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With the deepening of the concept of green, low-carbon, and sustainable
development, the continuous growth of the ownership of new energy vehicles
has led to increasing public concerns about the traffic safety issues of these
vehicles. In order to conduct research on the traffic safety of new energy vehicles,
three sampling methods, namely, Synthetic Minority Over-sampling Technique
(SMOTE), Edited Nearest Neighbours (ENN), and SMOTE-ENN hybrid sampling,
were employed, along with cost-sensitive learning, to address the problem of
imbalanced data in the UK road traffic accident dataset. Three algorithms, eXtreme
Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), and
Categorical Boosting (CatBoost), were selected for modeling work. Lastly, the
evaluation criteria used for model selection were primarily based on G-mean, with
AUC and accuracy as secondary measures. The TreeSHAP method was applied to
explain the interaction mechanism between accident severity and its influencing
factors in the constructed models. The results showed that LightGBM had a more
stable overall performance and higher computational efficiency. XGBoost
demonstrated a balanced combination of computational efficiency and model
performance. CatBoost, however, was more time-consuming and showed less
stability with different datasets. Studies have found that people using fewer
protective means of transportation (bicycles, motorcycles) and vulnerable
groups such as pedestrians are susceptible to serious injury and death.
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1 Introduction

As society continues to develop, people strive to implement the concept of sustainable
development and high-level protection of the ecological environment in all aspects. There is
a strong push for energy conservation and environmental protection, and a transformation
of the economic development model of traditional industries. Therefore, the use of new
energy vehicles in daily travel has become a necessary condition for promoting social and
environmental development. With the increase in the number of new energy vehicles, there
has also been a corresponding rise in the number of accidents involving these vehicles,
making the safety of new energy vehicles a focus of concern for scholars. However, currently,
there is limited research on the road traffic safety of new energy vehicles, and the existing
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studies have certain limitations. There are significant discrepancies
among the research findings, making it difficult to reach consistent
conclusions.

New energy vehicles primarily use electric motors for power
output in most scenarios, resulting in lower vehicle noise compared
to internal combustion engine vehicles. This difference in sound
may pose a safety threat to drivers or other road users. Wogalter
et al. investigated public attitudes and concerns regarding hybrid
vehicles, and found that the majority of participants considered the
“quietness” of hybrid vehicles to be a safety threat for pedestrians
(Wogalter et al., 2014). Goodes et al. conducted perception studies
related to electric vehicles specifically targeting visually impaired
individuals (Goodes et al., 2009). The research showed that the
sound conditions of vehicles significantly affected the perception
abilities of visually impaired individuals. It also confirmed that the
use of additional sound devices can help visually impaired
individuals detect electric vehicles earlier. Similarly, studies
conducted by Garay-Vega, Parizet, and Fleury obtained similar
conclusions (Garay-Vega et al., 2010; Wall Emerson et al., 2011;
Parizet et al., 2014; Fleury et al., 2016). Chen et al. proposed an
improved, contextually-coordinated approach to enhance traffic
safety measures by utilizing drivers’ inherent visual perceptual
characteristics, further improving the overall safety of the
roadway environment (Chen Yunteng et al., 2023). Cocron et al.
conducted a study on the issue of low noise in electric vehicles from
the driver’s perspective (Cocron and Krems, 2013). The research
indicated that severe incidents related to low noise electric vehicles
were rare and mostly occurred during low-speed driving. As driving
experience increases, drivers perceive the low noise characteristics of
electric vehicles as a more comfortable driving experience and do
not consider it to pose a higher safety threat to other road users.

On the other hand, the analysis of factors influencing the
severity of traffic accidents has also received significant attention.
Chen et al. used a ridge regression model to study the effect of
economic development indicators on road traffic accident fatality
rates in China and five European and American countries, and
found that the results were completely different due to differences in
economic development (Chen Xiyang et al., 2023). AlKheder et al.
compared three data mining models used for accident severity
analysis and found that Bayesian networks had more accurate
predictive performance (AlKheder et al., 2020). Wang Lei et al.
used random forest, Bayesian, BP neural network, and support
vector machine to analyze the road environmental factors
affecting the prediction of highway tunnel traffic accidents. The
results showed that random forest had better reliability (Wang et al.,
2019). Similarly, Lee et al. found that the random forest model
performed the best in the analysis of traffic accident models (Lee
et al., 2020). Xu proposed a one-way traffic organization scheme
demonstration and evaluation method using VISSIM, which has
certain practical significance (Xu, 2022). Bokaba, T et al. analyzed
machine learning algorithms like AdaBoost, logistic regression,
naive Bayes, and random forest in analyzing the severity of traffic
accidents (Bokaba et al., 2022). They also employed the SMOTE
algorithm to address data imbalance issues and obtained similar
results, with random forest having higher prediction accuracy and
better performance. Zhou et al. combined methods such as SMOTE-
ENN and cost-sensitive learning to address data imbalance issues
and used the SHAP method for model interpretation (Zhou et al.,

2018). The research found that cost-sensitive learning yielded the
best results in handling data imbalance problems. Islam et al.
proposed a new data augmentation technique called variational
autoencoder (VAE) to address class imbalance issues in traffic
accident data (Islam et al., 2021). They compared it with other
methods such as SMOTE and adaptive synthetic sampling
(ADASYN) and found that VAE showed improved specificity
and sensitivity to varying degrees while better overcoming
overfitting issues. Su et al. quantitatively analyzed the severity of
traffic accidents under different types and proposed a new
evaluation index, which is of some reference and significance (Su
and Niu, 2022).

Based on the extensive research conducted by different scholars
on the factors influencing the severity of accidents involving new
energy vehicles, this study aims to utilize a larger dataset of UK
traffic accidents involving new energy vehicles and their associated
factors. With the use of ensemble learning algorithms and data
balancing techniques, the study will explore the influencing factors
of accident severity. Additionally, the study will use explanations
methods based on machine learning to reveal the underlying
mechanisms between accident severity and its influencing factors.

2 Methodology

2.1 Ensemble learning

Ensemble learning refers to the algorithm that combines
multiple learners to accomplish a learning task. It typically
involves generating multiple individual learners and then
combining them using certain strategies. Based on different
approaches in forming individual learners, ensemble learning
methods are mainly divided into Boosting and Bagging. Boosting
is a type of method that can boost weak learners into strong learners,
focusing on reducing bias, which represents the deviation between
the expected predictions of the learning algorithm and the true
results. Some commonly used Boosting algorithms include
AdaBoost (Adaptive Boosting) (Freund and Schapire, 1996),
GBDT (Gradient Boosting Decision Tree) (Friedman, 2001),
XGBoost (Extreme Gradient Boosting) (Chen et al., 2020),
LightGBM (Light Gradient Boosting Machine) (Bentéjac et al.,
2021), and CatBoost (Gradient Boosting + Categorical Features)
(Dorogush et al., 2018). In this study, we select XGBoost, LightGBM,
and CatBoost, which are based on the GBDT algorithm framework,
as the modeling algorithms. Overall, the use of numerical simulation
for road and traffic accident research is a hot topic today
(Prokhorenkova et al., 2018).

2.1.1 XGBoost
XGBoost is a machine learning algorithm that can perform

stably and effectively in different scenarios (Chen et al., 2020).
Regularized boosting is one of its core techniques, and the
regularization objective function used is represented as follows:

ζ ϕ( ) � ∑
i

l ŷi, yi( ) +∑
k

Ω f k( ) (1)

where ϕ represents the model parameters to be calibrated through
training data, ŷi represents the predicted label value of the i-th
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sample, yi represents the true label value of the i-th sample. l(ŷi, yi)
represents a differentiable convex loss function that measures the
prediction value of the model by evaluating the discrepancy between
predicted value ŷi and true value yi, fk represents the scoring
function for the output of the k-th tree, which evaluates the
prediction performance of each tree. Ω represents the
regularization term of the model, which controls model
complexity through penalty.

Ω f( )� γT+ 1
2
λ ω‖ ‖2 (2)

where γ represents the complexity coefficient of the leaves, T is the
total number of leaves, λ is the penalty factor, and ω is the score
vector of the leaves.

Next, we need to calculate the optimal solution of the objective
function. The following equation represents the error function for
the i-th sample at the t-th iteration:

ζ t( ) � ∑n
i�1
l yi, ŷi

t−1( ) + f t Xi( )( )+Ω f t( ) (3)

By performing a second-order Taylor expansion and
simplification of the objective function, we obtain:

~ζ
t( ) � ∑n

i�1
gift Xi( ) + 1

2
hif

2
t Xi( )[ ]+Ω ft( ) (4)

where, gi � ∂ŷ(t−1)l(yi, ŷi(t−1)), hi � ∂2ŷ(t−1)l(yi, ŷi(t−1)).
Next, given a fixed tree structure, in order to minimize the

objective function, we set the derivative of Equation 4 to zero. This
yields the optimal predicted score for each leaf:

ω*
j� − ∑i∈Ijgi∑i∈Ijhi+λ

(5)

where Ij � i|q(Xi)� j{ } indicates the sample set used by the j-th leaf.
Substituting Equation 5 into the objective function, we can solve

for the optimal solution:

~ζ
t( )

q( )� − 1
2
∑T
j�1

∑i ∈Ijgi( )2

∑i∈Ijhi+λ
+γT (6)

After determining the loss function and the optimal solution, the
next step is to determine the tree structure, specifically how to select
the optimal splitting node. The basic idea of the splitting criterion in
XGBoost is consistent with decision trees: using a greedy algorithm
to enumerate all nodes, calculate the information gain before and
after each node split, and select the node with the maximum
information gain. Let IL, IR represent the sample sets for the left
and right leaf nodes after the split, respectively. I � IL ⋃ IR. The
information gain definition in XGBoost is shown in Eq. 7.

ξsplit � 1
2

∑i ∈ILgi( )2∑i∈ILhi+λ
⎡⎢⎢⎢⎣ + ∑i ∈IRgi( )2∑i∈IRhi+λ

− ∑i ∈ Igi( )2∑i∈Ihi+λ ]−γ (7)

2.1.2 LightGBM
LightGBM borrows some of the histogram algorithms used in

GBDT (Bentéjac et al., 2021). This algorithm finds the best split
point based on feature histograms. The computational

complexity is mainly influenced by the cost of constructing
histograms, which is O (sample size × feature size). Therefore,
the key to reducing computational complexity is to reduce the
number of samples and features. As a result, LightGBM proposes
two new techniques to reduce the number of features and
samples, thus improving the computational efficiency of the
algorithm. These techniques are Gradient-based One-Side
Sampling (GOSS) and Exclusive Feature Bundling (EFB).

The GOSS algorithm focuses on reducing the number of samples
by using the calculated information gain as the judging criterion. It
discards samples with small gradients that have little impact on the
information gain and retains samples with larger gradients that have
a greater impact on the information gain. Let O be the training
dataset at a fixed node in the decision tree, and let nO � ∑ I[xi∈ O]
represent the variance gain of feature j for the split at point d, which
is defined as follows:

Vj|O d( ) � 1
nO

∑ xi∈ O: xij < d{ }gi( )2

nj
l|O d( ) +

∑ xi∈ O: xij < d{ }gi( )2

nj
r|O d( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (8)

where, njl|O(d) � ∑ I[xi∈ O: xij ≤ d], njr|O(d) � ∑ I[xi∈ O: xij ≤ d],
xi is defined as the variance gain of feature j for the split at point d in
the training dataset, where gi represents the negative gradient of the
i-th sample.

GOSS first sorts the absolute values of the gradients of the
training samples. It then selects the top “a” sample with the largest
gradients as subset A. Next, it randomly samples “b” samples from
the remaining samples with smaller gradients Ac to construct subset
B. Finally, the estimated variance gain is computed on the union of
subsets A and B, using the following calculation:

~Vj d( ) � 1
n

∑xi ∈ Al
gi + 1−a

b ∑xi ∈ Bl
gi( )2

nj
l d( ) + ∑xi ∈ Ar

gi + 1−a
b ∑xi ∈ Br

gi( )2
nj
r d( )

⎛⎝ ⎞⎠
(9)

where, Al � ∑ xi∈ A: xij ≤ d{ }, Ar � ∑ xi∈ A: xij ≤ d{ }, Bl �∑ xi∈ B:{ xij ≤ d}, Br � ∑ xi∈ B: xij ≤ d{ }, The coefficient (1 − a)/b
is used to enhance the algorithm’s attention to samples with small
gradients.

High-dimensional data is often sparse, and in a sparse feature
space, many features are mutually exclusive. One possible approach
to reduce the number of features is to bind mutually exclusive
features together, and the EFB algorithm is based on this idea. The
problem of binding mutually exclusive features can be divided into
two parts: binding rules and binding methods. EFB introduces the
greedy bundling rule, which transforms the problem of feature
binding into a graph coloring problem to solve. The graph
coloring problem belongs to the NP-hard problem class. Once
the feature binding rules are determined, the binding method
needs to be defined. EFB proposes the Merge Exclusive Features
method to address this issue.

Based on the above methods, the LightGBM algorithm
significantly reduces the computational complexity of the
training task while ensuring model performance. This leads to
faster computation speed and reduced memory usage. The
advantages of LightGBM are even more significant in large-
scale data tasks.
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2.1.3 CatBoost
CatBoost is a gradient boosting decision tree (GBDT)

framework algorithm that uses oblivious decision trees as base
learners (Dorogush et al., 2018). It aims to address gradient bias
and prediction shift issues and directly handles categorical features.
In order to tackle gradient bias, CatBoost optimizes the GBDT
algorithm by using unbiased estimates of the gradient step to
compute leaf values at the first step.

Machine learning tasks involve a wide variety of feature types,
such as categorical features, continuous features, and so on.
Categorical features refer to a set of discrete category data
with no inherent ordering, such as categories for accident
vehicles, colors, animals, etc. Most machine learning
algorithms cannot directly process data with categorical
features as training data. They first require encoding the
categorical data into numerical form. Common encoding
methods include ordinal encoding and one-hot encoding.
One-hot encoding creates a binary feature for each category
within a feature. It adds a new binary feature to the data,
representing whether or not it belongs to that category. When
the cardinality of the categorical feature is low, such as for gender,
one-hot encoding expands the feature space and avoids the issue
of meaningless order in category values. However, when the
cardinality of the categorical feature is high, using one-hot
encoding can result in too many new features, greatly
increasing data dimensionality and computational complexity.
Considering the similarity between different categories within a
categorical feature, it is possible to reclassify the feature by
clustering, reducing the number of categories. After that, one-
hot encoding can be applied. Target statistics (TS) is one such
method. In the simple TS method, the mean value of each
category within the categorical feature is used as the basis for
reclassification. This method is known as greedy TS. In this
method, the classification of the k-th training sample for
categorical feature i. i can be replaced by a numerical feature
equal to a certain target statistic xik . The calculation method is as
follows:

x̂ik �
∑n
j�1

xij � xik{ } · yi+ap
∑n
j�1

xij � xik{ }+a (10)

whereas a is a constant greater than 0, p is the average target value of
the dataset, and yi is the target value for category i.

The drawback of this method is that the constant x̂ik is calculated
based on the target value yk of xk , which leads to the problem of
target leakage. When there are differences in data distribution
between the training and testing sets, it can result in conditional
shift. CatBoost introduces a more effective method called Ordered
TS. Ordered TS is based on sorting rules, so the TS value of each
sample is only related to the observed history. Inspired by online
learning algorithms that use time series training samples, in order to
apply this method to the standard offline setting, a random sequence
σ is introduced as the pair of training samples. When calculating the
TS value for training samples, let Dk � xj: σ(j)< σ(k){ }, and when
calculating the TS value for testing samples, let Dk� D. Therefore,

Ordered TS satisfies various requirements for TS calculation, and the
calculation method is as follows:

x̂ik �
∑xjϵDk

xij � xik{ } · yi+ap∑xjϵDk
xij � xik{ }+a (11)

The meaning of the parameters in the formula is the same as
above.

After addressing the conditional shift caused by target leakage,
another issue that needs to be dealt with is prediction shift. CatBoost
proposes an approach called ordered boosting, similar to the ordered
TS method, to overcome this problem. The key feature of symmetric
decision trees is that they use the same splitting criteria throughout
the entire tree. This ensures that the tree’s leaves are more balanced,
less prone to overfitting, and significantly speeds up computation
during testing. It not only efficiently handles categorical features but
also forms new features by combining different features for analysis,
maximizing the utilization of data information and improving
model performance.

2.2 Class imbalance handling

When using machine learning algorithms for classification tasks,
it is generally assumed that the distribution of data classes is
balanced. However, when training models using real-world traffic
accident data, it is common to encounter a phenomenon where the
model achieves high prediction accuracy but poor overall
performance. For instance, in traffic accident data, the proportion
of fatal accidents is usually lower compared to non-fatal accidents.
During the training process, the algorithm may tend to predict all
accidents as non-fatal to improve overall prediction accuracy.
However, this can result in the model performing poorly in
predicting the minority class, which in this case is the fatal
accidents. This issue is known as class imbalance (Johnson and
Khoshgoftaar, 2019). On the other hand, there are scenarios where
the importance of the minority class samples far outweighs that of
the majority class samples. For example, accurately predicting a fatal
accident holds significantly higher practical value and social impact
compared to the other class. Effectively addressing imbalanced data
is one of the key challenges in machine learning. Currently, there are
two main methods for handling data imbalance that are relatively
mature: data resampling and cost-sensitive learning (Ofek et al.,
2017). Data resampling methods primarily include oversampling,
undersampling, ensemble sampling, and a combination of
oversampling and undersampling. This article will mainly
introduce oversampling, undersampling, combination sampling,
and cost-sensitive learning.

2.2.1 Oversampling
The basic idea of oversampling is to increase the number of

minority class samples based on the existing minority class samples.
This can be achieved through random sampling or artificial
synthesis, aiming to balance the data distribution between
minority and majority class samples. The most typical
oversampling method is synthetic minority oversampling
technique (SMOTE) (Chawla et al., 2002).
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The SMOTE algorithm is an improvement over the random
oversampling algorithm. The former approach, which uses a strategy
of randomly duplicating samples to increase the minority class
samples, can lead to overfitting and poor generalization of the
model. SMOTE addresses this issue by automatically synthesizing
new samples based on the minority class samples. The algorithm
follows these steps: using the Euclidean distance as the criterion,
calculate the distance between each minority class sample xi and the
set of minority class samples M to obtain its k nearest neighbors
sample ~xij,j∈(0,k]; randomly select samples ~xij from the k nearest
neighbors of the minority class samples, based on the desired
number of generated samples; generate a new sample xs based on
xi and ~xij. The generation method is as follows:

xs � xi+rand 0, 1( ) × ~xij − xi( ) (12)

2.2.2 Undersampling
Unlike oversampling, undersampling focuses on reducing the

number of majority class samples through random discarding or
specific rules to achieve data balance. Depending on the rules used
for discarding, undersampling methods can be divided into random
majority under-sampling with replacement, Edited Nearest
Neighbours (ENN) (Wilson, 1972), Extraction of majority-
minority Tomek links (Tomek links) (Tomek, 1976), and other
techniques.

ENN is a data cleaning technology that aims to achieve
undersampling by removing data with overlapping relationships
based on certain rules. For any sample in the dataset, if more than
half of its k nearest neighbors have a different class, this sample will
be selectively removed.

2.2.3 Combination sampling
Although the above two methods partially address the problem

of data imbalance, they also have limitations. For example, the
SMOTE algorithm can cause the boundaries between classes to
become blurry, and the ENN algorithm has limited ability to clean
upmajority class samples and cannot control the quantity discarded.
One such method is SMOTE-ENN, which combines the SMOTE
and ENN sampling techniques. It first uses the SMOTE algorithm to
oversample the minority class samples and then cleans the data
using the ENN algorithm. The advantage of this approach is that it
addresses the issue of blurry boundaries caused by the SMOTE
algorithm through the data cleaning process of the ENN algorithm.
Additionally, since SMOTE increases the number of data samples,
the ENN algorithm can clean up more samples.

2.2.4 Cost-sensitive learning
Cost-sensitive learning (CSL) is a machine learning approach

that considers the costs or losses associated with different
classification errors during model training and prediction
(Johnson and Khoshgoftaar, 2019). In cost-sensitive learning,
each class’s classification error is assigned a different cost value.
These costs can be pre-determined or adjusted based on specific
problem domains and requirements. This article focuses on
implementing cost-sensitive learning by increasing the weights of
misclassified classes. Compared to resampling methods, cost-
sensitive learning is computationally efficient and maintains good

model performance. It offers more significant advantages in large
data scenarios.

In this paper, cost-sensitive learning is implemented using the
third-party library scikit-learn in Python (Fabian et al., 2011). It
achieves cost-sensitive learning by altering the weights of each class,
and the weight calculation method for each class is as follows:

Wi � T/ n ×Ni( ) (13)
where, T is the total number of samples, n is the number of classes,
and Ni is the number of samples of class i.

2.3 SHAP principle

SHAP (Shapley Additive Explanation) is a game theory method
based on the classical Shapley value and its related extensions
(Shapley, 1953). It establishes a connection between optimal credit
allocation and local explanations, and can be used to explain the
outputs of various machine learning models. Typically, simple models
with fewer parameters have good global interpretability, meaning they
can recognize the interaction relationships between independent
variables and the target variable on the complete dataset. On the
other hand, complex models (such as ensemble models) have less
transparent modeling processes and are difficult to interpret globally.
Therefore, local methods are often used to bypass the complexity of
the model itself and analyze the predictive behavior of individual
samples or groups of samples in order to obtain the mechanisms of
interaction between independent variables and the target variable,
which is also known as the local interpretability of the model. SHAP is
based on the second type of explanation strategy, which uses a
relatively simple but interpretable model as an explanation model
for complex models. This is also a model-agnostic explanation
method. However, due to the large number of feature subsets,
obtaining the model outputs for each feature subset requires a
huge computational cost and is time-consuming. Therefore,
Lundberg subsequently proposed TreeSHAP to improve the
computation speed of tree-based ensemble models (Lundberg
et al., 2020). TreeSHAP optimizes the computation method of
Shapley values by calculating them based on the nodes of the tree
model, rather than generating subsets through sampling all features.
Additionally, TreeSHAP enhances analysis of the dependencies
between variables, allowing for the identification of feature
interaction relationships within the model. The XGBoost,
LightGBM, and CatBoost models used in this study are all tree-
based ensemble models, so TreeSHAP is used for visualizing
explanations of the established accident severity model.

3 Accident severity modeling based on
ensemble learning

3.1 Data preprocessing

Considering the background of the development of new energy
vehicles, this study selected road safety data from 2009 to 2019 in the
United Kingdom. After a simple screening and exclusion of some
variables, the statistical results are shown in Table 1.
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Due to the large amount of accident data involving new
energy vehicles in the dataset used in this study, as well as the
large number of accident groups, the computation efficiency is
low when using resampling methods to address data imbalance
issues. If the model tuning process is added, the computational
power is severely insufficient. Moreover, ensemble algorithms
typically construct models with performance close to the optimal
model under default parameters, and the performance
improvement brought by tuning is limited. On the other hand,
different data imbalance handling methods can bring greater
performance improvement to the model. Therefore, in the stage
of selecting data balancing methods, no tuning is performed.
Instead, tuning is carried out after obtaining the best data
balancing method. In this study, Bayesian search, which is
faster and performs better, is selected as the main tuning
method. The model selection is based primarily on G-mean,
with AUC and accuracy as secondary evaluation criteria, as
shown in Eqs 14–18.

Accuracy � TP + TN
TP + TN + FP + FN

(14)

G −mean �
����������������
Recall × Specificity

√
(15)

Specificity � TN
TN + FP

(16)

Recall � TP
TP + FN

(17)

The meanings of TN, TP, FP, and FN are shown in Table 2.

AUC � ∑i∈positive classranki − M × M+1( )
2

M × N
(18)

where i represents the i-th sample in the positive examples, ranki
represents the rank of the probability score for the i-th sample, M
and N represent the number of positive and negative samples
respectively, and ∑i∈positive classranki represents the sum of rank
positions for all positive example samples.

3.2 Analysis of accident modeling involving
new energy vehicles

3.2.1 Comprehensive accident modeling and
analysis for new energy vehicles
3.2.1.1 Road and environmental factors

Results of performance evaluation for the comprehensive
accident modeling of new energy vehicles, considering road and
environmental factors, are shown in Table 3. Before parameter
tuning, the maximum G-mean value was 59.01%, the maximum
AUC value was 60.23%, and the highest accuracy for classifying
severe injury accidents was 48.15%. Compared to the 2.14% without
addressing data imbalance, it represents an increase of 46.01%.
These maximum values were obtained using the LightGBM
model with cost-sensitive learning for data balancing.
Furthermore, through comparative analysis of models using the
same modeling algorithm but different data balancing methods, it
was found that the model with cost-sensitive learning performed
better in classifying minority class samples (severe injury accidents),
and this gap is difficult to compensate for through parameter tuning.
However, the differences between different modeling algorithms
were relatively small and could be easily leveled off through
hyperparameter optimization. Therefore, considering efficiency
and performance comprehensively, this paper only conducted
parameter tuning for models using cost-sensitive learning, and
then selected the best-performing model. The tuning results show
that the performance of all models has slightly improved. Among

TABLE 1 Statistics on accidents involving new energy vehicles.

Variable distribution statistics Variable Statistics on accidents involving new energy vehicles

Data category Accidents 21374(1.8%)

Vehicles 44298(1.93%)

Casualties 29170(1.77%)

Severity of the accident Fatality 121(0.57%)

Serious injury 2476(11.58%)

Minor injury 18777(87.85%)

Degree of Injury (Pedestrian) Fatality 31(0.87%)

Serious injury 634(17.70%)

Minor injury 2916(81.43%)

Degree of injury (cycles) Fatality 4(0.15%)

Serious injury 376(13.70%)

Minor injury 2364(86.15%)

TABLE 2 Confusion matrix for binary classification problem.

True result Predicted result

Positive Negative

Positive TP FN

Negative FP TN
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them, the model constructed by LightGBM and CSL performed the
best. After tuning, the G-mean increased by 2.32%, the AUC value
increased by 1.15%, and the accuracy of severe injury accidents
classification improved by 10.68%. Therefore, this model is the
optimal model in this round.

3.2.1.2 Vehicle factors
In the performance evaluation results of the comprehensive

accident modeling for the entire fleet of new energy vehicles,
considering vehicle factors (as shown in Table 4), the maximum
G-mean value was 61.04%, the maximum AUC value was 61.09%,
and the highest accuracy for classifying severe injury accidents was
58.61%. These maximum values were obtained using the LightGBM
model with cost-sensitive learning for data balancing. The tuning
results indicate that the model constructed by CatBoost and CSL is
the optimal model. After tuning, the G-mean increased to 61.65%,
the AUC value increased to 61.65%, and the accuracy of severe
injury accidents classification improved to 61.80%.

3.2.1.3 Casualty factors
In the performance evaluation results of the comprehensive

accident modeling for casualty factors of the entire fleet of new
energy vehicles (as shown in Table 5), the maximum G-mean value
was 62.48%, the maximum AUC value was 62.91%, and the highest
accuracy for classifying severe injury accidents was 55.57%. These
maximum values were obtained using the LightGBM model with
cost-sensitive learning for data balancing. However, the optimal
model after tuning has changed to a model based on the CatBoost

algorithm, with a G-mean increasing to 64.63%, an AUC value
increasing to 64.68%, and an improved accuracy of severe injury
accidents classification to 62.20%.

3.2.2 Analysis of accidents between new energy
vehicles and pedestrians
3.2.2.1 Road and environmental factors

In the performance evaluation results of the road and
environmental factors modeling for accidents between new
energy vehicles and pedestrians (as shown in Table 6), the
maximum G-mean value was 52.63%, the maximum AUC value
was 54.39%, and the highest accuracy for classifying severe injury
accidents was 40.64%. These maximum values were obtained using
the LightGBMmodel with cost-sensitive learning for data balancing.
The tuning results showed that the model built by LightGBM and
CSL performed the best, serving as the optimal model in this round.
After tuning, the G-mean increased by 7.24%, the AUC value
increased by 5.87%, and the accuracy for classifying severe injury
accidents improved by 12.84%.

3.2.2.2 Vehicle factors
In the performance evaluation results of the vehicle factors

modeling for accidents between new energy vehicles and
pedestrians (as shown in Table 7), the maximum G-mean value
was 55.73%, the maximum AUC value was 57.33%, and the highest
accuracy for classifying severe injury accidents was 43.86%. These
maximum values were obtained using the XGBoost model with cost-
sensitive learning for data balancing. After tuning, the model that

TABLE 3 Performance measurement table of comprehensive accident road and environmental factor classification model for new energy vehicles.

Model Evaluation metrics Data balancing processing

Before tuning After tuning

None SMOTE ENN SMOTEENN CSL CSL

XGBoost Overall accuracy (%) 88.60 88.38 85.51 83.80 66.01 69.94

Severe casualties accuracy(%) 3.85 3.85 12.54 18.09 46.44 49.15

Minor injuries accuracy (%) 99.02 98.77 94.48 91.88 68.41 72.49

AUC (%) 51.43 51.31 53.51 54.98 57.43 60.82

G-mean (%) 19.52 19.49 34.42 40.77 56.36 59.69

LightGBM Overall accuracy (%) 88.93 88.74 87.17 84.59 69.67 63.37

Severe casualties accuracy(%) 2.14 2.99 9.97 16.10 48.15 58.83*

Minor injuries accuracy (%) 99.60 99.28 96.66 93.01 72.32 63.93

AUC (%) 50.87 51.14 53.31 54.56 60.23 61.38*

G-mean (%) 14.59 17.23 31.05 38.69 59.01 61.33*

CatBoost Overall accuracy (%) 88.99 88.41 87.26 84.45 68.60 67.72

Severe casualties accuracy(%) 2.56 3.85 10.26 18.52 46.15 51.27

Minor injuries accuracy (%) 99.61 98.81 96.73 92.56 71.35 70.03

AUC (%) 51.09 51.33 53.49 55.54 58.75 60.65

G-mean (%) 15.98 19.49 31.50 41.40 57.39 59.92

Notes: Bolded data represents the optimal values of the indicators before tuning, while bolded data with * represents the optimal values of the indicators after tuning.
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TABLE 4 Performance measurement table of comprehensive accident vehicle factor classification model for new energy vehicles.

Model Evaluation metrics Data balancing processing

Before tuning After tuning

None SMOTE ENN SMOTEENN CSL CSL

XGBoost Overall accuracy (%) 87.91 87.41 85.06 83.15 65.71 62.30

Severe casualties accuracy(%) 2.44 1.63 12.21 16.97 50.91 60.05

Minor injuries accuracy (%) 99.58 99.13 95.01 92.19 67.73 62.60

AUC (%) 51.01 50.38 53.61 54.58 59.32 61.33

G-mean (%) 15.59 12.70 34.06 39.55 58.72 61.31

LightGBM Overall accuracy (%) 87.95 87.64 86.27 83.26 62.97 62.68

Severe casualties accuracy(%) 0.44 0.94 8.14 16.78 58.61 60.24

Minor injuries accuracy (%) 99.90 99.48 96.94 92.34 63.57 63.01

AUC (%) 50.17 50.21 52.54 54.56 61.09 61.63

G-mean (%) 6.62 9.67 28.09 39.36 61.04 61.61

CatBoost Overall accuracy (%) 87.91 87.41 85.06 83.15 65.71 61.54

Severe casualties accuracy(%) 2.44 1.63 12.21 16.97 50.91 61.80*

Minor injuries accuracy (%) 99.58 99.13 95.01 92.19 67.73 61.50

AUC (%) 51.01 50.38 53.61 54.58 59.32 61.65*

G-mean (%) 15.59 12.70 34.06 39.55 58.72 61.65*

Bolded data represents the optimal values of the indicators before tuning, while bolded data with * represents the optimal values of the indicators after tuning.

TABLE 5 Performance measurement table of comprehensive accident casualty factor classification model for new energy vehicles.

Model Evaluation metrics Data balancing processing

Before tuning After tuning

None SMOTE ENN SMOTEENN CSL CSL

XGBoost Overall accuracy (%) 89.42 76.20 78.63 83.89 68.59 65.54

Severe casualties accuracy(%) 2.02 35.43 25.76 18.00 54.56 61.30

Minor injuries accuracy (%) 99.30 80.81 84.61 91.34 70.17 66.01

AUC (%) 50.66 58.12 55.18 54.67 62.36 63.66

G-mean (%) 14.18 53.51 46.68 40.54 61.87 63.62

LightGBM Overall accuracy (%) 89.62 75.80 80.24 83.70 68.76 68.58

Severe casualties accuracy(%) 0.90 38.47 23.06 19.01 55.57 57.37

Minor injuries accuracy (%) 99.66 80.02 86.71 91.02 70.25 69.84

AUC (%) 50.28 59.24 54.88 55.02 62.91 63.61

G-mean (%) 9.47 55.48 44.72 41.60 62.48 63.30

CatBoost Overall accuracy (%) 89.38 76.65 84.32 83.70 68.95 66.66

Severe casualties accuracy(%) 1.35 36.00 20.02 18.67 54.89 62.20*

Minor injuries accuracy (%) 99.34 81.25 91.59 91.06 70.54 67.16

AUC (%) 50.34 58.62 55.81 54.87 62.72 64.68*

G-mean (%) 11.58 54.08 42.82 41.23 62.23 64.63*

Bolded data represents the optimal values of the indicators before tuning, while bolded data with * represents the optimal values of the indicators after tuning.
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TABLE 6 Performance measurement table of comprehensive accident road and environmental factor classification model for new energy vehicles-pedestrian
accidents.

Model Evaluation metrics Data balancing processing

Before tuning After tuning

None SMOTE ENN SMOTEENN CSL CSL

XGBoost Overall accuracy (%) 78.10 76.80 66.80 68.00 61.80 67.80

Severe casualties accuracy(%) 5.88 8.02 34.22 26.74 36.90 41.18

Minor injuries accuracy (%) 94.71 92.62 74.29 77.49 67.53 73.92

AUC (%) 50.30 50.32 54.26 52.11 52.21 57.55

G-mean (%) 23.60 27.26 50.42 45.52 49.92 55.17

LightGBM Overall accuracy (%) 79.30 77.70 67.80 70.20 63.00 64.50

Severe casualties accuracy(%) 6.42 6.95 31.55 27.81 40.64 53.48*

Minor injuries accuracy (%) 96.06 93.97 76.14 79.95 68.14 67.04

AUC (%) 51.24 50.46 53.84 53.88 54.39 60.26*

G-mean (%) 24.83 25.56 49.01 47.15 52.63 59.87*

CatBoost Overall accuracy (%) 81.30 80.30 72.20 71.00 65.50 62.00

Severe casualties accuracy(%) 5.35 9.63 25.67 24.60 36.36 47.46

Minor injuries accuracy (%) 98.77 96.56 82.90 81.67 72.20 65.13

AUC (%) 52.06 53.09 54.29 53.14 54.28 56.29

G-mean (%) 22.98 30.49 46.13 44.82 51.24 55.60

Bolded data represents the optimal values of the indicators before tuning, while bolded data with * represents the optimal values of the indicators after tuning.

TABLE 7 Performance measurement table of comprehensive accident vehicle factor classification model for new energy vehicles-pedestrian accidents.

Model Evaluation metrics Data balancing processing

Before tuning After tuning

None SMOTE ENN SMOTEENN CSL CSL

XGBoost Overall accuracy (%) 77.87 76.96 65.21 64.85 66.03 60.02

Severe casualties accuracy(%) 13.16 11.40 43.86 42.11 33.77 50.00

Minor injuries accuracy (%) 94.83 94.14 70.80 70.80 74.48 62.64

AUC (%) 53.99 52.77 57.33 56.45 54.13 56.32

G-mean (%) 35.32 32.76 55.73 54.60 50.15 55.97

LightGBM Overall accuracy (%) 77.78 77.41 65.39 64.30 63.84 62.11

Severe casualties accuracy(%) 7.02 8.77 38.16 40.35 39.47 48.62

Minor injuries accuracy (%) 96.32 95.40 72.53 70.57 70.23 65.45

AUC (%) 51.67 52.09 55.34 55.46 54.85 57.04*

G-mean (%) 26.00 28.93 52.61 53.36 52.65 56.42

CatBoost Overall accuracy (%) 78.42 77.96 70.40 64.57 62.57 58.74

Severe casualties accuracy(%) 5.70 9.65 27.19 42.54 39.47 53.21*

Minor injuries accuracy (%) 97.47 95.86 81.72 70.34 68.62 60.11

AUC (%) 51.59 52.76 54.46 56.44 54.05 56.66

G-mean (%) 77.87 76.96 65.21 64.85 66.03 60.02

Bolded data represents the optimal values of the indicators before tuning, while bolded data with * represents the optimal values of the indicators after tuning.
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combined cost-sensitive learning and the CatBoost algorithm
demonstrated the best overall performance. Its G-mean increased
to 56.56%, the AUC value of 56.66%was close to themaximum value
(57.04%), and the accuracy for classifying severe injury accidents
increased by 53.21%, showing a remarkable improvement of 14%.
Therefore, this model was selected as the optimal model for this
round.

3.2.2.3 Casualty factors
In the performance evaluation results of the injury factors

modeling for accidents between new energy vehicles and
pedestrians (as shown in Table 8), the maximum G-mean value
was 54.62%, the maximum AUC value was 58.50%, and the highest
accuracy for classifying severe injury accidents was 42.86%. These
maximum values were obtained using the LightGBM model with
cost-sensitive learning and undersampling for data balancing. After
tuning, the maximum values for G-mean, AUC, and accuracy for
classifying severe injury accidents were 56.91%, 57.78%, and 47.78%,
respectively. These values were achieved by combining cost-sensitive
learning with the XGBoost model. Therefore, this model was
selected as the optimal model for this stage.

3.2.3 Analysis of modeling accidents between new
energy vehicles and bicycles
3.2.3.1 Road and environmental factors

As shown in Table 9, the performance evaluation results of the
road and environmental factors model for accidents between new
energy vehicles and bicycles, the maximumG-mean value is 49.61%,
the maximum AUC value is 57.26%, and the highest accuracy rate

for classifying severe and fatal accidents is 30.56%. These maximum
values are obtained from the LightGBM model and the CatBoost
model, both of which use a hybrid sampling method and cost-
sensitive learning for data balancing. After parameter tuning, the
optimal model that combines cost-sensitive learning and the
XGBoost algorithm achieves a G-mean of 59.72%, an increased
AUC value of 59.87%, and an improved accuracy rate of 55.56% for
classifying severe and fatal accidents, with an increase of
approximately 94%.

3.2.3.2 Vehicle factors
As shown in Table 10, in the performance evaluation results of

the vehicle factors model, the maximum G-mean value is 54.68%,
the maximum AUC value is 57.12%, and the highest accuracy rate
for classifying severe and fatal accidents is 40.60%. All these
maximum values are obtained from the CatBoost model, which
uses cost-sensitive learning for data balancing. After parameter
tuning, the optimal model that combines cost-sensitive learning
and the XGBoost algorithm achieves a G-mean of 55.27%, an
increased AUC value of 56.00%, and an improved accuracy rate
of 47.01% for classifying severe and fatal accidents, with an increase
of approximately 16%.

3.2.3.3 Casualty factors
As shown in Table 11, in the performance evaluation results of

the vehicle factors model, the maximum G-mean value is 49.64%,
the maximum AUC value is 52.36%, and the highest accuracy rate
for classifying severe and fatal accidents is 40.74%. These maximum
values are obtained from the LightGBM and CatBoost models, both

TABLE 8 Performance measurement table of comprehensive accident casualty factor classification model for new energy vehicles-pedestrian accidents.

Model Evaluation metrics Data balancing processing

Before tuning After tuning

None SMOTE ENN SMOTEENN CSL CSL

XGBoost Overall accuracy (%) 79.35 76.84 69.77 70.05 64.37 64.00

Severe casualties accuracy(%) 6.40 12.32 37.93 30.05 38.42 47.78*

Minor injuries accuracy (%) 96.33 91.86 77.18 79.36 70.41 67.78

AUC (%) 51.37 52.09 57.55 54.70 54.42 57.78*

G-mean (%) 24.84 33.63 54.11 48.83 52.01 56.91*

LightGBM Overall accuracy (%) 80.47 77.02 71.91 70.70 64.56 64.00

Severe casualties accuracy(%) 4.93 14.78 36.95 32.02 42.86 44.83

Minor injuries accuracy (%) 98.05 91.51 80.05 79.70 69.61 68.46

AUC (%) 51.49 53.15 58.50 55.86 56.23 56.65

G-mean (%) 21.98 36.78 54.38 50.52 54.62 55.40

CatBoost Overall accuracy (%) 80.74 79.44 75.81 72.84 64.56 64.09

Severe casualties accuracy(%) 0.00 9.85 28.08 26.60 40.39 45.32

Minor injuries accuracy (%) 99.54 95.64 86.93 83.60 70.18 68.46

AUC (%) 49.77 52.75 57.50 55.10 55.29 56.89

G-mean (%) 22.98 30.49 46.13 44.82 51.24 55.60

Bolded data represents the optimal values of the indicators before tuning, while bolded data with * represents the optimal values of the indicators after tuning.
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TABLE 9 Performance measurement table of comprehensive accident road and environmental factor classification model for new energy vehicles-bicycle
accidents.

Model Evaluation metrics Data balancing processing

Before tuning After tuning

None SMOTE ENN SMOTEENN CSL CSL

XGBoost Overall accuracy (%) 85.91 83.93 73.67 76.51 66.63 63.04

Severe casualties accuracy(%) 9.26 6.48 21.30 25.00 28.70 55.56*

Minor injuries accuracy (%) 97.72 95.86 81.74 84.45 72.47 64.19

AUC (%) 53.49 51.17 51.52 54.73 50.59 59.87*

G-mean (%) 30.08 24.93 41.72 45.95 45.61 59.72*

LightGBM Overall accuracy (%) 86.03 85.04 73.79 78.12 68.60 65.27

Severe casualties accuracy(%) 2.78 4.63 22.22 28.70 30.56 51.85

Minor injuries accuracy (%) 98.86 97.43 81.74 85.73 74.47 67.33

AUC (%) 50.82 51.03 51.98 57.22 52.51 59.59

G-mean (%) 16.57 21.24 42.62 49.61 47.70 59.09

CatBoost Overall accuracy (%) 86.03 85.04 81.71 78.86 71.32 70.21

Severe casualties accuracy(%) 0.00 3.70 18.52 27.78 29.63 30.56

Minor injuries accuracy (%) 99.29 97.57 91.44 86.73 77.75 76.32

AUC (%) 49.64 50.64 54.98 57.26 53.69 53.44

G-mean (%) 0.00 19.01 41.15 49.08 48.00 48.29

Bolded data represents the optimal values of the indicators before tuning, while bolded data with * represents the optimal values of the indicators after tuning.

TABLE 10 Performance measurement table of comprehensive accident vehicle factor classification model for new energy vehicles-bicycle accidents.

Model Evaluation metrics Data balancing processing

Before tuning After tuning

None SMOTE ENN SMOTEENN CSL CSL

XGBoost Overall accuracy (%) 84.92 84.50 75.38 72.83 69.85 62.43

Severe casualties accuracy(%) 6.84 7.69 20.94 25.64 31.20 47.01*

Minor injuries accuracy (%) 97.87 97.24 84.41 80.65 76.26 64.99

AUC (%) 52.36 52.46 52.67 53.15 53.73 56.00*

G-mean (%) 25.87 27.35 42.04 45.48 48.77 55.27*

LightGBM Overall accuracy (%) 84.98 84.98 80.43 76.35 67.78 64.92

Severe casualties accuracy(%) 0.85 3.85 17.95 21.37 39.74 43.59

Minor injuries accuracy (%) 98.94 98.44 90.79 85.47 72.43 68.46

AUC (%) 49.90 51.14 54.37 53.42 56.09 56.03

G-mean (%) 9.20 19.46 40.37 42.74 53.65 54.63

CatBoost Overall accuracy (%) 85.71 85.53 82.80 75.44 68.94 62.67

Severe casualties accuracy(%) 0.85 3.42 7.26 19.66 40.60 46.58

Minor injuries accuracy (%) 99.79 99.15 95.32 84.69 73.64 65.34

AUC (%) 50.32 51.28 51.29 52.17 57.12 55.96

G-mean (%) 9.24 18.41 26.32 40.80 54.68 55.17

Bolded data represents the optimal values of the indicators before tuning, while bolded data with * represents the optimal values of the indicators after tuning.
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of which use cost-sensitive learning and hybrid sampling for data
balancing. After parameter tuning, the data shows that the model
constructed by LightGBM and cost-sensitive learning is the best

model. It achieves an increase of 1.35% in G-mean, an increase of
1.30% in AUC value, and an improvement of 0.93% in accuracy rate
for classifying severe and fatal accidents.

TABLE 11 Performance measurement table of comprehensive accident casualty factor classification model for new energy vehicles-bicycle accidents.

Model Evaluation metrics Data balancing processing

Before tuning After tuning

None SMOTE ENN SMOTEENN CSL CSL

XGBoost Overall accuracy (%) 86.65 58.62 63.47 73.42 55.58 58.13

Severe casualties accuracy(%) 0.93 37.96 28.70 23.15 43.52 41.67

Minor injuries accuracy (%) 99.58 61.73 68.72 81.01 57.40 60.61

AUC (%) 50.25 49.85 48.71 52.08 50.46 51.14

G-mean (%) 9.60 48.41 44.41 43.30 49.98 50.26

LightGBM Overall accuracy (%) 86.77 58.13 65.90 77.91 57.89 59.47

Severe casualties accuracy(%) 0.00 38.89 25.93 17.59 40.74 41.67*

Minor injuries accuracy (%) 99.86 61.03 71.93 87.01 60.47 62.15

AUC (%) 49.93 49.96 48.93 52.30 50.61 51.91*

G-mean (%) 0.00 48.72 43.18 39.12 49.64 50.89*

CatBoost Overall accuracy (%) 86.65 58.62 63.71 73.91 60.68 60.07

Severe casualties accuracy(%) 0.00 37.04 26.85 23.15 37.04 38.89

Minor injuries accuracy (%) 99.72 61.87 69.27 81.56 64.25 63.27

AUC (%) 49.86 49.45 48.06 52.36 50.64 51.08

G-mean (%) 0.00 47.87 43.13 43.45 48.78 49.60

Bolded data represents the optimal values of the indicators before tuning, while bolded data with * represents the optimal values of the indicators after tuning.

FIGURE 1
Summary diagram of road and environmental factors in overall accidents involving new energy vehicles.
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4 Explanation of the severity model for
new energy vehicle accidents

4.1 Overall accident analysis

4.1.1 Road and environmental factors
As shown in Figure 1, in the overall analysis of accidents

involving new energy vehicles, the presence of police at the scene
generally indicates a higher severity level, often resulting in serious
injuries or fatalities. Compared to accidents involving two vehicles
colliding, accidents involving bicycles and multiple vehicles tend to
be more severe. In terms of spatial dimension, the incidence of traffic
accidents is higher in urban areas, but the severity level is often
minor injuries. On the other hand, accidents occurring in suburban
areas, ramps, and near pedestrian facilities tend to have more severe
casualties. The severity level of accidents on road segments with
speed limits higher than 30 mph is also higher. From a temporal
perspective, there has been an increase in the number of accidents
involving new energy vehicles in recent years, and they generally
show higher severity levels. Additionally, accidents occurring at the
end of the month, end of the year, and during early morning hours
are generally more severe.

4.1.2 Vehicle factors
From Figure 2, it can be observed that accidents involving new

energy vehicles are more severe during high-speed maneuvers (lane
changing, overtaking), and the severity level is often higher when
accidents occur in non-intersection areas. Furthermore, drivers of
new energy vehicles from families with better socioeconomic
conditions are more prone to serious and fatal accidents during
their travel. The presence of more vulnerable modes of
transportation (bicycles) among the vehicles involved in the
accident also leads to higher severity levels. Moreover, older
drivers are more likely to increase the severity level of traffic

accidents. On the other hand, collisions occurring at the front of
the vehicle, or when the vehicle hits roadside objects (curbs,
barriers), objects outside the lane (walls, ditches, etc.), or
rollovers, are more likely to result in casualties.

4.1.3 Casualty factors
As shown in Figure 3, among the factors affecting casualties in

overall accidents involving new energy vehicles, the type of injured
individuals has the most significant impact on the severity of the
accidents. Individuals driving or riding in less protective modes of
transportation are more prone to severe injuries and fatalities.
Additionally, traffic accidents tend to cause more severe harm to
older individuals. The severity of injuries also varies among
individuals from different regions, with residents of suburban
areas being more prone to severe injuries and fatalities. When
the injured individual is a pedestrian, the severity of injuries is
generally higher, leading to a higher likelihood of severe injuries or
fatalities.

4.2 Analysis of pedestrian accidents

4.2.1 Road and environmental factors
From Figure 4, it can be seen that in new energy vehicle-

pedestrian accidents, whether the police are present or not
remains the primary indicator of the severity of the accidents.
From a spatial perspective, it is observed that accidents in
suburban areas and on high-speed limit sections are more likely
to result in severe injuries or fatalities, consistent with the overall
characteristics of accidents involving new energy vehicles. However,
there are also differences, such as when a new energy vehicle-
pedestrian accident occurs at an intersection, it is more likely to
cause serious injuries or fatalities. From a temporal perspective,
recently occurring accidents of this nature have shown higher

FIGURE 2
Summary diagram of vehicle factors in overall accidents involving new energy vehicles.
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severity and greater quantity, but with overall stability. Similarly,
serious traffic accidents are more likely to occur at the end of the
month, year-end, midnight, and early morning. Additionally,
accidents that occur at night in unlit areas tend to have a higher
severity.

4.2.2 Vehicle factors
From Figure 5, it can be seen that in terms of vehicle factors in

new energy vehicle-pedestrian accidents, vehicles in high-speed
motion, vehicles controlled by drivers with better economic
conditions or older age, and vehicles with older age are more
likely to be involved in severe traffic accidents. Additionally,

accidents are more likely to occur when vehicles are inside
intersections or when vehicles collide with lane edges, objects
outside the road, or experience rollovers. These characteristics are
consistent with the overall characteristics of accidents involving new
energy vehicles.

4.2.3 Casualty factors
Through the analysis of Figure 6, it is found that in new energy

vehicle-pedestrian accidents, the age of the injured individuals has a
significant impact on the severity of the accidents. Younger victims
tend to have lower injury severity, while older individuals generally
suffer more severe injuries. Additionally, more serious traffic

FIGURE 3
Summary diagram of casualty factors in overall accidents involving new energy vehicles.

FIGURE 4
Summary diagram of road and environmental factors in new energy vehicle-pedestrian accidents.
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accidents are prone to occur in the vicinity of pedestrian sidewalks
undergoing construction work, and male gender or victims residing
in suburban areas generally have more severe injuries.

4.3 Analysis of bicycle accidents

4.3.1 Road and environmental factors
From Figure 7, it can be observed that in new energy vehicle-

bicycle accidents, the year has a greater impact on the severity of the
accidents compared to the presence of police at the scene. In
addition to similar findings, weekdays versus weekends also have

a significant influence on such accidents, with higher severity in new
energy vehicle-bicycle accidents occurring on weekends.

4.3.2 Vehicle factors
As shown in Figure 8, in new energy vehicle-bicycle accidents,

factors such as whether it occurred at an intersection, driver’s economic
condition, vehicle age, driver’s age, and vehicle’s motion state have a
significant impact on the severity of the accidents. Vehicles traveling
outside intersections, younger vehicles in terms of age, or vehicles
controlled by older drivers are more prone to severe traffic accidents.
Similarly, accidents involving vehicles in high-speed motion, collisions
with lane edges, or rollovers tend to have higher severity.

FIGURE 5
Summary diagram of vehicle factors in new energy vehicle-pedestrian accidents.

FIGURE 6
Summary diagram of factors related to casualties in new energy vehicle-pedestrian accidents.
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4.3.3 Casualty factors
From Figure 9, it can be observed that in new energy vehicle-

pedestrian accidents, older individuals and male individuals tend
to have higher severity of injuries, and victims residing in

suburban areas generally have more severe injuries. On the
other hand, the severity of new energy vehicle-pedestrian
accidents can also be increased when pedestrian walkways are
under construction.

FIGURE 7
Summary diagram of road and environmental factors related to new energy vehicle-bicycle accidents.

FIGURE 8
Summary diagram of vehicle factors related to new energy vehicle-bicycle accidents.

Frontiers in Energy Research frontiersin.org16

Zhang et al. 10.3389/fenrg.2023.1329688

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1329688


5 Conclusion

1) During the process of model building, it was found that cost-
sensitive learning is more effective and efficient in handling
imbalanced data issues compared to resampling methods.
When comparing tree-based ensemble algorithms, LightGBM
demonstrated overall stability and higher computational
efficiency. XGBoost showed a balance between computational
efficiency and model performance. CatBoost, on the other hand,
was more time-consuming and exhibited less stability in
performance across different datasets.

2) New energy vehicles are more common in urban areas, but they
tend to have lower accident severity. On the other hand,
accidents that occur in towns or suburban areas may be less
frequent but often more severe. Additionally, accidents involving
older vehicles, vehicles in high-speed maneuvers (overtaking,
changing lanes, etc.), vehicles deviating from lanes, colliding with
road edges (curbs, median barriers, etc.), or vehicles overturning
tend to have higher severity. Furthermore, vehicles driven by
male drivers or drivers with better economic conditions are more
prone to serious traffic accidents. This is because male drivers or
drivers with better economic conditions tend to focus more on
driving experience and may exhibit aggressive driving behaviors.
Elderly individuals (drivers or passengers) or individuals using
vehicles with poor protection (bicycles, motorcycles) and
pedestrians are also prone to serious traffic accidents. This is
due to the weaker adaptability and recovery ability of elderly
individuals, making them more susceptible to severe injuries or
fatalities. Additionally, bicycles and pedestrians are in a
vulnerable position in traffic accidents, lacking sufficient
protective measures, which can result in serious injuries or
fatalities.

3) In pedestrian and bicycle accidents involving new energy
vehicles, in addition to the aforementioned characteristics, it
has been observed that serious traffic accidents are more likely to
occur when pedestrian walkways are under construction.
Furthermore, in pedestrian accidents, it has been found that
poorly illuminated sections at night are prone to serious traffic

accidents. Additionally, when pedestrians engage in improper
crossing behaviors (e.g., jaywalking), serious injuries and
fatalities are more likely to occur. On the other hand, an
anomalous finding has been observed in new energy vehicle-
bicycle accidents. It has been found that vehicles with a shorter
service time and better condition are more prone to serious
traffic accidents, which differs significantly from the influencing
mechanisms in other types of accidents.
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