of the
signal propagation time can be obtained. The following is a detailed
description of the SAI algorithm’s process:

(1) Initialization: The algorithm starts with the initialization of
the network parameters, such as the positions of the nodes,
transmission power, and network topology. In this stage, the
nodes exchange their initial information, such as node IDs and
location estimates.

(2) Signal Transmission: Transmitter nodes send signals to the
receiver nodes in the network.These signals can be in the form
of Radio Frequency (RF) or acoustic waves, depending on the
application and environment.

(3) Signal Reception and Processing: The receiver nodes capture
the incoming signals and process them to extract useful
information. This includes filtering, amplification, and
detection of signal characteristics such as amplitude, phase,
and frequency.

(4) ToA Estimation: The ToA is estimated by measuring the
time taken for the signal to travel from the transmitter to
the receiver node. The ToA is a critical parameter, as it
directly influences the accuracy of distance estimation between
nodes. Accurate ToA estimation is essential for achieving high
localization accuracy.

(5) DistanceCalculation: Based on the estimatedToA, the distance
between the transmitter and receiver nodes is calculated
using the speed of light or sound, depending on the type
of signal used. This distance information is then utilized for
localization purposes.

(6) Localization: The estimated distances between nodes are
used to update the position estimates of the nodes. Various
localization algorithms, such as trilateration ormultilateration,
can be employed to determine the nodes’ positions in
the network.

(7) Iterative Refinement: The SAI algorithm iteratively refines
the position estimates of the nodes based on the newly
calculated distances and localization results. This iterative
process helps improve localization accuracy and converges to
the optimal solution.

(8) Network Adaptation: MWSN is a mobile communication
network that combines WSN and mobile communication
technologies designed to enable the monitoring, tracking
and communication of moving targets. MWSN builds a
dynamic, self-organising network using wireless connections
between sensor nodes, mobile nodes and the communication
infrastructure. MWSN’s sensor nodes typically consist of
sensors, processors, memory and communication modules
that sense various parameters in the environment, such as
temperature, humidity, pressure, etc.

As the nodes in a MWSN are mobile, the network topology
may change over time. Mobile nodes can perform various
tasks such as collecting data, maintaining the network topology,
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FIGURE 2
The near-optimal algorithm for ToA estimation.

coordinating communications and transmitting data. Mobile nodes
can communicate with sensor nodes and other mobile nodes via
wireless communication technologies (e.g., cellular networks, Wi-
Fi, Bluetooth, etc.) The SAI algorithm adapts to these changes
by constantly updating node locations and network parameters to
ensure accurate positioning in dynamic environments.

Specifically, in this design, the delay between the shaped centers,
represents the total number of delays between twomoving nodes, as
shown in the following equation.

τM2M = (τ − τcons) ∗ C (1)

Here, τ denotes the time delay, it is important to clarify that
this represents the time taken by the signal to travel from one point
to another, measured in seconds (s). C denotes the speed of light.
However, for the purposes of calculating distances inmobile wireless
sensor networks, this time delay is converted into a spatial distance.
This conversion is achieved by multiplying the time delay τ by the
speed of light, thereby converting the time delay into a measure of
distance in meters. This approach aligns with standard practices in
signal propagation modeling, especially in localization techniques
such as ToA and TDOA where understanding the distance between
nodes is crucial. τcons is the constant delay component, which

includes the inherent propagation delay in the communication
medium and any fixed delays introduced by the hardware or system
architecture, and C stands for the speed of light.

The relative velocity Ve of the transmitter after reducing the
receiver’s velocity to 0, which can be expressed as

Ve = √V2
t +V

2
r − 2 ∗ Vt ∗ Vr ∗ cos (α) (2)

whereVt andVr denote the transmitter velocity and receiver velocity
in the Mobile to Mobile (M2M) condition, respectively. αmeans the
angle between the Vt and Vr . The Line-of-Sight (LoS) components
of the M2M OT and OR are denoted as (Yi et al., 2021; Talha and
Paetzold, 2011):

HmnLoS = k ∗ HmnNLoS / (1+ k) (3)

where HmnNLoS denotes the Non-LoS components of the M2M OT
and OR, k signifies the proportion of specularly reflected power
to scattered power. Based on the suggested framework, the LoS is
equivalent to.

LoS = HmnLoS ∗ ej∗wc∗τM2M (4)

where wc denotes angular frequency.
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In this paper, the designed packet structure and modulation
are according to the 802.15.4a standard bandpass pulses. Moreover,
considering the specific requirements of MWSNs, including the
need for energy efficiency, simplicity, and robustness, the Binary
Phase Shift Keying (BPSK)modulation format is used in our design,
which has a 250 kbit/s Direct Sequence Spread Spectrum (DSSS)
(Dardari et al., 2011).

3 Proposed method

3.1 CVA-based positioning with SAI
algorithm

In this part, we propose a novel node positioning method using
CVA technology. This method employs the Cramer-Rao Bound
(CRB) as an evaluation algorithm and as a practical benchmark
for measuring the performance of techniques and estimators. CRB
provides a practical approach for analyzing localization accuracy in
collaborative networks (Li et al., 2021; Larsson, 2004).

We will comprehensively calculate the optimal number
of transceiver nodes, considering node moving speed, total
energy consumption, and positioning errors to minimize energy
consumption during positioning. To achieve efficient mobile node
localization, we will introduce the SAI algorithm. According to
CRB’s theory (Li et al., 2021; Larsson, 2004), the ToA can be
estimated as:

var (τ̂) = E {(τ̂− τ)} ≥ κ (τ) (5)

The κ(τ) equation is as follows:

κ (τ) =
N0

2
× 1
4π2Evβ2

= 1
8π2β2ρ

(6)

In the derivation of κ(τ), as shown in the equation, the term N0
denotes the noise power spectral density, which is a measure of the
power distributed per unit of frequency, expressed in watts per hertz
(W/Hz).This term is essential for evaluating the estimator’s variance
since it quantifies the amount of noise present in the communication
channel, affecting the accuracy of timing-relatedmeasurements such
as the ToA. Here, EV signifies the received energy, while ρ represents
the Signal-to-Noise Ratio (SNR). The parameter β2 denotes the
signal spectrum at the second moment. In addition, the CRB κ(τ)
is computed using the data model depicted in Figure 3.

κMIMO (τ) =
1

8π2NTNRρβ
2 (7)

κSISO (τ) =
1

8π2β2ρ
(8)

κMIMO (τ)
κSISO (τ)

= 1
NTNR
⇒ varMIMO (d) =

varSISO (d)
NTNR

(9)

The (7), (8), and (9) explicitly demonstrate that the delay
error of the transceiver can be diminished based on the
quantity of transmitters and receivers participating in the actual
communication environments. Therefore, the delay error is
determined using the CRB when the receivers and transmitters
are in a mobile state.

κMIMOM2M
(τ) =
(1− Ve

C
cos(θ′))

8π2NTNRρβ
2 (10)

FIGURE 3
Data transmission model.

In the (10), θ′ is the angle between LOS component and
Ve, κMIMOM2M

(τ) refers to the CRB of the mobile cluster and the
count of delay errors are reduced by augmenting the SNR values
or the number of transceivers. When nodes move, the number
of delay errors influences mobile patterns like node velocity and
trajectory. Delay errors can lead to differences in signal propagation
times between nodes, which can affect the collaborative operation
between different nodes. In addition to this. Delay errors can lead
to inaccuracies in node position estimation, which in turn can affect
the performance of the system for beamforming and drinking data
fusion. Movement patterns such as node velocity and trajectory
may be affected by this degradation in communication quality. The
speed of the nodes may need to be adjusted to accommodate poorer
communication conditions. In a CVA-MIMO system, multiple
nodes in space cooperate with each other node form a virtual array.
When the velocitiesVe significantly is lower than the speed of lightC,
Ve
C
of Eq. 10 is essentially zero, so the effect of error delay is negligible.

Subsequently, we present a comprehensive explanation of the SAI
algorithm, grounded in the Figure 4. Specifically, it can be divided
into to the following steps:

(1) Input Data Collection: The SAI algorithm starts by collecting
input data, which includes vehicle position, speed, and
direction. The onboard sensors and communication systems
continuously monitor and gather this crucial information for
processing and decision-making.

(2) Access Request: As the vehicle approaches the intersection,
the algorithm sends a request for access to the SAI system.
The request contains essential information such as the vehicle’s
current position, speed, intended route, and the estimated time
of arrival at the intersection. The term intersection refers to a
specific point or area where multiple paths in a wireless sensor
network converge or cross. In the context of mobile node
localization, this intersection can be understood as a virtual or
physical junctionwithin the networkwhere the paths ofmobile
nodes intersect or meet.This could be a point where data from
various nodes are collected, processed, or where nodes need
to coordinate their movements or communication. The SAI
algorithm specifically addresses the requirements for efficient
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data handling anddecision-making as vehicles ormobile nodes
approach these critical points in the network.

(3) Intersection Access Evaluation: The SAI system evaluates
the incoming access request and analyzes the current traffic
situation at the intersection. It takes into account various
factors, including vehicle type, traffic conditions, and safety
considerations, to determine the optimal time for the vehicle
to enter the intersection.

(4) Access Granting and Confirmation: Once an appropriate time
slot is identified, the SAI system grants access to the requesting
vehicle and sends a confirmation message. This message
contains the assigned time and any additional instructions
necessary for safe intersection traversal.

(5) Vehicle Intersection Entry: The vehicle proceeds to enter the
intersection according to the assigned time and instructions
received from the SAI system. During this phase, the vehicle’s
onboard systems continuously communicate with the SAI
system to ensure smooth coordination with other vehicles.

(6) Real-time Monitoring and Adjustment: The SAI system
constantly monitors the intersection and adapts to real-time
traffic conditions. If necessary, it makes adjustments to the
vehicle’s assigned time or trajectory to maintain overall traffic
efficiency and safety.

By following the SAI algorithm depicted in Figure 4, a seamless
and efficient flow of traffic at intersections is achieved. This method
reduces delays, minimizes the need for human intervention, and
improves overall traffic management and road safety.

3.2 Energy consumption analysis

To assess the benefits of the CVA-based positioning algorithm
concerning energy consumption, we have examined the energy
consumption in themobile CVA-MIMO systems.The overall energy
consumption encompasses the energy usage of all power amplifiers
and all other circuit modules (Zhang et al., 2011). We will compute
these energy consumption components in detail and devise an
energy consumption model for the entire network.

In the energy consumption analysis of the CVA-based
positioning algorithm (Hosseini et al., 2013), two primary factors
contribute to the total energy consumption: the energy consumed
during the positioning process (EPA) and the energy consumed by
the circuitry (Ecircuit). They are described as follows:

(1) EPA: This energy is mainly consumed when the nodes transmit
and receive signals for positioning purposes. It includes the
energy expended during signal transmission, signal reception,
and processing of the received signals for localization. EPA
depends on factors such as transmission power, the distance
between nodes, and signal attenuation in the environment.

(2) Ecircuit : This energy accounts for the power consumption of the
electronic components in the nodes, such as microcontrollers,
sensors, amplifiers, and other supporting circuitry. Ecircuit is
typically associated with the power consumed during the
operation of these components, including their active, idle, and
sleep states.

(3) The total energy consumption in a CVA-based positioning
algorithm can be estimated by combining these two

FIGURE 4
System model for CVA-MIMO based ranging in MWSN.

components, EPA and Ecircuit , to provide a comprehensive
understanding of the energy efficiency of the algorithm.
Optimizing the energy consumption of both the positioning
process and the circuitry makes it possible to enhance the
energy efficiency of the CVA-based positioning algorithm
and improve the overall performance of mobile wireless
sensor networks. Therefore, the total energy consumption
for CVA-MIMO can be calculated as:

Etotal = EPA + Ecircuit (11)

In this study, we intend to locate highly efficient and precise
mobile sensors. After that, we propose estimating the proposed
model’s energy consumption. Initially, the 1-bit concept is
introduced, followed by the power consumptionmodel for the entire
network is proposed. Based on the reference (Singh and Amin,
2020), the total transmission energy consumption is made up of
two parts: the consumed energy by all power amplifiers (denoted
as PPA) and other circuit modules (denoted as PC). Therefore, the
transmission energy Ebt for 1 bit is calculated by Jie et al. (2011);
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Fang et al. (2021):

Ebt =
(PC + PPA)

Rb
(12)

where Rb represents the bit rate and PC denotes the other energy
consumption components can be expressed as follows:

PC = PCT + PCR = (PDAC + Pmix + Pfilt + Psyn)

+ (PLNA + Pmix + PIFA + Pfilr + PADC + Psyn) (13)

where PCT symbolizes the power consumption of the transmitter;
PCR refers to the power consumption of the receiver; Pmix is
the power consumption of the mixer amplifier; PDAC represent
power consumption of the Digital-to-Analog Converter (DAC);
PIFA, PLNA, Pfilt , Psyn, and PADC denote the power consumption of
the Intermediate Frequency Amplifier (IFA), Low-Noise Amplifier
(LNA), active filters in the transmitter and receiver, frequency
synthesizer amplifier and Analog-to-Digital Conversion (ADC),
respectively. Moreover, the consumed power by the power amplifier,
namely, PPA can be calculated by:

PPA = (1+ γ)Pout (14)

where γ denotes the drain efficiency of the radio frequency power
amplifier. Pout can be written as:

Pout = EbRb ×
(4π)2dk

GtGrλ
2 MlN f (15)

where Eb denotes the amount of energy required per bit at the
receiver for a certain Bit Error Rate (BER), d is the distance of
transmission, k denotes the path loss factor, Gt and Gr are the
antenna gains for the transmitter and receiver, respectively, λ stands
for the carrier wavelength, Ml means the link margin, and Nf
represents the noise factor of the receiver. Hereafter, the average BER
in the MIMO system can be calculated by Singh and Amin (2020):

P̄b =
4
b
(1− 1

2
b
2

) 1
2NTNR
(1− 1
√μ
)
NTNR

×
NTNR−1

∑
i=0

1
2i
(
NTNR − 1+ i

i
)(1+ 1

μ
)
i

(16)

μ = 1+ 1
Eb
(2N0)

(17)

where μ is key in determining the BER for our system. The BER is
pivotal as it affects the system’s efficiency, a lower BER reduces the
need for re-transmissions, thereby conserving energy. b is the cluster
size, and for BPSK, b is equal to 1. Building on this, the total energy
consumption for CVA-MIMO (where N is the number of bits) is as
follows:

ECVAMIMO
= N ⋅EbtMIMO

(18)

where EbtMIMO
denotes the energy per bit. This is crucial as it

incorporates both circuitry and power amplifier energy usage.

3.3 Relationship between measurement
error and energy

The enhanced precision of distance measurement between
MWSN nodes inevitably leads to higher energy consumption. As

a result, there exists a balance between the estimated distance and
power usage. The CVA-MIMO approach minimizes the error in
distance estimation between nodes while simultaneously conserving
energy. When collaborative transmitting nodes employ Space-
Time Block Code (STBC) for data transmission, the receiver can
achieve performance comparable to that of the Maximal Ratio
Combining (MRC) scheme. Utilizing findings from fundamental
digital communication, the conditional BER for a specific channel
factor h can be demonstrated as follows:

Pb (h) = Q(√2|h|2ρ) (19)

To visualize the diversity order (L), we adopt the upper bound of
the Q function (Proakis and Salehi, 2008), which is shown in (20):

Q (u) ≤ 1
2
e−

u2

2 (20)

Combining (19) and (20), we can obtain

Pb,MRC ≤ ∫
∞

0

1
2
e−u uL−le−

u
ρ

ρL (L− 1)!
du = 1

2
1
(1+ ρ)L

≤ 1
2ρL
⇒ Eb ≤

N0

(2Pb)
1
L

(21)

where le denotes the effective number of independent channels
or paths utilized in MRC, which represents the diversity gain
in the communication system and directly influences the error
performance by improving the SNR. (19) to (21) delve deeper
into the BER’s dependency on channel conditions and diversity
order. The diversity order directly impacts the reliability of
communication, thus influencing the energy efficiency of the system.

The energy consumption of CVA-MIMO is derived as shown in
(22) and (23):

ECVAMIMO
= N ⋅EbtMIMO

= N ⋅
PCMIMO
+ PPAMIMO

Rb
(22)

PCMIMO
= NT ⋅ PCT

+NR ⋅ PCR (23)

Therefore,

ECVAMIMO
=
N ⋅ PCMIMO

Rb
+

N (1+ α)N0 ⋅C0 ⋅ dk

8π2β2κCVAMIMO
(τ) ⋅NR

(24)

According to the above formulas, theM2MCVA-MIMO energy
consumption can be calculated as follows:

ECVAMIMOM2M
=
N ⋅ PCMIMO

Rb

+
N (1+ α)N0 ⋅C0 ⋅ dk ⋅ (1−

Ve
C
cos(θ′))

8π2β2κCVAMIMOM2M
(τ) ⋅NR

(25)

whereN0 denotes the noise power spectral density, which measures
the power of noise per unit bandwidth in a communication system,
while C0 represents a constant that characterizes the channel
capacity or another system specific parameter, dependent on the
context in which it is defined. (22) to (25) collectively form a
comprehensive formula for the energy consumption of the CVA-
MIMO system. They take into account the number of transceivers,
nodemovement speed, and transmission distance, which are critical
factors in the energy dynamics of MWSNs.
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TABLE 1 System parameters.

Parameters Values

fc 2.4 GHz

γ 0.47

PCT 98.2 mW

PCR 112.6 mW

Rb 10 kbps

N 4000

C 3× 108 m/s

k 2

N0 6.7× 10−6 J

β2 0.89× 109

d 150 m

4 Simulation results

In this section, we showcase the results and analysis of the
simulations. Table 1 presents the system parameters employed
in the simulation. MATLAB-based Monte Carlo simulations
were executed to validate the proposed approach’s effectiveness.
Furthermore, the IEEE standard Physical layer (PHY) specification
802.15.4a, an enhanced version of IEEE 802.15.4 featuring an
alternative Ultra-Wide Band (UWB)-based PHY, was incorporated
in our analysis.This offered data communication and high-precision
location capabilities with ultra-low complexity at low data rates
and minimal power consumption for the network. The channel
noise between the transmitter and receiver comprises additive white
Gaussian noise. Simulation results were averaged over 4,000 Monte
Carlo trials with 50 randomly configured nodes.

4.1 Effect of the measurement accuracy of
the distance between nodes

In Section 2, the ToA performance is evaluated for the CVA
technique. Simulation results indicate that at a low SNR range, the
performance can be enhanced by boosting the number of receivers,
which significantly reduces the delay error.

Figure 5 illustrates the ToA normalized error against SNR for
the proposed method in various systems (NR = 1 to NR = 4). It is
clear that the ToA normalized error of different systems decreases
with increasing SNR and eventually converges to a saturated state.
As the number of antennas increases, the ToA normalized error
also decreases. Our findings suggest that the Single-Input Single-
Output (SISO) system cannot achieve the accuracy provided by
the proposed ToA approach. For SISO system (NR = NT = 1), the
minimum acceptable response for SNR is −3 dB, whereas for NR
= NT = 2, an effective response is obtained at a minimum value of

SNR equal to −12 dB. For NR = NT = 4, the value increases to SNR
= −17 dB. Therefore, when there are four nodes in the cluster, the
total number of nodes used can be increased by raising the noise,
and some nodes can be deactivated by decreasing the noise. The
maximum number of sensors employed in the cluster is chosen
based on the most challenging environmental conditions. Apart
from errors and environmental factors, energy consumption must
also be considered, which is discussed in detail in Section 2.

The MF estimator implies the high-resolution solution, while
the ED, means the solution with the lowest complexity. As shown
in Figure 6, the CVA approach is adopted for both ED and MF
methods. By applying the CVA-MIMO for both ED and MF
estimators, the ToA error reduces with the increase in the number
of transceiver’s nodes.

As illustrated in Figure 7, if the nodes are movable, the ToA
error will increase proportionally with the relative speed of the
nodes. In other words, small-scale fading that occurs in a very short
period of time decreases the amplitude, phase, and angle of arrival
of the signal. The Rayleigh distribution and the Rician distribution
are primarily used to define small-scale fading. By considering the
Rician channel assumption and changing the k-factor, the amount of
errorwill be as shown in Figure 8. Figure 8 presents the experimental
results depicting the relationship between the ToA normalized error
and the k-factor for three different values of the number of filters
used, Nf . As can be seen, the ToA error fluctuates as the k-factor
varies, but these changes do not establish a consistent trend that
would suggest a meaningful correlation between the ToA error and
the k-factor. For instance, while an increase in Nf from 1 to 4 tends
to result in a lower ToA error, the variations in error with respect to
the k-factor remain largely inconsistent.This observation leads us to
conclude that, within the parameters of our study, the k-factor is not
a determinant factor in the accuracy of ToA error estimates.

4.2 Energy consumption and optimal
number of transceivers for MWSN

Figure 9 demonstrates that the energy consumption is reduced
by employing the CVA-MIMO technique when the distance of the
cluster increases in a WSN. Obviously, the CVA-MIMO technique
with multiple transceiver antennas can be used if higher accuracy
is needed to estimate the node distances. If high accuracy is
not required, a single transceiver can be utilized. Assuming NR
= NT , the optimal number of transceivers is evident as the
energy consumption curve changes depending on the number of
transceivers.

By increasing the number of NR = NT , the energy consumption
of the power amplifier is reduced. In addition, the energy
consumption of electronic circuits and transmitters increases. In the
case of long distances, the total energy consumption can be reduced
by the number of NR = NT . A smaller number of receiving antennas
NR increases the energy consumption due to less diversity in signal
reception. In applications where high accuracy is not required, the
signal strength is reduced to decrease energy consumption. For
lower amplifier power, the total energy consumption of the network
becomes larger by increasing the number ofNR andNT . For the same
number of transceivers, increasing the speed of node reduces the
ToA normalized error and increases the energy consumption. The
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FIGURE 5
Comparison of ToA normalized errors for MIMO and SISO systems.

FIGURE 6
Effect of CVA-MIMO on the measurement error of ED and MF methods.

CVA-MIMO technique, therefore, presents a significant advantage
in energy efficiency and localization accuracy.

When the normalization error is between 0.05 and 0.5 and
the data is received in a uniform distribution within this error
range, the average energy consumption will be as shown in
Table 2. EC and EMax are the average and maximum energy
consumption, respectively. According to this table, the average
energy consumption is reduced by 23% for NT = NR = 4 compared
to NT = NR = 2.

In Figure 10, the term normalized error on the horizontal
axis represents the dimensionless ratio of the measured ToA
error to a predetermined reference error value, which is the
maximum ToA error expected under ideal conditions within the
system. This normalization is utilized to standardize the error
measurement, allowing for a direct comparison of ToA performance
across different node velocities and numbers of transmitting and
receiving antennas.

TABLE 2 Average energy consumption.

NT = NR EC/EMax

1 1

2 0.69

3 0.61

4 0.53

To ensure there is no ambiguity, the normalized ToA error can
be mathematically expressed as follows:

NormalizedToAerror = MeasuredToAerror
MaximumexpectedToAerror

(26)
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FIGURE 7
Error comparison of moving nodes under various receive antennas (fd means the Doppler frequency).

FIGURE 8
The relationship between the error of ToA and the k-factor.

FIGURE 9
Energy consumption comparison for various NT and NR.
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FIGURE 10
Optimal numbers of NR and NT under various speed.

TABLE 3 Comparison with existing positioning algorithms.

Algorithm Proposed
CVA-MIMO

RSSI-based method TDoA positioning
method

AoA positioning
method

Accuracy (in meters) 0.5 1.2 1.0 1.8

Energy Consumption (in mJ) 15 25 30 20

Robustness to Node Mobility High Medium low Medium

Scalability Excellent Good Fair Good

Complexity Moderate High Low Moderate

Adaptability Excellent Good Fair Good

Latency (in milliseconds) 10 15 20 12

(26) adjusts the raw ToA error values to a common scale, facilitating
an unbiased evaluation of the localization accuracy in diverse
operational scenarios.Themaximum expected ToA error serves as a
benchmark for the worst-case scenario, against which all other error
measurements are compared.

Assuming NR = NT , Figure 10 depicts the optimal number of
transmitters and receivers. The analysis shows that the normalized
ToA error decreases as the number of antennas increases, which is
consistent across various node speeds. As the number of transmitters
grows, energy consumption declines. When the speed is 0 and the
error is 0.05, the energy consumption is 40 forNR = 1, 22 forNR = 2,
and 13 forNR = 4. It is demonstrated that increasing the node speed
results in a 1% energy consumption change for the delay error.

4.3 Comparison with existing algorithms

Table 3 presents a comparative analysis of the proposed CVA-
MIMO positioning algorithm against three established positioning
methods within the domain of MWSNs. These methods have
been selected based on their relevance and common application

in the field. The comparison is based on various performance
criteria, including accuracy, energy consumption, robustness to
node mobility, scalability, implementation complexity, adaptability
to environmental changes, and latency. The proposed CVA-MIMO
demonstrates superior performance in most categories, particularly
in accuracy and adaptability to environmental changes, while
maintaining competitive energy efficiency and lower latency. The
comparison aims to highlight the strengths of the proposed
approach in addressing the dynamic and resource-constrained
nature of MWSNs.

5 Conclusion

In a typical MWSN, achieving precise localization demands
substantial energy. The proposed CVA technology enables accurate
localization while minimizing energy consumption. Furthermore,
both the enhancement of SNR and the number of receivers
can decrease the distance error and boost the nodes’ speed. By
employing the proposed CVA method and the SAI algorithm,
MWSN will exhibit satisfactory performance even at low SNR
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levels. The results demonstrate that the network’s total energy
consumption is minimized, and the measurement error is reduced.
Moreover, the number of transceiver antennas is optimized based
on three factors: error quantity, energy consumption, and the
speed of mobile nodes. As the speed of the nodes increases, error
latency and energy consumption rise, which increase in energy
consumption and error can be compensated by adjusting the
number of transceivers. Furthermore, CVA technology reduces the
power of transmitters, which consequently lessens the adverse effects
of electromagnetic sensitivity on the human body.

In the future, we can use machine learning for MWSN to
achieve more accurate localization and low power consumption.
Specifically, machine learning algorithms such as artificial neural
networks can be used to create a model that maps the received
signal strength of the wireless signal to the distance between the
sensor node and the objective (physical location that a sensor node
is attempting to determine or estimate). Adopting multiple sensor
nodes, the position of an object can be calculated via trilateration
or multilateration, which is more accurate than using triangulation.
In addition, machine learning algorithms can help optimize power
consumption by predicting sensor node workloads and adjusting
transmit power and sampling rates accordingly.
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